
ABSTRACT

Residual feed intake is viewed as an important trait 
in breeding programs that could be used to enhance 
genetic progress in feed efficiency. In particular, im-
proving feed efficiency could improve both economic 
and environmental sustainability in the dairy cattle 
industry. However, data remain sparse, limiting the 
development of reliable genomic evaluations across 
lactation and parity for residual feed intake. Here, we 
estimated novel genetic parameters for genetic residual 
feed intake (gRFI) across the first, second, and third 
parity, using a random regression model. Research data 
on the measured feed intake, milk production, and body 
weight of 7,379 cows (271,080 records) from 6 countries 
in 2 continents were shared through the Horizon 2020 
project GenTORE and Resilient Dairy Genome Project. 
The countries included Canada (1,053 cows with 47,130 
weekly records), Denmark (1,045 cows with 72,760 
weekly records), France (329 cows with 16,888 weekly 
records), Germany (938 cows with 32,614 weekly re-
cords), the Netherlands (2,051 cows with 57,830 weekly 
records), and United States (1,963 cows with 43,858 
weekly records). Each trait had variance components 
estimated from first to third parity, using a random 

regression model across countries. Genetic residual feed 
intake was found to be heritable in all 3 parities, with 
first parity being predominant (range: 22–34%). Ge-
netic residual feed intake was highly correlated across 
parities for mid- to late lactation; however, genetic cor-
relation across parities was lower during early lactation, 
especially when comparing first and third parity. We 
estimated a genetic correlation of 0.77 ± 0.37 between 
North America and Europe for dry matter intake at 
first parity. Published literature on genetic correlations 
between high input countries/continents for dry mat-
ter intake support a high genetic correlation for dry 
matter intake. In conclusion, our results demonstrate 
the feasibility of estimating variance components for 
gRFI across parities, and the value of sharing data on 
scarce phenotypes across countries. These results can 
potentially be implemented in genetic evaluations for 
gRFI in dairy cattle.
Keywords: genetic residual feed intake, variance 
component estimation, random regression, multi-trait 
analysis

INTRODUCTION

Genetic improvement of feed efficiency represents a 
promising way to increase the environmental and eco-
nomical sustainability of the dairy cattle industry. Over 
the last century, the feed efficiency of the dairy cattle 
industry has mainly improved as an indirect effect of 
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selection for milk production, which improves produc-
tion efficiency. This effect is termed the “dilution of 
maintenance effect” (Bauman et al., 1985, VandeHaar 
et al., 2016). In other words, the “costs” of maintenance 
are diluted with increasing output (milk or meat). How-
ever, along with the strong selection for milk produc-
tion, antagonistic tradeoffs for functional traits have 
been documented in the last 2 decades (Oltenacu and 
Broom, 2010, Rauw et al., 1998). Therefore, any future 
index for feed efficiency must improve both, efficiency 
and at the same time avoid antagonistic tradeoffs for 
robustness and resilience.

The main limitation for developing reliable genomic 
breeding values for feed efficiency is the expensive sys-
tem required to measure and record the feed intake of 
individual animals. Most feed intake data are obtained 
from research farms, where animals are typically used 
in nutritional experiments. Therefore, collaborations 
across country borders are needed to improve the num-
ber of records used to estimate the breeding values for 
feed efficiency (Berry et al., 2014, De Haas et al., 2012, 
De Haas et al., 2015). The Resilient Dairy Genome 
Project (RDGP) consortium aims to enhance sustain-
ability in the dairy cattle industry through genetically 
improving feed efficiency. At present, this consortium 
has the largest joint database on Holstein cows with 
feed intake measured for individual animals (12,687 
cows) (van Staaveren et al., 2022).

Berry and Crowley (2013) classified feed efficiency 
traits for genetic selection into 2 groups: (1) feed con-
version ratios (commonly used in poultry and pigs), 
and (2) residual traits, based on a linear regression. 
In dairy cattle breeding systems, residual feed intake 
(RFI) is often referred to as the desirable trait for use 
in genetic selection for feed efficiency (Pryce et al., 
2015, VandeHaar et al., 2016). Residual feed intake was 
first proposed by Koch et al. (1963), as the phenotypic 
regression for an animal's feed intake related to its 
energy sinks (yield, maintenance, mobilization, preg-
nancy, etc.). Thus, RFI is phenotypically uncorrelated 
with the energy sinks in the model. Few genetic evalu-
ation centers routinely estimate the breeding values for 
feed efficiency traits in dairy cattle (de Jong et al., 
2019, Jamrozik et al., 2021, Parker Gaddis et al., 2021, 
Stephansen et al., 2021a). Many of these institutions 
use RFI typically in context with the Feed saved defini-
tion (Pryce et al., 2015).

Kennedy et al. (1993) proposed a genetic RFI (gRFI) 
model, in which the genetic correlations between the 
feed intake of a cow and its energy sinks are consid-
ered to be zero. The main advantage of gRFI is that 
the trait, in theory, is genetically uncorrelated to its 

energy sinks (Stephansen et al., 2021b) compared with 
phenotypic RFI (Veerkamp et al., 1995). Furthermore, 
in classical phenotypic RFI models, model fitting er-
rors and measurement errors form the residual, which 
potentially ends up in estimated breeding values. For 
instance, Fischer et al. (2018) showed that 41–47% of 
variance in the RFI phenotype reflects model fitting 
errors and measurement errors. Li et al. (2017) also 
analyzed the importance of taking mobilization into 
consideration in a classical phenotypic RFI model, us-
ing partial regression coefficients on dry matter intake 
(DMI). This model was extended by Martin et al. 
(2021a), who proposed a non-genetic dynamic RFI 
multi-trait model. The partial regression coefficients 
on milk energy in RFI models also differ significantly 
through lactation (Khanal et al., 2022, Li et al., 2017). 
This can support the phenomenon, that dairy cows 
mobilize body reserves to compensate the rate of en-
ergy demand toward milk production by a lower rate 
of energy intake (Roche et al., 2009). However, the 
estimation of the changing partial regression on milk 
energy over lactation could potentially be influenced 
by the confounding effects among multiple partial 
regressions in a RFI model. The phenotypic multi-
trait approach suggested by Martin et al. (2021a) 
could help avoid the accumulation of errors in the 
phenotype and subsequent estimated breeding values 
for RFI. The feasibility of a gRFI model, with a zero 
genetic correlation to energy sinks, has earlier been 
studied within parity or parity groups (Islam et al., 
2020, Khanal et al., 2022), but not with a covariance 
structure across parities.

However, a knowledge gap exists on modeling gRFI 
in a dynamic RFI multi-trait model and across the 
first, second, and third parity. The novelty in this study 
consists of modeling gRFI with a covariance structure 
across parities. Thus, here, we aimed to estimate vari-
ance components for a dynamic multi-trait and multi-
parity gRFI model using time series- and feed intake 
data from multiple countries in North America and 
Europe.

