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Abstract 

Background  Intravascular catheter infections are associated with adverse clinical outcomes. However, a significant 
proportion of these infections are preventable. Evaluations of the performance of automated surveillance systems 
for adequate monitoring of central-line associated bloodstream infection (CLABSI) or catheter-related bloodstream 
infection (CRBSI) are limited.

Objectives  We evaluated the predictive performance of automated algorithms for CLABSI/CRBSI detection, 
and investigated which parameters included in automated algorithms provide the greatest accuracy for CLABSI/CRBSI 
detection.

Methods  We performed a meta-analysis based on a systematic search of published studies in PubMed and EMBASE 
from 1 January 2000 to 31 December 2021. We included studies that evaluated predictive performance of automated 
surveillance algorithms for CLABSI/CRBSI detection and used manually collected surveillance data as reference. We 
estimated the pooled sensitivity and specificity of algorithms for accuracy and performed a univariable meta-regres‑
sion of the different parameters used across algorithms.

Results  The search identified five full text studies and 32 different algorithms or study populations were included 
in the meta-analysis. All studies analysed central venous catheters and identified CLABSI or CRBSI as an outcome. 
Pooled sensitivity and specificity of automated surveillance algorithm were 0.88 [95%CI 0.84–0.91] and 0.86 [95%CI 
0.79–0.92] with significant heterogeneity (I2 = 91.9, p < 0.001 and I2 = 99.2, p < 0.001, respectively). In meta-regression, 
algorithms that include results of microbiological cultures from specific specimens (respiratory, urine and wound) 
to exclude non-CRBSI had higher specificity estimates (0.92, 95%CI 0.88–0.96) than algorithms that include results 
of microbiological cultures from any other body sites (0.88, 95% CI 0.81–0.95). The addition of clinical signs as a predic‑
tor did not improve performance of these algorithms with similar specificity estimates (0.92, 95%CI 0.88–0.96).
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Conclusions  Performance of automated algorithms for detection of intravascular catheter infections in comparison 
to manual surveillance seems encouraging. The development of automated algorithms should consider the inclusion 
of results of microbiological cultures from specific specimens to exclude non-CRBSI, while the inclusion of clinical data 
may not have an added-value.

 Trail Registration Prospectively registered with International prospective register of systematic reviews (PROSPERO ID 
CRD42022299641; January 21, 2022). https://​www.​crd.​york.​ac.​uk/​prosp​ero/​displ​ay_​record.​php?​ID=​CRD42​02229​9641
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Background
Intravascular catheters (IVC) are indispensable and 
commonly used medical devices in hospitalized 
patients, and substantially predispose patients to 
develop healthcare-associated infections (HAIs) [1–9].

In 2016, the mean prevalence of HAIs in European 
countries was estimated to be 6.5% [1]. Hospital-
acquired bloodstream infections (HA-BSI) account for 
14.2% of HAI [2] and a large proportion of HA-BSI is 
attributable to IVC. In Europe, both central line-asso-
ciated bloodstream infection (CLABSI) and catheter-
related bloodstream infection (CRBSI) represent 36.5% 
of intensive care unit (ICU)-acquired bloodstream 
infections (BSIs) and the incidence has been found to 
vary between 1.7 and 4.8 episodes per 1000 catheter 
days [4]. CLABSI/CRBSI are associated with excess 
mortality rates, extended duration of hospitalization 
and greater healthcare expenditure [5–9]. More than 
50% of CLABSI/CRBSI can be considered as prevent-
able [3].

Surveillance of CLABSI/CRBSI among patients with 
IVC allows for the burden of disease to be quantified and 
for the effectiveness of interventions to prevent CLABSI/
CRBSI to be assessed. Automated algorithms may offer 
approaches to improve the efficiency of CLABSI/CRBSI 
surveillance. Compared to manual surveillance, auto-
mated surveillance has been demonstrated to reduce 
time and workload for healthcare workers and infection 
control practitioners, and to provide data in real time 
that may allow for more timely clinical interventions 
[10–12]. However, little is known as to the predictive per-
formance of automated algorithms for CLABSI/CRBSI 
surveillance, as well as the relative performance of dif-
ferent parameters that could be used within automated 
algorithms for the timely identification of CLABSI/
CRBSI among patients with IVC.

