A Case Study of the Solar and Lunar Semidiurnal Tide Response to the 2013 Sudden Stratospheric Warming

van Caspel, Willem E.; Espy, Patrick; Hibbins, Robert; Stober, Gunter; Brown, Peter; Jacobi, Christoph; Kero, Johan (2023). A Case Study of the Solar and Lunar Semidiurnal Tide Response to the 2013 Sudden Stratospheric Warming. Journal of Geophysical Research: Space Physics, 128(9) AGU Publications 10.1029/2023JA031680

[img]
Preview
Text
JGR_Space_Physics_-_2023_-_Caspel.pdf - Published Version
Available under License Creative Commons: Attribution-Noncommercial (CC-BY-NC).

Download (5MB) | Preview

This study investigates the response of the semidiurnal tide (SDT) to the 2013 major sudden stratospheric warming (SSW) event using meteor radar wind observations and mechanistic tidal model simulations. In the model, the background atmosphere is constrained to meteorological fields from the Navy Global Environmental Model—High Altitude analysis system. The solar (thermal) and lunar (gravitational) SDT components are forced by incorporating hourly temperature tendency fields from the ERA5 forecast model, and by specifying the M2 and N2 lunar gravitational potentials, respectively. The simulated SDT response is compared against meteor wind observations from the CMOR (43.3°N, 80.8°W), Collm (51.3°N, 13.0°E), and Kiruna (67.5°N, 20.1°E) radars, showing close agreement with the observed amplitude and phase variability. Numerical experiments investigate the individual roles of the solar and lunar SDT components in shaping the net SDT response. Further experiments isolate the impact of changing propagation conditions through the zonal mean background atmosphere, non-linear wave-wave interactions, and the SSW-induced stratospheric ozone redistribution. Results indicate that between 80 and 97 km altitude in the northern hemisphere mid-to-high latitudes the net SDT response is driven by the solar SDT component, which itself is shaped by changing propagation conditions through the zonal mean background atmosphere and by non-linear wave-wave interactions. In addition, it is demonstrated that as a result of the rapidly varying solar SDT during the SSW the contribution of the lunar SDT to the total measured tidal field can be significantly overestimated.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Institute of Applied Physics
10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR)
08 Faculty of Science > Institute of Applied Physics > Microwaves

UniBE Contributor:

Stober, Gunter

Subjects:

500 Science > 570 Life sciences; biology
600 Technology > 620 Engineering
500 Science
500 Science > 530 Physics

ISSN:

2169-9380

Publisher:

AGU Publications

Language:

English

Submitter:

Simone Corry

Date Deposited:

08 Sep 2023 16:57

Last Modified:

08 Sep 2023 17:07

Publisher DOI:

10.1029/2023JA031680

BORIS DOI:

10.48350/186150

URI:

https://boris.unibe.ch/id/eprint/186150

Actions (login required)

Edit item Edit item
Provide Feedback