MATERIALS AND METHODS

Data from Denmark, France, and the Netherlands 
were shared as a part of the Horizon 2020 project Gen-
TORE project (https: / / www .gentore .eu). Data from 
the United States, Canada, and Germany were shared 
as a part of the RDGP (https: / / genomedairy .ualberta 
.ca/ ; http: / / www .resilientdairy .ca/ ). The data used in 
this study are briefly described here. A detailed de-
scription of RDGP data is provided in van Staaveren et 
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al. (2022). A detailed overview of the number of cows, 
number of records, and recording period is provided in 
Table 1. Only data from the first 3 lactations were used 
for this analysis.

Denmark

Data from 1,045 Danish Holstein cows, with 2,000 
lactations (mean: 36.4 records per cow per lactation) 
were collected from 2003 to 2021 at the Danish Cattle 
Research Center (DKC; Foulum, Denmark). Detailed 
information on the housing conditions and feeding 
before 2020 is provided in Li et al. (2017). During 
2020, the cows were moved to the new DKC facilities, 
where cows were milked in a milking parlor (SAC; www 
.sacmilking .com). Individual feed intake was measured 
in feed boxes (RIC system, Insentec, Marknesse, the 
Netherlands). Cows were not offered concentrates in 
the milking parlor. Thus, from 2020 onwards, they were 
fed ad libitum total mixed ration (TMR). Cows were 
automatically weighed after milking on a scale.

The Netherlands

Data on 2,051 Dutch Holstein cows with 2,402 lacta-
tions (mean: 24.1 records per cow per lactation) were 
collected from 1990 to 2019 at multiple research farms 
in the Netherlands. All cows were housed in commercial 
herds for nutritional experiments. All cows were kept 
in free stall barns with cubicles, and were offered a 
TMR ad libitum in feed boxes (RIC system, Insentec, 
Marknesse, the Netherlands). For a detailed description 
of basic parameters, the nutrition experiments, and 
descriptions of data collection, please see Heida et al. 
(2021) and references therein.

France

Data from 329 French Holstein cows were collected 
from 2014 to 2020 at 2 facilities. Data on 158 cows were 
collected at Le-Pin-Au-Haras INRAE facility, with 208 
lactations (mean 39.7 records per cow per lactation; IN-

RAE (2021)). Data o 171 cows were collected at Méjus-
seaume INRAE facility, with 236 lactations (mean: 37.1 
records per cow per lactation; INRAE (2022)). At both 
farms, cows were fed ad libitum using a TMR with an 
electronic gate feeding system and ear-tag identification 
to record individual feed intake. For detailed descrip-
tions, see Fischer et al. (2018), Martin et al. (2021b), 
and Lefebvre et al. (2022).

Germany

Data were collected from 938 German Holstein 
cows between 2015 and 2021 at 4 research farms in 
Germany. These farms included: Iden (208 cows with 
236 lactations; mean 23.6 records per cow per lacta-
tion), Karkendamm (195 cows with 262 lactations; 
mean 35.9 records per cow per lactation), Neumuehle 
(171 cows with 199 lactations; mean 22.4 records per 
cow per lactation), and Riswick (364 cows with 449 
lactations; mean 29.3 records per cow per lactation). 
Cows were housed in free-stall barns, with no access to 
pasture. The cows were milked 2 to 3 times per day us-
ing herringbone (DeLaval, GEA), parallel (DeLaval), 
and rotary systems (GEA). Weekly milk weight was 
measured automatically. Samples were collected in the 
morning and evening to obtain data on fat, protein, 
milk urea nitrogen, lactose, and somatic cell count. 
Animals were fed grass and corn silage based on TMR 
(Iden and Neumuehle) or partial mixed ration (PMR) 
(Riswick and Karkandamm). Feed intake records were 
collected for both primiparous and multiparous cows. 
Daily feed intake weight was collected over 24 h, and 
was aggregated to a single daily feed intake. Daily 
records were averaged over weeks to obtain weekly 
records. At 3 farms (Karkendamm, Neumuehle, and 
Riswick), body weight (BW) data were collected af-
ter returning from the parlor twice per day using an 
automated electronic weighing system. At the farm in 
Iden, BW was recorded manually once a month, from 
which daily weight was calculated by linear interpola-
tion. Detailed descriptions of the facilities and feeding 
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Table 1. Frequency of the number of cows, lactation, average number of records per lactation, and data 
collection period for each country

Country n of cows Lactations Weekly records
Avg. weekly records  

pr. lactation
Years of data 

collection

Canada 1,053 1,269 47,130 37.1 2015–2021
Denmark 1,045 2,000 72,760 36.4 2003–2021
France 329 441 16,888 38.3 2014–2020
Germany 938 1,146 32,614 28.5 2015–2021
The Netherlands 2,051 2,402 57,830 24.1 1991–2019
United states 1,963 2,198 43,858 20.0 2007–2021
Total 7,379 9,456 271,080 28.7 1991–2021

www.sacmilking.com
www.sacmilking.com
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of the different research herds are provided in van 
Staaveren et al. (2022).

Canada

Data from 1,053 Canadian Holstein cows were col-
lected from 2015 to 2021 by 3 institutions. These were 
the University of Alberta (Dairy Research and Tech-
nology Centre, DRTC) (285 cows with 337 lactations; 
mean 33.3 records per cow per lactation), University 
of Guelph (Elora) research farms (510 cows with 666 
lactations; mean 40.3 records per cow per lactation), 
and a commercial farm (SUNALTA) (258 cows with 
266 lactations; mean 34.0 records per cow per lacta-
tion). Detailed information on the facilities and feeding 
regimens of the various research herds is provided in 
van Staaveren et al. (2022).

USA

Data on 1,963 Holstein cows were collected at 6 re-
search farms from 2007 to 2021 in the United States. 
Specifically Beltsville (510 cows with 665 lactations; 
mean: 28.7 records per cow per lactation), University 
of Florida (494 cows with 527 lactations; mean: 17.6 
records per cow per lactation), Iowa State University 
(353 cows with 354 lactations; mean: 22.5 records per 
cow per lactation), Michigan State University (88 cows 
with 89 lactations; mean: 20.8 records per cow per lac-
tation), University of Wisconsin (425 cows with 450 
lactations; mean: 19.8 records per cow per lactation), 
and the Purina Animal Nutrition Center (93 cows with 
113 lactations; mean: 25.2 records per cow per lacta-
tion). Detailed information of the facilities and feeding 
regimens at the various research herds is provided in 
van Staaveren et al. (2022).