The main objective of this study was to evaluate the 
predictive performance of automated surveillance sys-
tems for the detection of CLABSI/CRBSI among hospi-
talized patients, and to identify which parameters have 
a greater influence on the predictive performance, so as 
to inform future automated surveillance algorithms for 
CLABSI/CRBSI detection.

Methods
Design
We performed a systematic review and meta-analysis on 
the predictive performance of automated surveillance 
algorithms for the detection of CLABSI/CRBSI among 
hospitalized patients. This study was registered within 
the PROSPERO international prospective register of 
systematic reviews (CRD42022299641) on January 21, 
2022, and was reported in accordance with the Preferred 
Reporting Items for Systematic reviews and Meta-Analy-
ses (PRISMA) statement [13, 14].

Search strategy
We conducted a systematic search using two electronic 
databases, PubMed and EMBASE, for relevant articles 
published between 1 January 2000 and 31 December 
2021. We searched for original studies using the keyword 
algorithms described in the supplementary material. 
The search was limited to articles published in English. 
We searched for studies that reported on the predictive 
performance of automated algorithms for the detection 
of HAI (to increase the sensitivity of the search strategy) 
and of intravascular catheter infections (to increase the 
specificity of the search strategy). The records from the 
two databases search were merged and duplicates were 
removed using the EndNote program (Thomson Reuters, 
New-York, NY, USA).

Study selection
Two investigators (J.M.J. and N.L.) screened titles and 
abstracts and examined the full text of original articles 
selected for study inclusion independently and in dupli-
cate; disagreements were resolved by consensus.

Inclusion criteria
Original studies were included if they assessed accuracy 
of automated algorithms for the surveillance of CLABSI 
and/or CRBSI. CLABSI was defined by one positive 
blood culture and clinical manifestation of infection in a 
patient with a catheter in place and with no other source 
of bacteremia except the catheter. CRBSI was defined 
as one positive blood culture obtained from peripheral 
vein and clinical manifestation of infection, and at least 

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022299641
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one of the following: (1) a positive CVC culture with the 
same micro-organism by qualitative or semi-quantita-
tive (i.e., ≥ 15 CFU) methods or (2) a differential time to 
positivity of more than 120  min between central cath-
eter blood culture and peripheral blood culture (blood 
samples drawn at the same time), or (3) a ratio of micro-
organism quantity from CVC blood sample on microor-
ganism quantity from peripheral blood sample greater 
than 3 [15–17]. We selected studies that compared the 
predictive performance of automated algorithms with 
data from manual surveillance. Selected studies needed 
to include sensitivity and specificity estimates calculated 
using diagnostic test methods. Moreover, studies needed 
to directly or indirectly include all of the following: num-
ber of true positives (TP), false positives (FP), true nega-
tives (TN), and false negatives (FN). Studies that did not 
provide all these data to determine the predictive perfor-
mance of the automated algorithm were excluded.

Data extraction and quality assessment
Data were extracted from the selected studies according 
to predefined rules that were used to identify IVC infec-
tions. If multiple algorithms (i.e., algorithms with differ-
ent definitions for identifying IVC infections) or multiple 
study populations were evaluated in a single study, we 
defined each single algorithm as a single observation in 
the meta-analysis. The total number of algorithms ana-
lyzed was therefore higher than the number included 
studies. For each algorithm, we extracted the data on the 
endpoint (CLABSI/CRBSI) and on the predictive perfor-
mance of the automated algorithm: TP, FP, FN, and TN.

From these different algorithms, we identified individ-
ual and pooled parameters for CLABSI/CRBSI detection.

Using the revised tool for the Quality Assessment of 
Diagnostic Accuracy Studies (QUADAS 2) [18], we eval-
uated the quality of studies based on four items: patient 
selection, index test, reference standard, and flow and 
timing. We assessed intra-study risk of bias and concern 
for applicability using a three-level rating scale (high, low 
or unclear).

Statistical analysis
We first described characteristics of included studies 
(mono versus multicenter, type of catheter included, set-
ting) and outcomes. We then estimated pooled sensitiv-
ity and specificity of automated surveillance algorithms 
for the identification of CLABSI/CRBSI with 95% con-
fidence intervals (95% CI) for algorithms using bivariate 
random-effects models. We used I2 statistics to assess 
potential heterogeneity between algorithms [19, 20], with 
I2 > 75% representing considerable heterogeneity. We 
subsequently calculated areas under summary receiver 
operating characteristic curves (SAUROC), and we used 

plots observed data in ROC plane to assess threshold 
effect visually. In addition, we used graphical model tests 
to depict both the residual-based goodness-of-fit and the 
bivariate normal distribution, to check for how observa-
tions influenced analyses and to detect outliers.