Phenotypes and data editing

Energy corrected milk (ECM) was calculated for 
statistical analysis according to the formula by Sjaunja 
(1990):

 Energy corrected milk (kg) =   

 Raw milk (kg) × ((0.383 × Fat content (%)   

+ 0.242 × Protein content (%) + 0.7832)/ 3.140)

The combined data set was filtered to remove outliers. 
The following steps were used to clean using SAS soft-
ware version 9.4: (1) extreme values were set to missing 
if DMI was not in the range of 5–40 kg/day, kg milk 
was not in the range of 5–100 kg/day, fat percentage in 

milk was not in the range of 1–10%, protein percentage 
in milk was not in the range of 1–10%, and BW was 
not in the range of 300–1100 kg, (2) outliers were set 
to missing, defined of the range of mean ± 3 standard 
deviations, (3) non-sensical records were set to missing 
if one of the traits DMI, ECM, and BW traits exceeded 
a change of 5 kg, 10 kg, and 50 kg, respectively, in time 
windows of ± 1 week, (4) data from lactations with 
less than 1/3 of test-days were excluded (minimum 14 
weeks with data per cow during parity), (5) if lactations 
were not cohesive for a cow, only the first lactation was 
kept, and (6) records were excluded when herd x year 
x season (calving) or experiment and country x year x 
month groups were smaller than 5 records.

The filtered data consisted of 9,456 lactations from 
7,379 cows and a total of 271,080 weekly records from 
first to third parity. Unfiltered data consisted of 20,703 
lactations from 14,871 cows and a total of 405,292 
weekly records. The required 14 weeks minimum with 
data per cow was the criterion that caused the larg-
est reduction in the number of records. On average, 
filtering reduced the number of records by 31%, and 
affected France, Denmark, Germany, the Netherlands, 
Canada, and United States by 1%, 6%, 21%, 27%, 38%, 
and 56%, respectively. The filtering criteria was used to 
reduce problems with “Runge's Phenomenon.” Runge's 
Phenomenon describes problems with polynomials 
placing overly high emphasis on observations at the 
extremes of lactation (Meyer, 2005). A filtering crite-
rion for the minimum number of weeks in records is 
typically used when developing phenotypic multi-trait 
RFI models (Martin et al., 2021a). Lidauer et al. (2015) 
also excluded cows with no data at the beginning of 
first lactation in a test-day evaluation.

Pedigree

Pedigrees were provided directly from the partners 
in the GenTORE project, whereas a common pedigree 
was available for partners in the RDGP database. All 
pedigrees were combined to form a common pedigree 
(Figure 1). In the process of forming the common 
pedigree, different quality checks (sire and dam in 
the pedigree, correct wrong birth years, insert genetic 
groups) were performed to ensure a high-quality pedi-
gree. The pedigree was pruned to 5 generations for 
animals with phenotype data, using DMU trace soft-
ware (Madsen, 2012). All non-informative animals were 
excluded from the pedigree. The full pedigree contained 
information on 118,646 individuals; after pruning, the 
pedigree contained 29,537 animals. For animals with 
missing parent(s), genetic groups were assigned taking 
into account the effect of country (Denmark, France, 
Canada, Unites States, the Netherlands, Germany, 
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other European countries, and other countries), breed 
(Ayrshire+Red Dairy Cattle+Montbéliarde+Brown 
Swiss, Holstein, and other breeds), and 3 birth year 
classes (1: < 1990, 2: 1990–2005, 3: > 2005). Ayrshire, 
Red Dairy Cattle, Montbéliarde and Brown Swiss were 
grouped into one breed group, as they individually 
would have been too small. In addition, the breeds 
are a part of the population structure in the Nordic 
Red Dairy breed (SEGES LivestockInnovation Cattle, 
2021). Furthermore, the authors did not include an 
effect of gender in the genetic groups, as we did not ex-
pect an effect of selection for RFI. Figure 1A shows the 
common sires and grandsires in European countries. 
Most sires and grandsires had progeny in one coun-
try; however, genetics overlapped between European 
countries for 6 sires and grandsires, which had progeny 
in all European countries (Figure 1A). The same pat-
tern was recorded for the Unites States and Canada 
(Figure 1B). Germany was grouped independently from 
the other European countries, because most sires and 
grandsires were common with the United States and 
Canada. Seventeen sires and grandsires had offspring 
in all countries, where Denmark, France and the Neth-
erlands were grouped (Figure 1B).

Statistical analysis

The statistical software DMU (Madsen and Jensen, 
2013) was used for variance component estimation us-
ing AI-REML and EM-REML algorithms. We used 
for the random effect part a linear (DMI & ECM) or 
quadratic (BW) random regression models. We did not 
use higher orders because of convergence issues. For the 
fixed regressions on age at calving we used linear and 

quadratic equations. The random regression models by 
parity were as follows:

y CHYS W ACC ACC
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where yijclmnopq is the phenotypes for DMI, ECM, or BW 
for cow c on week of lactation j (j = 1, 2,…, 44); µ is 
the intercept; CHYSi is the ith fixed effect of calving 
herd x year x season (933 levels; seasons were separated 
into quarters from date of calving); Wjkl is the kth fixed 
regression of the jth week of lactation and is nested 
within herd x 5-year period l (23 levels; 5-year periods 
were only used for Danish and Dutch data); Фk is the 
term of the xth order Legendre polynomial (LP) for 
week of lactation; β1 and β2 are the fixed regressions on 
age at calving (ACCc) and ACCc

2 for cow c, respectively; 
akc is the kth regression coefficient of the mth order LP 
for the random additive genetic effect for the cth cow; 
pekc is the kth regression coefficient of the mth order LP 
for the random permanent environmental effect for the 
cth cow; Фkc is the term of the mth order LP for akc and 
pekc, where time is the week of lactation; EXPno is the 
random effect of the nth trial nested in the oth herd x 
year x month (2,866 levels; year and month are defined 
from record date); CYMp is the random effect of the pth 
country x year x month (898 levels; country groups: 
Denmark, France, Canada, the Unites States [except 
Florida], Germany, the Netherlands, the state of Florida 
[the United States]; year and month are defined from 

Stephansen et al.: NOVEL GENETIC PARAMETERS

Figure 1. Venn diagram showing the number of sires and grandsires with at least one offspring across countries. Plot A shows common sires 
and grandsires between European countries. Plot B shows common sires and grandsires between continents. CAN = Canada, DNK = Denmark, 
FRA = France, GER = Germany, NLD = the Netherlands, USA = United States of America.
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record date); and eijclmnopq is the random residual error, 
modeled as heterogeneous by country and the qth lacta-
tion period (1: 1–4 WOL,2: 5–36 WOL, 3: 37–44 WOL), 
with 20 levels in total.