Finally, we performed a meta-regression to explore 
how individual and pooled parameters included in the 
algorithms influenced the performance of automated 
algorithms for CLABSI/CRBSI detection as compared to 
manual surveillance.

We used the “midas” command (meta-analysis integra-
tion of diagnostic test accuracy studies), a comprehensive 
program of statistical and graphical routines for under-
taking meta-analysis of diagnostic test performance in 
STATA developed by Dwamena [21]. Each individual 
parameter and combination of parameter were included 
in the meta-regression as an independent explanatory 
variable. We considered results as significant for P-val-
ues < 0.05. We used STATA/MP software (version 16.0). 
STATA codes are reported in the Additional file 1.

Results
Systematic literature search
We identified 586 non-redundant study records. Eighty 
(13.7%) full text articles were assessed for eligibility after 
abstract and title screening (Additional file 1: Fig. S1). Of 
these, 5 (1%) were included in the systematic review and 
meta-analysis [22–26]. Details on the search strategy are 
given in the Additional file 1.

Characteristics of included studies
Three of the studies included in the systematic review 
were monocentric [23–25] and the remaining two mul-
ticentric [22, 26] (Table  1). Four studies analyzed only 
central venous catheters (CVC) and used CLABSI as 
an outcome [22, 24–26]. One study included unspeci-
fied IVC and used CRBSI as an outcome [23]. Two stud-
ies (40%) were conducted in the ICU setting [24, 26]. All 
studies were observational and used manually collected 
surveillance data as reference [22–26].

Across the 5 studies, 32 different automated algorithms 
or population samples were identified and included in the 
meta-analysis. Among the 32 algorithms, we identified 
7 individual parameters, and 9 combinations of param-
eters used for automated detection of CLABSI/CRBSI 
(Table 2 and Additional file 1: Table S1). These 16 single 
or pooled parameters were then tested in the univariable 
meta-regression.

Quality of studies
Using the QUADAS-2 tool, the quality of the five studies 
included in the systematic review and meta-analysis was 
assessed to be high (Additional file 1: Table S2). Overall, 
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the risk of bias was low: two studies were rated as low risk 
of potential bias, among all assessed categories [22, 24], 
and three studies were rated as high risk of bias for only 
one algorithm within each study [23, 25, 26]. The appli-
cability was rated as high for four of the five studies [22, 
24–26], and only one study had low applicability in two of 
three algorithms identified in the study [23]. The evalu-
ation of publication bias is illustrated in Additional file 
(Additional file 1: Figs. S2 and S3).

Pooled sensitivity, specificity and SAUROC
The pooled sensitivity and specificity were 0.89 [95% CI 
0.85–0.92] and 0.83 [95% CI 0.71–0.91] with significant 
heterogeneity between algorithms included in the meta-
analysis (I2 = 91.36, p < 0.001 and I2 = 99.20, p < 0.001), 
respectively (Fig. 1).

The area under the SAUROC curve was 0.93 [95% CI 
0.91–0.95] and this identified four algorithms with sen-
sitivity greater than 0.89 and specificity greater than 0.83 
(Figure S4A). These 4 best performing algorithms were all 
from the study of Woeltje et al. 2011 [26]. Algorithm 17 
was defined by the combination of the four following 
parameters: “Hospital-acquired BSI with CVC”, “True 
BSI for common skin commensal (CSC)”, “Clinical data” 
and “Cultures from any other site” and has a sensitivity of 
0.95 [95% CI 0.88–0.99] and a specificity of 0.98 [95% CI 
0.95–0.99]. Three algorithms (19, 20 and 21) combined 
the same three parameters “Hospital-acquired BSI with 
CVC”, “True BSI for CSC” and “Cultures from any other 

site” and differed regarding the time window considered 
for the parameter “Cultures from other body sites” (from 
admission to the positive blood culture (algorithm  19; 
sensitivity 0.94 [95% CI 0.87–0.98] and specificity 0.94 
[95% CI 0.91–0.96]) or from admission and within 7 days 
before or after the positive blood culture (algorithm 20; 
sensitivity 0.92 [95% CI 0.84–0.97] and specificity 0.98 
[95% CI 0.96–0.99]) or from admission and within 
14 days before to 7 days after the positive blood culture 
(algorithm  21; sensitivity 0.92 [95% CI 0.84–0.97] and 
specificity 0.98 [95% CI 0.96–0.99]).