It was assumed that var(a) = A⊗ ( )K a�, var(pe) 
= ⊗ ( )I K pe�, and var(e) = I = R, where A is the nu-
merator relationship matrix, ⊗ is the Kronecker prod-
uct, and K a( )� is the genetic covariance matrix between 
the LP coefficients and K pe( )� is the permanent envi-
ronmental covariance matrix between the LP coeffi-
cients (1st order for DMI and ECM, and 2nd order for 
BW). The fixed lactation curve was fitted with an xth 
order LP that was 2 orders higher than that of the a 
and pe effects.

To construct the covariance for all 9 traits (3 traits 
x 3 lactations), 36 bivariate analyses were performed. 
For analyses that did not meet the convergence criteria 
with AI-REML in DMU, an EM-REML analysis was 
implemented with the priors from the AI-REML analy-
sis. The models were analyzed as bivariate multi trait:
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where y is the vector of the phenotypes, b is the vector 
of the fixed effects, X is the incidence matrix relating 
observations with fixed effects, a is the vector of addi-
tive genetic effects, Z1 is the incidence matrix relating 
observations with random additive effects, pe is the 
vector of permanent environmental effects, Z2 is the 
incidence matrix relating random permanent environ-
mental effects with observations, and e is the vector of 
residual effects.

Across continent analysis

For an across-country model [1] to improve genetic 
evaluations of feed efficiency in the participating coun-
tries, the genetic correlation among countries must be 
high. To analyze this, an across-continent analysis was 
carried out for DMI during first parity between North 
America (Canada & the United States) and Europe 
(Denmark, France, Germany, & the Netherlands). A 
filtered data set was used that only contained data 
from 4 to 24 weeks of lactation and data from 2005 
to 2021. This selection was implemented to harmonize 
the recording period within lactation and over years 
between North America and Europe. The filtered data 
set contained 3,538 cows in first lactation, with 31,422 
records from North America and 29,726 records from 
Europe. The bivariate model was solved with DMU AI-
REML, and was presented as follows:

y CHYS W ACC ACC
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0

3

1 2
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See the description of model [1] for interpretation. How-
ever, in this model, heterogeneous residual variance 
was nested within lactation periods per fourth week of 
lactation. The residual and permanent environmental 
covariance between the 2 continents were assumed to 
be 0. The asymptotic standard error on the genetic cor-
relation between continents was calculated according to 
Jensen and Madsen (2002).

Deriving the outputs for genetic and phenotypic 
residual feed intake

The concept of deriving gRFI solutions and output 
for further analysis was extended in comparison to the 
approaches of Kennedy et al. (1993), Islam et al. (2020), 
and Martin et al. (2021a). Variance components from 
the previous 36 bivariate trait analyses were combined 
using the iterative summing method developed by 
Mäntysaari (1999), as described in Henshall and Meyer 
(2002). The iterative summing method ensured that 
the final variance component matrix was positive defi-
nite. The genetic covariance Ĝ( ) matrix for t points over 

the 12 trajectories was derived as ˆ ,G K G= ( ) ′� ��  where 
Φ has dimension t x k, K G( )� has dimension k x k, and 
Ĝ has dimension t x t. When setting up the Φ and K̂, 
these parameters were sorted by parity and the variable 
order DMI, ECM, and BW. Covariance components of 
change in BW (ΔBW) were derived from the fitted 
slope of BW within parity. That was done by construct-
ing the Φ matrix as equation [3] in Islam et al. (2020). 
The permanent environment covariance matrix Pe�( ) 
was derived as Ĝ by replacing K G( )� with the respective 
solution matrix. The dimensions of Ĝ and Pe� were 528 
× 528.

The residual (R) matrix was constructed as a block 
diagonal matrix for each week of lactation. Each block 
contained residual (co)variance for DMI, ECM, BW, 
and ΔBW for each parity, resulting in a matrix of 528 
× 528. The transformation matrix within each parity 
was defined according to Islam et al. (2020):

 twp =

−























1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 1

, 
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where twp is the transformation matrix for the wth 
week of lactation (w = 1, 2,….,44) and the pth parity 
(P = 1,2,3) to derive the residual variance for ΔBW. 
The first 3 rows of twp represent the residual variance 
for DMI, ECM, and BW. The fourth row represents the 
residual variance for ΔBW. R0,wp: w+1p represents the 
block diagonal matrix with the residual variance esti-
mates for the 2 adjacent weeks of lactation in the pth 
parity, resulting in a dimension of 6 × 6. The residual 
matrix for the wth week of lactation and pth parity is 
derived as follows:

 R t R twp wp wp w p wp= +0 1, :
´  [3]

where the dimension of the first matrix (week of lacta-
tion = 1, parity = 1) R11 is 6 × 6. The final R matrix is 
a block diagonal matrix with a dimension of 528 × 528. 
The phenotypic (co)variance matrix is defined as P = 
G + Pe + R. The genetic and phenotypic regression 
coefficients for each parity are calculated as:

² B wp B wp ² B wp B wpGwp G G Pwp P P= =( ) ( ) ( ) ( )− −
: : : :  .21 22

1
21 22

1and 

 [4]

The genetic and phenotypic regressions are a 3 × 1 
vector for wth week of lactation and pth parity. BG:22 is 
a 3 × 3 matrix of genetic (co)variance for ECM, BW, 
and ΔBW from each week of lactation and each parity. 
BG:21 is a 3 × 1 matrix of genetic covariance for DMI 
on ECM, BW, and ΔBW from each week of lactation 
and each parity. BP:22 is a 3 × 3 matrix of phenotypic 
(co)variance for ECM, BW, and ΔBW from each week 
of lactation and each parity. BP:21 is a 3 × 1 matrix 
of phenotypic covariance for DMI on ECM, BW, and 
ΔBW from each week of lactation and each parity.

A Ĝ (co)variance) matrix, containing gRFI, could be 
obtained from BGBˆ ′. The Ĝ matrix was derived earlier, 
and the B matrix represents a block matrix for genetic 
regressors:

 BGwp =
− − −














1 0 0 0
1

0 1 0 0
0 0 1 0
0 0 0 1

β β βGwp ECM Gwp BW Gwp BW: : :∆

















, 

where BGwp is the regression matrix for the wth week 
and pth parity, −βGwp:i is the genetic regression coeffi-
cient for wth week and pth parity for the ith trait. The 
BG11 matrix has a dimension of 5 × 4; BGBˆ ′ has a di-

mension of 660 × 660. The P̂ (co)variance matrix con-
taining RFI could be easily derived as Ĝ by replacing 
BGwp with BPwp. Thus, the heritability of gRFI could 
be obtained as the diagonal elements from BGB` di-
vided by the diagonal elements from BPB`.

Standard errors for heritability and genetic correla-
tions were calculated according to the approximate 
method of Fischer et al. (2004). Approximate asymp-
totic standard errors were calculated as described by 
Fischer et al. (2004), using the appropriate elements of 
the inverse of the average information matrix.

RESULTS

Descriptive statistics for records and phenotypes

The overview of records per week (Figure 2) showed 
that the recording strategy differed among the involved 
countries. Most data across countries were recorded 
from 0 to 30 weeks of lactation. For all countries, the 
number of records declined during late lactation, par-
ticularly in the United States and the Netherlands. 
With increasing parity number, the number of records 
per week of lactation also decreased (Figure 2).

Descriptive plots of phenotypes for DMI, ECM, and 
BW are presented in Supplemental File SF1 to SF3 
(https: / / doi .org/ 10 .7910/ DVN/ SXXDCY). Average 
DMI was lowest at first parity, with peak feed intake 
occurring at a later time point for first parity compared 
with later parities (SF1). Feed intake only declined 
after the peak in later parities for Denmark, France, 
Germany, and the Netherlands. The average DMI was 
highest in Canada and the United States, and lowest in 
the Netherlands. The lower feed intake in the Nether-
lands have been affected by the longer recording period 
(Table 1). For DMI, the average ECM was lower for first 
parity cows compared with later parities (SF2). The 
lactation curve for ECM was less steep for first parity 
cows after peak production compared with later pari-
ties. The highest producing Holstein cows were those 
in Canada and the United States, whereas the lowest 
producing cows were in the Netherlands, reflecting the 
pattern obtained for DMI. For BW, the heaviest cows 
across parities were in Canada, while the lightest cows 
were in the Netherlands (SF3). For all countries and 
parities, the expected pattern of mobilization during 
early lactation and deposition in mid and late lactation 
was observed.

Variance component estimates

Heritability- and additive variance estimates for 
ECM, BW, and ΔBW are shown in Supplemental File 
SF4 (https: / / doi .org/ 10 .7910/ DVN/ SXXDCY) and 
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heritability approximate standard errors are shown in 
ST1. The highest heritability was observed for ECM 
at first parity (range: 22–34%, depending on lactation 
week). Additive variance increased more at the end of 
lactation for ECM in second and third parity compared 
with first parity. For BW, heritability was highest in 
first parity (range: 39–52%). Extreme “tails'' on addi-
tive variance were only present for BW in third parity. 
The derivative trait ΔBW showed a low level of herita-
bility (<2%) in all parities (SF4).

Heritability and additive variance estimates were 
obtained for DMI and gRFI (Figure 3). Stable additive 
variance was estimated for DMI in first and second par-
ity; however, an extreme tail was reported at the end 
of third parity. Additive variance had a similar pattern 
for gRFI (Figure 3). The highest average heritability 
for DMI was estimated in first parity (range: 20–37%). 
Heritability for DMI in third parity was moderate at 
early and mid-lactation, but was moderately high at 
late lactation. Third parity had the largest approximate 
standard errors (ASE) for DMI heritability. Additive 
variance and heritability had a similar pattern for DMI 
and gRFI (Figure 3); however, numerical values were 
lower for gRFI. Approximate standard errors for herita-
bility tended to be larger for gRFI compared with DMI, 
and were highest at third parity (Table 2).

Phenotypic and genetic regression for dry matter 
intake on energy sinks

The calculated genetic (Figure 4) and phenotypic 
(Figure 5) regression coefficients from equation [4] were 
obtained for lactation during first, second, and third 
parity. The genetic regression coefficients for DMI|ECM 
was stable in all parities, and was highest in third par-

ity. Genetic regression coefficients for DMI|ECM were 
higher than the phenotypic regression coefficients for 
these traits. The genetic regression for DMI|BW was 
stable over the lactation period and 3 parities (mean: 
0.012, 0.012, and 0.021 for first, second, and third par-
ity, respectively). Phenotypic regression coefficients 
showed a similar pattern for DMI|BW (mean: 0.014, 
0.015, and 0.014 for first, second, and third parity, re-
spectively). The regression coefficients for DMI|ΔBW 
were close to zero for the phenotypic values (Figure 
5); however, there was variation for the genetic regres-
sion coefficients of DMI|ΔBW (Figure 4). The pattern 
across lactation for the genetic regression coefficients of 
DMI|ΔBW was similar in first and second parity, but 
differed in third parity.

Estimated genetic correlation across lactation  
and among parities

Heatmaps showing the structure of genetic correla-
tion within lactation and across parities are presented 
for ECM, BW, and ΔBW in Supplemental File SF5 
to SF7 (https: / / doi .org/ 10 .7910/ DVN/ SXXDCY). For 
ECM (SF5), the heat map shows that ECM was almost 
the same trait throughout first parity. In later parities, 
ECM changed during lactation, and the genetic cor-
relation between early and late lactation was close to 
zero. Across parities on the same test day, ECM was 
highly correlated. The heatmap for BW showed that 
the trait was very stable, and was highly correlated 
both within lactation and across parities (SF6). For 
ΔBW, a moderately high negative genetic correlation 
was obtained for all 3 parities between early and late 
lactation (SF7). Across parities on the same test day, 
a moderate to moderately high genetic correlation was 
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Figure 2. Number of records per week of lactation within parity, and grouped by country. Each bin represents the individual number of 
records for each specific week of lactation. CAN = Canada, DNK = Denmark, FRA = France, GER = Germany, NLD = the Netherlands, USA 
= United States of America.
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observed, showed that mobilization and deposition were 
genetically correlated across parities.

The genetic correlation structure for DMI (Figure 6) 
showed that DMI was stable during first and second 
parity. Early and late lactation were moderately to 
highly correlated. However, third parity showed more 
variability, with early and late lactation being moder-
ately to highly negatively correlated. Across parities 
on the same test-day, a moderate high correlation was 
observed, especially for consecutive parities.

The genetic correlation structure for gRFI (Figure 
7) across parities showed that gRFI was highly cor-
related in mid to late lactation. The genetic correlation 
between early lactation and the later periods showed 
a zero to moderately high negative correlation within 
parity, particularly in third parity. The genetic corre-
lation between parities for gRFI was presented with 
ASE (Figure 8). Genetic correlations with the lowest 
ASE were obtained between first and second parity, 
whereas the highest ASE was obtained between second 
and third parity. The highest genetic correlations were 
obtained between consecutive parities, and for the mid 
and late lactation periods.

Genetic correlations across continents

Bivariate analysis between North America and Eu-
rope showed a high genetic correlation for DMI in first 
parity (0.77). The asymptotic standard error associated 
with the genetic correlation was 0.37.