Outliers regarding sensitivity and specificity are illus-
trated in the Additional file (Additional file 1: Fig. S2).

Meta‑regression
Given the heterogeneity between algorithms included in 
the meta-analysis, the meta-regression sought to iden-
tify which parameters had the greatest influence on the 
measures of effect. Additional file  1: Fig. S5 shows the 
frequency of all individual and pooled parameters identi-
fied within the 32 algorithms. The individual and pooled 
parameters for CLABSI/CRBSI detection derived from 
univariable meta-regression is illustrated in Fig. 2.

Figure  3 summarizes how each parameter affects 
the sensitivity and specificity of the algorithm. For two 
parameters only, “Hospital-acquired BSI with CVC” and 
“Administration of antibiotics”, the sensitivity increased, 
and the specificity decreased when the parameter was 
present. When “Hospital-acquired BSI with CVC” was the 

Table 1  Characteristics of included studies

CVC: central venous catheter; CLABSI: central line-associated bloodstream infection; CRBSI: catheter-related bloodstream infection ICU: intensive care unit

Study Setting Type of ward Location Study period Study population 
sample size

Catheter 
types 
included

Outcome

Trick et al. [22] 2 hospitals All wards exclud‑
ing neonatal 
and pediatric wards

US, Chicago Sep 1st, 2001 to Feb 
28th, 2002

99 patients (104 posi‑
tive blood culture) 
in one hospital, 
and 28 patients (31 
positive blood 
culture) in the other 
hospital

CVC CLABSI

Bellini et al. [23] 1 hospital All types Switzerland, Laus‑
anne

3-years period 669 positive blood 
culture

Unspeci‑
fied intra‑
vascular 
catheter

CRBSI

Woeltje et al. [24] 1 hospital 6 ICU US, Missouri July 1st, 2005 to Dec 
31, 2006

540 patients (694 
positive blood 
culture)

CVC CLABSI

Woeltje et al. [25] 1 hospital 4 non-ICU US, Missouri Jul 1st, 2005 to Dec 
31, 2006

331 patients (391 
positive blood 
culture)

CVC CLABSI

Snyders et al. [26] 11 hospitals 17 ICU US, Missouri Jan1st to Jun 30, 
2011

518 patients (643 
positive blood 
culture)

CVC CLABSI
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only parameter considered, the sensitivity was 0.98 (95% 
CI 0.96–1.00) as compared to 0.83 (95%CI 0.83- 0.90) 
when it was not considered (p = 0.25). When “adminis-
tration of antibiotics” was the only parameter considered, 
the sensitivity was 0.92 (95% CI 0.85–0.99) as compared 
to 0.88 (95% CI 0.84–0.92) when it was not considered. 
For all other individual and pooled parameters, the sen-
sitivity decreased, and the specificity increased when the 
parameter was present.

The combination of parameters with the highest spe-
cificities always included the parameter “True BSI for 

common skin commensal”. In addition, combination 
with highest specificities included either “Culture from 
specific other sites” or “Culture from any other site” and 
either “New episode” or “Clinical data”. The combina-
tions that included the parameter “Culture from specific 
other sites” had higher specificities (0.92; 95% CI 0.88–
0.96) than the combinations that include “Culture from 
any other site” (0.88; 95% CI 0.81–0.95). The addition of 
the parameter “Clinical data” in the combination did 
not increase the specificity of the estimate: 0.92 (95% 
CI; 0.88–0.96) with the parameter included vs. 0.92 
(95% CI; 0.88–0.96) without it.