DISCUSSION

Methodology of genetic residual feed intake

Most breeding goal traits are genetically evaluated 
taking parity into account; however, some traits are 
evaluated using random regression models (RRM), 
such as milk production (https: / / interbull .org). This 
approach is used because most traits change genetically 
with respect to lactation and parity. However, feed in-
take data tend to be sparse, limiting the use of advanced 
statistical methods to estimate breeding values for RFI. 
Here, we constructed a model that had similarities to 
models used for test-day evaluations (Lidauer et al., 
2009, Oliveira et al., 2019) and Manzanilla-Pech et al. 
(2014). However, the mentioned studies on production 
traits, used higher orders of LP (3–5) on the random 
additive effect and estimated the variance components 
in a multi-trait model. It is a limitation in this study 
that we could not model higher orders of LP and 
estimate variance components in a multi-trait model 
due to the limited number of cows and records with 
individual DMI. The CHYS effect was calving season 
within a herd and has been used to assess the effect of 
herd x year x season in test-day evaluations (Lidauer 
et al., 2009, Oliveira et al., 2019). Random EXP was 
used in the current study to combine the 2 random 
effects of EXP and YM used in Manzanilla-Pech et al. 
(2014). Consequently, the random effect of EXP in this 
study captured monthly changes within the herd and 
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Figure 3. Plot showing additive variance (left y-axis), heritability (right y-axis), and week of lactation (x-axis) for dry matter intake and 
genetic residual feed intake. Solid line = additive variance, dashed line = heritability, Blue = first parity, Green = Second parity, Red = third 
parity.

Table 2. Approximate standard errors for DMI and gRFI, presented 
as 10th, 50th, and 90th quantiles. DMI = Dry Matter Intake, gRFI = 
genetic Residual Feed Intake

 

DMI

 

gRFI

P10 P50 P90 P10 P50 P90

1st parity 0.03 0.06 0.10 0.05 0.10 0.15
2nd parity 0.02 0.05 0.11 0.02 0.03 0.04
3rd parity 0.06 0.15 0.26 0.09 0.18 0.26

https://interbull.org
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experiment (e.g., changes to feed or management). The 
random effect of CYM was used to capture the effects 
of monthly changes within each country. The research 
herd in Florida (United States) was treated as an inde-
pendent country, because it is in a sub-tropical climate 
compared with the other research herds in the United 
States.

Some genetic evaluation centers use an across parity 
classical 2-stage evaluation of RFI (Parker Gaddis et 
al., 2021, Stephansen et al., 2021a) to estimate breed-
ing values in a sub-index for Feed Saved. The classical 
RFI model works well on small data sets with a small 
number of herds, but has some limitations. For instance, 
the handling of model fitting and measurement errors 
(Fischer et al., 2018) with respect to phenotypic RFI 
is not genetically uncorrelated to energy sinks, which is 
preferable as a breeding goal (Stephansen et al., 2021b). 
These problems could be addressed by using a multi-

trait approach in combination with RRM. For instance, 
Shirali et al. (2017) first used a multi-trait gRFI RRM 
in pigs, while Islam et al. (2020) included ΔBW as 
derivative of BW in a multi-trait gRFI RRM for dairy 
cattle. A requirement for data from first parity proba-
bly helps to avoid selection bias on variance component 
estimates, as shown by Lidauer et al. (2015). However, 
introducing this requirement to individual feed intake 
data in the present study would reduce the quantity of 
useable data significantly.

The ASE used here was based on the approximate 
method of Fischer et al. (2004). However, asymptotic 
standards errors provided directly from variance com-
ponent estimation software would have been preferable. 
However, a full multi-trait model that includes all traits 
(9 traits and 21 variance components) did not converge 
with the current data set. Therefore, bivariate models 
were used in combination with the interactive summing 
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Figure 4. Plot showing genetic regression coefficients (bG) for the first to third parity. Red = Energy corrected milk, Blue = Body weight, 
Black = Change in body weight.

Figure 5. Plot showing phenotypic regression coefficients (bP) for the first to third parity. Red = Energy corrected milk, Blue = Body 
weight, Black = Change in body weight.
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method (Henshall and Meyer, 2002). Future research 
should focus on multi-trait analyses of gRFI with RRM 
that provide asymptotic standard errors from REML 
analysis or Bayesian analysis presenting posterior stan-
dard deviations. However, using a Bayesian approach 
in a large-scale multi-trait analysis of gRFI could be 
infeasible in terms of computational power.

Variance component estimate results

Published data on RRM of gRFI remain sparse, with 
no studies presenting covariance between parities for 
gRFI. Several studies have estimated variance com-
ponents for ECM and BW or metabolic body weight 
(MBW), as energy sink traits in gRFI. Body weight 
was used over MBW to reduce the number of traits in 
the model. The concept of reducing the gRFI model for 
one trait, was earlier described in Islam et al. (2020), 
by deriving ΔBW from BW. Furthermore, Tempelman 
and Lu (2020) demonstrated that BW was nearly a lin-
ear function of MBW, which also was stated in Khanal 
et al. (2022). However, an effect can be found in com-
parison of maintenance requirements for a very small 

(e.g., 500 kg Holstein cow) and a very heavy (e.g., 1,000 
kg Holstein cow) cow. As earlier discussed, BW was 
used instead of MBW to reduce the number of traits in 
the variance components estimation. Tempelman and 
Lu (2020) suggested BW to be incorporated in a TMI, 
as it is already included in the Net Merit Index. The 
heritability for energy toward milk production ranged 
from 22 to 43% in first parity Dutch cows in a study by 
Manzanilla-Pech et al. (2014), which was supported by 
the current study. The current study obtained similar 
results to Khanal et al. (2022) with respect to the level 
and pattern of energy for milk production (Supple-
mental File SF4 - https: / / doi .org/ 10 .7910/ DVN/ 
SXXDCY). Specifically, first parity cows had the high-
est heritability (30–38%), with this level being lower for 
later parities (13–24%). However, Khanal et al. (2022) 
only modeled milk energy from 50 to 200 DIM, and did 
not consider very early and late lactation.

Body weight has the highest heritability, with various 
studies showing ranges of 25–48% (Manzanilla-Pech et 
al., 2014), 50–70% (Islam et al., 2020), 59–65% and 
46–57% (Khanal et al., 2022) for first and later parities, 
respectively. The results of the current study supported 
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Figure 6. Genetic correlations across lactation for DMI in the first, second, and third parity. First, second, and third parity are shown in 
the upper left box, middle box, and lower right box, respectively. The genetic correlation between parities is presented in the off-diagonal boxes. 
Each pixel represents one week of lactation (132 weeks of lactation in total, when combining all 3 parities). DMI = Dry Matter Intake.
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these ranges (Supplemental File SF4 - https: / / doi .org/ 
10 .7910/ DVN/ SXXDCY). In our study, the derivative 
trait of BW had very low weekly/daily heritability, 
similar to Islam et al. (2020), with heritability being 
close to zero in Khanal et al. (2022). However, Khanal 
et al. (2022) showed that lactation-based heritability 
for ΔBW was 11 and 13% for primiparous and mul-
tiparous cows, respectively. Islam et al. (2020) obtained 
higher additive variance for ΔBW compared with the 
current study. Additive variance of ΔBW might have 
been higher in Islam et al. (2020) due to a higher level 
of additive variance for BW, and a higher acceleration 
for additive variance at the end of lactation.

Manzanilla-Pech et al. (2014), Islam et al. (2020), 
and Khanal et al. (2022) reported similar levels for the 
heritability of DMI in first parity Holsteins, with the 
results from the current study supporting these find-
ings (Figure 3). For later parities, Khanal et al. (2022) 
reported heritability ranging from 13 to 24% at from 
50 to 200 DIM, with our data also providing similar 
results (Figure 3). Covariance functions for DMI us-
ing RRM were first reported in the late 1990s (Koenen 
and Veerkamp, 1998, Veerkamp and Thompson, 1999). 

Only Islam et al. (2020) reported the level of addi-
tive variance for DMI, with extremely high levels being 
obtained at the end of lactation. This phenomenon 
was only observed for DMI in late lactation for third 
parity in the current study (Figure 3), thus we should 
be careful with the interpretation of these results. The 
extremely low or high additive variance level at the end 
of lactation has earlier been obtained by RRM (Bohm-
anova et al., 2008). This is because RRM places high 
emphasis on observations at the extremes of the time 
period for the measured trait, especially high order LP 
(Meyer, 2005).

Islam et al. (2020) and Khanal et al. (2022) reported 
the heritability for gRFI using partial regression co-
efficients (range: 10–15% and 3–13%, respectively). 
Veerkamp et al. (1995) and Difford et al. (2018) also 
reported heritability from repeatability analysis (range: 
5–14%). For first parity Holstein cows, additive vari-
ance was reported to vary around 0.5 in Islam et al. 
(2020), and 0.48 for Denmark and 0.27 for the Nether-
lands in Difford et al. (2018). In the current study, aver-
age additive variance was 0.95, 0.90, and 1.6 for first, 
second, and third parity, respectively. No studies have 
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Figure 7. Genetic correlations across lactation for gRFI during the first, second, and third parity. First, second, and third parity are shown 
in the in upper left box, middle box, and lower right box, respectively. The genetic correlation between parities is presented in the off-diagonal 
boxes. Each pixel represents one week of lactation (132 weeks of lactation in total, when combining all 3 parities). gRFI = genetic Residual 
Feed Intake.
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reported the level of additive variance in later parities 
for gRFI. The higher heritability of gRFI reported in 
the current study might be caused by the construction 
of gRFI. The genetic variance of gRFI is not affected 
by the residual covariance between feed intake and en-
ergy sink traits, as obtained for phenotypic RFI (Islam 
et al., 2020). Therefore, phenotypic RFI is expected 
to have higher heritability compared with gRFI, with 
some exceptions (Islam et al., 2020). In the current 
study gRFI explained 43% and 48% (range: 28–70%) 
of additive variance in DMI for first parity and later 

parities, respectively, on average. Islam et al. (2020) 
reported a lower range (15–40%). Difford et al. (2018) 
found that gRFI explained 17 and 42% of the additive 
variance in DMI for Danish and Dutch Holstein cows, 
respectively. In a symposium review, Tempelman and 
Lu (2020) estimated that 35% of gRFI explained DMI, 
which represents unexplained genetic variation of DMI. 
In comparison to the percentage of gRFI explaining 
DMI in the current study, the studies by Difford et al. 
(2018), Islam et al. (2020), and Tempelman and Lu 
(2020) showed clear heterogeneity; however, all studies 
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Figure 8. Genetic correlations and approximate standard errors between parities for gRFI. Plots are rotated by 40 degrees compared with 
Figure 7. Genetic correlations between (A) first and second parity; (B) first and third parity; and (C) second and third parity. Colors indicate 
the level of approximate standard errors: Black: SE >0.20; Red: SE 0.20–0.40; Yellow: SE 0.40–0.60; Green: SE 0.60–0.80; Blue: SE < 0.80. gRFI 
= Genetic Residual Feed Intake.
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showed that ECM and BW accounted for at least half 
of variance in DMI, on average.

Residual feed intake regression coefficients

Difford et al. (2018) reported genetic regression coef-
ficients to calculate gRFI in Danish Holstein cows as 
0.31 for DMI|ECM and 0.016 for DMI|BW. An energy 
sink for change in body tissue was not included. In Islam 
et al. (2020), partial genetic regressions showed that 
DMI|ECM increased during lactation (from 0.2 to 0.5). 
Khanal et al. (2022) reported the levels of DMI|milk 
energy (Tempelman et al., 2015) in first parity (from 
0.5 to 0.7) versus later parities (from 0.4 to 0.6) during 
the lactation period from 50 to 200 DIM. The pattern 
and level of genetic regression for DMI|ECM (Figure 
4) obtained in the current study was similar to that 
obtained by Islam et al. (2020). In contrast, Khanal et 
al. (2022) obtained higher level and more fluctuating 
regression coefficients during first parity. This higher 
level might be explained by differences in the definition 
of energy in milk between studies. The levels for second 
and third parity in the current study were similar to the 
level of later parities obtained in Khanal et al. (2022); 
however, the pattern fluctuated more during lactation 
in Khanal et al. (2022). The genetic regression for 
DMI|BW or DMI|MBW was stable in all studies. The 
genetic regression for DMI|ΔBW differed with respect 
to the level and pattern during lactation in the same 
studies. In addition the level of the DMI|ΔBW in all 
weeks of lactation in this study, was lower than feeding 
norms reported from NRC (2001). This inconsistency 
for DMI|ΔBW and feeding norms, has earlier been 
found in Tempelman et al. (2015), Li et al. (2017) and 
Islam et al. (2020). This difference might be because it 
is difficult to model changes in different body tissues 
and change in gut fill, which could mask changes in 
body tissue. Thorup et al. (2012) reported that the mo-
bilization of proteins and lipids in the body generated 
13.5 MJ/kg protein and 39.6 MJ/kg lipid, respectively. 
Deposition of proteins and lipids in the body required 
50 MJ/kg protein and 56 MJ/kg lipid, respectively. 
Adipose tissue is the most efficient tissue; however, it 
is important to distinguish between the 2 body tissues, 
along with mobilization and deposition. Furthermore, 
Thorup et al. (2018) showed that residual gut fill dur-
ing early lactation could mask up to 30 kg empty body 
weight.

Phenotypic regression coefficients were similar across 
studies for gRFI, whereby DMI|ECM was low during 
early lactation and subsequently increased over the 
entire period. The phenotypic regression coefficients for 
DMI|BW or DMI|MBW were at a stable and low level. 
Furthermore, the phenotypic regression coefficient for 

DMI|ΔBW or DMI|ΔMBW varied minimally along 
lactation when compared with the genetic regression 
coefficients.