Table 2  Individual and pooled parameters used in the meta-regression

BSI: bloodstream infection; IVC: intravascular catheter; HA: healthcare associated; CSC: common skin commensal

Individual or pooled parameters Definitions Corresponding 
letter in Fig. 2

Hospital-acquired (HA) bloodstream infection (BSI) with IVC Hospital-acquired BSI was defined as a BSI detected ≥ 48 h 
after hospital admission and the patient had an intravascular 
catheter in situ

A

True BSI for common skin commensal True BSI for common skin commensal (CSC) was defined 
as at least two positive blood cultures within 3 to 7 days accord‑
ing to studies included. CSC included diphtheroid, Bacillus 
species, Cutibacterium species, coagulase-negative staphylococci, 
and micrococci

B

Clinical data Clinical data (e.g., fever defined by temperature > 38.0 °C, hypo‑
tension defined by systolic pressure < 90 mmHg) were consid‑
ered in the algorithm

C

Administration of antibiotics Administration of antibiotics was considered in the algorithm D

New episode The same microorganism isolated in a separate blood culture 
was considered as a new episode only if identified after at least 
between 3 and 7 days after the first episode, according to studies

E

Cultures from any other sites A bloodstream infection was not considered catheter related 
or associated if the same pathogen was identified from a culture 
in any other body sites

F

Cultures from specific other sites A bloodstream infection was not considered catheter related 
or associated if the same pathogen was identified in cultures 
from one of the following body sites: respiratory track, urinary 
or wound

G

HA BSI with IVC + true BSI for common skin commensal + clinical 
data

Cf. definitions above H

HA BSI with IVC + true BSI for common skin commensal + admin‑
istration of antibiotics

Cf. definitions above I

HA BSI with IVC + true BSI for common skin commensal + new 
episode

Cf. definitions above J

HA BSI with IVC + true BSI for common skin commensal + culture 
from any other sites

Cf. definitions above K

HA BSI with IVC + true BSI for common skin commensal + culture 
from specific another sites

Cf. definitions above L

HA BSI with IVC + true BSI for common skin commensal + new 
episode + culture from any other sites

Cf. definitions above M

HA BSI with IVC + true BSI for common skin commensal + new 
episode + culture from specific another sites

Cf. definitions above N

HA BSI with IVC + true BSI for common skin commensal + clinical 
data + culture from any other sites

Cf. definitions above O

HA BSI with IVC + true BSI for common skin commensal + clinical 
data + culture from specific another sites

Cf. definitions above P
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Fig. 1  Forest plot of diagnostic performance, including sensitivity and specificity. *Studies with the best performance based on both sensitivity/
specificity (sensitivity ≥ 0.89 and specificity ≥ 0.83)

Fig. 2  Univariable meta-regression for intravascular catheter bloodstream infection criteria. Blue reference line shows the pooled sensitivity 
and specificity, respectively. Letters A to G refers to Individual and pooled parameters described in Table 2
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Discussion
To our knowledge, this is the first meta-analysis that has 
reported pooled sensitivity and specificity as predictive 
performance of automated surveillance algorithms, using 
bivariate random-effects approach from 5 studies pub-
lished in the last two decades [27–30]. This meta-analysis 
highlighted two main findings: (1) the pooled sensitivity 
was high but heterogeneous across all algorithms; and 
(2) the pooled specificity was also heterogeneous, but 
the meta-regression allowed to identify several individual 
and pooled parameters that had a greater influence on 
the measure of effect, and which could therefore inform 
the development of further automated surveillance algo-
rithms for the detection of CLABSI/CRBSI.

Few studies have investigated the predictive accuracy 
of both CLABSI and CRBSI using automated surveillance 
systems. Frequently, authors have focused on CVC and 
CLABSI, thus disregarding other IVC and the more spe-
cific definition CRBSI. Indeed, the CRBSI definition fre-
quently needs catheter removal and catheter tip culture, 
which are not commonly performed in most countries 
[31]. However, CRBSI allows a higher degree of certainty 
in the attribution of the catheter in the occurrence of 

the BSI [17], as compared to the CLABSI definition. To 
our knowledge, only one previous systematic review col-
lated data on automated surveillance algorithms for the 
detection of IVC infections [27]. However, the authors of 
this systematic review focused on all HAIs, did not per-
form a meta-analysis and did not assess heterogeneity in 
the definitions used for automated surveillance of IVC 
infections.

In our study the pooled sensitivity was high (i.e., > 85%), 
and no individual or pooled parameter substantially 
influenced it. This finding is probably explained by the 
simplicity of detection of BSI compared to other HAIs 
(e.g. surgical site infections or ventilator-associated pneu-
monias) that require more complicated detection strate-
gies and inclusion of clinical data or radiological findings.