Genetic structure within and across parities

The estimated genetic correlations within lactation 
and across parities for energy sink traits per week are 
presented in Supplementary File SF5 to SF7 (https: 
/ / doi .org/ 10 .7910/ DVN/ SXXDCY). For ECM in first 
parity, there was a high genetic correlation between 
the weeks of mid to late lactation, and a moderate to 
moderately high genetic correlation between the weeks 
of early and mid to late lactation. This result supported 
those of Manzanilla-Pech et al. (2014) and Khanal et al. 
(2022). Second and third parity showed similar results 
to first parity; however, the genetic correlation between 
early and mid to late lactation was close to zero. Kha-
nal et al. (2022) did not estimate covariance between 
parities for ECM, preventing comparison. The current 
study obtained high genetic correlations between pari-
ties for ECM (SF5) on the same test-day, similar to the 
covariance obtained by genetic evaluation centers (De 
Roos et al., 2001, NAV, 2022). For BW, genetic cor-
relation was high across lactation and parities in the 
current study (SF6), supporting Manzanilla-Pech et 
al. (2014) and Khanal et al. (2022). This high genetic 
correlation for BW across parities was similar with the 
results in Mehtiö et al. (2021).

The current study is the first to report how genetic 
correlation is structured across lactation and parities 
for ΔBW (SF7). The same pattern was found in all 
parities, with cows that intensively mobilize ΔBW dur-
ing early lactation also intensively depositing it during 
mid to late lactation. Biologically, recovery is logical 
after a mobilization period in cows. Across parities, a 
moderate to moderately high genetic correlation was 
recorded on the same test day. Thus, intensive mobili-
zation early in life and at later life stages appears to be 
genetically correlated in cows.

Genetic correlations per week for DMI (Figure 6) 
showed a high genetic correlation between mid and late 
lactation, and a moderate correlation between early 
and mid to late lactation for first and second parity. 
A high genetic correlation was obtained for mid and 
late lactation, whereas a moderately high negative cor-
relation was obtained between early and mid to late 
lactation for third parity. Of note, third parity had 
the fewest records for estimating variance components. 
Manzanilla-Pech et al. (2014) obtained a negative ge-
netic correlation between early and mid to late lacta-
tion for first parity. Khanal et al. (2022) obtained a 
high genetic correlation between days in mid lactation 
for DMI within parity (In Supplemental File S1).
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Genetic correlations per week for gRFI (Figure 7) 
showed a genetically stable trait at mid to late lacta-
tion, whereas gRFI seemed to be another trait during 
early lactation. Based on the definition of RFI, this 
trait should be stable through lactation. Genetic re-
sidual feed intake might have differed in early lactation 
to mid/late lactation because different genes control it 
along the lactation. Alternatively, this difference might 
be due to the difficulty in modeling mobilization and 
deposition. Komaragiri and Erdman (1997) showed 
that adipose tissue stores energy more efficiently com-
pared with muscle tissue. Thus, gRFI models need to 
be developed that distinguish between mobilization 
and deposition in different tissues to account for this 
complexity.

This study is the first to evaluate genetic correlations 
between parities for gRFI in a RRM. This novel finding 
is of high importance for breeding dairy cattle that are 
more feed efficient and climate friendly. This is because 
it allows us to select feed efficient cattle at mid to late 
lactation during first parity, with our data indicating 
that they would likely also be efficient in second and 
third parities. Furthermore, genetic correlation struc-
ture per week showed that early lactation is separate 
trait to mid and late lactation. When assessing between 
parities on the same test-day, a moderate to moderately 
high correlation was obtained for gRFI. Thus, some of 
the animals that are efficient during the early part of 
first parity are expected to be efficient in the early part 
of second parity.

Across country estimates

In our study, we assumed a genetic correlation of one 
across countries in the analyses. For energy sink traits, 
a high genetic correlation across countries for Holstein 
cows is expected. For milk production, Interbull previ-
ously reported genetic correlations between countries 
for Holstein (median: 0.79; range 0.60–0.99) (Interbull, 
2021). For body weight, a very high genetic correla-
tion is expected between countries. Interbull previously 
reported high genetic correlations between countries 
(median: 0.79–0.91; Interbull (2021)) for conformation 
traits used to calculate body size composition (stature, 
chest width, body depth, angularity, and rump width; 
Parker Gaddis et al. (2021)).

In our study, we expected energy sink traits in gRFI to 
have high genetic correlations across countries; however, 
Interbull provides no information on DMI. Typically, 
records exist for thousands of cows across countries on 
milk production and BW or body size traits; however, 
DMI is different. Few studies have investigated genetic 
correlation across countries for DMI (Berry et al., 2014, 
De Haas et al., 2012, De Haas et al., 2015). The cur-

rent study obtained a high genetic correlation (0.77 ± 
0.37) between North America and Europe, supporting 
the results of Berry et al. (2014) (genetic correlations: 
0.76–0.84). De Haas et al. (2015) calculated genetic 
correlations between separate research herds. Using 
a dendrogram, the herds were placed in 3 groups: 1) 
heifers and lactating animals in Australia, Ireland, and 
New Zealand; 2) lactating animals in Denmark, Ger-
many, and the United States; and 3) lactating animals 
in Canada and the Netherlands. The genetic correla-
tions between Groups 2 and 3 were not estimated with 
sufficient accuracy to establish whether they should 
be treated as different traits. Of note, the accuracy of 
genomic predictions showed that all countries benefited 
from sharing phenotypes for DMI collaboratively. Thus, 
sharing phenotypes for DMI and energy sink traits rep-
resents an important next step together with improving 
the model, to achieve reasonable accuracy for breeding 
values of gRFI.

CONCLUSIONS

This study estimated variance components for gRFI 
and its component traits. We used a multi-trait model 
where traits were modeled by parities, with data from 
multiple countries. We used a REML procedure to 
estimate the variance components with random regres-
sion methodology. Our results showed that gRFI is 
heritable, and that the genetic correlation structure was 
highly genetically correlated between lactation weeks in 
mid and late lactation within each parity. However, the 
genetic correlation between early and mid/late lacta-
tion showed low, or even negative, correlations within 
each parity. A moderately high genetic correlation was 
estimated across parity in mid and late lactation, but 
this correlation was low to moderate low in early lacta-
tion. Our study demonstrates that it is possible to esti-
mate variance components for gRFI using a multi-trait 
RRM, and that this trait is genetically correlated across 
parities in mid and late lactation. However, more focus 
needs to be placed on early lactation. In conclusion, it 
is feasible to select for feed efficiency in different pari-
ties without impacting the production and size of the 
cows, conforming with global Feed Saved evaluations.
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