Several factors influenced specificities and could 
improve the accuracy of automated monitoring algo-
rithms. First, the addition of “clinical signs” did not 
substantially improve the accuracy of the specificity com-
pared to similar algorithms that included microbiological 
cultures from other body sites. Second, higher specifici-
ties could be achieved by including only microbiologi-
cal data from respiratory tract, urinary tract or wound 

Fig. 3  Decision tree based on different algorithm’s parameters
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samples instead of microbiological data from any other 
body sites. Clinical signs are frequently difficult to col-
lect in hospital databases because of the lack of structure 
and standardization of the data, whereas microbiologi-
cal cultures, which usually rely only on microbiological 
laboratories, are often more harmonized, more easily 
extractable and therefore integrated in an automated sur-
veillance algorithm. Automated algorithms should firstly 
integrate microbiological data from other selected body 
sites to exclude non-catheter associated bloodstream 
infections.

Our results allow us to make some suggestions regard-
ing which parameters are relevant for clinical decision 
making or hypothesis generation for further clinical stud-
ies investigating this issue, based on the balance between 
sensitivity and specificity and on clinical relevance 
(Fig. 3). We suggest that the following parameters should 
be relevant for inclusion in an automated CLABSI detec-
tion algorithm: (i) a parameter to differentiate a common 
skin contaminant from a true causative pathogen; (ii) a 
parameter to define two distinct infectious episodes; and 
(iii) a parameter to consider cultures from other specific 
body sites to exclude infection not associated with an 
IVC. That is, our results allow us to infer that any auto-
mated algorithm for IVC bloodstream surveillance needs 
to be able to: distinguish the causative pathogen from 
common skin commensal; consider the same microor-
ganism isolated in a separate blood culture to be a new 
infectious episode if identified after at least between 3 
and 7  days after the first episode; and differentiate any 
positive culture(s) from other body sites as being non-
catheter related.

The use of a meta-regression versus predictive scores 
(e.g., Infection Probability Score (IPS) [32], or its modi-
fication for central venous catheter-related blood-
stream infections [33]) remains debated. While the 
development and validation of predictive score are usu-
ally based one restricted and temporally defined sample 
(i.e., study), systematic reviews, meta-regression and 
meta-analysis include several samples (i.e., several clus-
ters, representing different studies). Predictive scores 
can be validated externally in other settings, allow-
ing model discrimination and calibration performance 
across several settings. However, random-effects meta-
regression or meta-analysis provide the additional 
benefit of average performance and heterogeneity in 
performance across different studies. Accordingly, sys-
tematic reviews, meta-regression and meta-analysis 
of validation studies provide a summary of predictive 
performance from different settings and populations 
[34]. In other words, meta-regressions or meta-analysis 
provide a potentially more accurate and relevant meas-
ure of performance, taking into account context and 

heterogeneity factors. This makes meta-regressions and 
meta-analysis a more relevant tool for decision making 
purposes taking into account the external validation of 
an automated algorithm.

This study has some limitations. First, the low num-
ber of studies included suggests that the accuracy of 
the estimates of automated monitoring algorithms 
for CLABSI/CRBSI detection could be limited by the 
potential heterogeneity of data. Moreover, the inclu-
sion of Bellini et al. [23] study, which relied on CRBSI 
definition only, could have increased the risk of heter-
ogeneity. Second, classification of algorithms could be 
questionable, and the heterogeneity in definitions did 
not allow us to develop accurate algorithms (e.g., details 
of clinical signs were not specified, time-windows were 
simplified into our meta-analysis by regrouping time-
windows from different studies). Third, the generaliz-
ability of our conclusions could be limited, because 
studies were frequently monocentric and were all 
performed in high income countries. Fourth, grey lit-
erature was not screened. Finally, mostly CVC were 
included; it is conceivable that our results are not appli-
cable to other intravascular catheter types.

Conclusions
Our meta-regression examined the accuracy of auto-
mated algorithms developed to monitor CLABSI/
CRBSI and provides valuable information while devel-
oping valid algorithms for automated monitoring of 
intravascular catheter infections. Microbiological 
cultures from selected other body sites could help to 
exclude BSI not related to IVC, whereas clinical signs 
did not substantially improve the accuracy of auto-
mated systems when microbiological cultures from 
selected other body sites were included.
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