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Abstract
Purpose  Image artefacts continue to pose challenges in clinical molecular imaging, resulting in misdiagnoses, additional 
radiation doses to patients and financial costs. Mismatch and halo artefacts occur frequently in gallium-68 (68Ga)-labelled 
compounds whole-body PET/CT imaging. Correcting for these artefacts is not straightforward and requires algorithmic 
developments, given that conventional techniques have failed to address them adequately. In the current study, we employed 
differential privacy-preserving federated transfer learning (FTL) to manage clinical data sharing and tackle privacy issues 
for building centre-specific models that detect and correct artefacts present in PET images.
Methods  Altogether, 1413 patients with 68Ga prostate-specific membrane antigen (PSMA)/DOTA-TATE (TOC) PET/CT 
scans from 3 countries, including 8 different centres, were enrolled in this study. CT-based attenuation and scatter correc-
tion (CT-ASC) was used in all centres for quantitative PET reconstruction. Prior to model training, an experienced nuclear 
medicine physician reviewed all images to ensure the use of high-quality, artefact-free PET images (421 patients’ images). 
A deep neural network (modified U2Net) was trained on 80% of the artefact-free PET images to utilize centre-based (CeBa), 
centralized (CeZe) and the proposed differential privacy FTL frameworks. Quantitative analysis was performed in 20% of the 
clean data (with no artefacts) in each centre. A panel of two nuclear medicine physicians conducted qualitative assessment of 
image quality, diagnostic confidence and image artefacts in 128 patients with artefacts (256 images for CT-ASC and FTL-ASC).
Results  The three approaches investigated in this study for 68Ga-PET imaging (CeBa, CeZe and FTL) resulted in a mean 
absolute error (MAE) of 0.42 ± 0.21 (CI 95%: 0.38 to 0.47), 0.32 ± 0.23 (CI 95%: 0.27 to 0.37) and 0.28 ± 0.15 (CI 95%: 
0.25 to 0.31), respectively. Statistical analysis using the Wilcoxon test revealed significant differences between the three 
approaches, with FTL outperforming CeBa and CeZe (p-value < 0.05) in the clean test set. The qualitative assessment dem-
onstrated that FTL-ASC significantly improved image quality and diagnostic confidence and decreased image artefacts, 
compared to CT-ASC in 68Ga-PET imaging. In addition, mismatch and halo artefacts were successfully detected and disen-
tangled in the chest, abdomen and pelvic regions in 68Ga-PET imaging.
Conclusion  The proposed approach benefits from using large datasets from multiple centres while preserving patient pri-
vacy. Qualitative assessment by nuclear medicine physicians showed that the proposed model correctly addressed two main 
challenging artefacts in 68Ga-PET imaging. This technique could be integrated in the clinic for 68Ga-PET imaging artefact 
detection and disentanglement using multicentric heterogeneous datasets.
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Introduction

Artefacts in medical imaging are structures that appear in 
the image but are not present in the patient’s body [1–4]. In 
whole-body positron emission tomography (PET) imaging, 
various artefacts can occur for numerous reasons, including 
the PET image itself and the propagation of artefacts from 
complementary imaging modalities, such as computed tomog-
raphy (CT) or magnetic resonance imaging (MRI) in PET/CT 
and PET/MRI scanners, respectively [1–6]. Attenuation and 
scatter correction (ASC) during PET image reconstruction 
are the main steps in which these artefacts can occur [6–8]. In 
addition, ASC is applied to compensate for photon attenuation 
and Compton scattering, which is required to achieve quan-
titative PET imaging [9, 10]. Halo and mismatch artefacts 
are the most common in PET imaging of gallium-68 (68Ga)-
labelled radiopharmaceuticals [1–3, 11, 12]. These artefacts 
can be easily missed if they are not prominent, but if they are 
highly effective, they can cause a corrupted image that often 
requires repeated scans [6, 9, 10]. Nevertheless, in most cases, 
the repeated scan will not rectify these artefacts, as they are 
unavoidable in certain cases [1–4, 6, 9, 10].

Mismatch artefacts can occur when there is a discrepancy 
between PET and anatomical imaging (CT or MRI) and can be 
caused by voluntary and involuntary organ movement [6, 10, 
13–15]. An additional device for mismatch tracking or deform-
able image registration could partially correct this artefact [13, 
14]. Mismatch artefacts result in missing, mislocalization and 
incorrect quantification of malignant lesions in PET images 
[6, 10]. This might cause misdiagnosis and change patient 
management [13, 14, 16]. Different CT acquisition protocols 
have been proposed to mitigate lung-diaphragm interface mis-
match, including end-expiration, mid-expiration and respira-
tory averaged CT using cinematic CT (4D CT). End-expiration 
CT acquisition has been suggested to enable better assessment 
of the lungs on PET images. However, this acquisition reduces 
anatomical details and might miss small lung nodules in up to 
34% of the cases [13, 14]. CT acquisition at mid-expiration is 
favoured [16]. The 4D CT approach was reported to enhance 
standardized uptake value (SUV) quantification by more than 
50%, compared to mid-expiratory acquisition in malignant 
lesions [14, 15]. However, it involves higher radiation doses to 
the patient, and its implementation is not feasible in all centres.

Radiopharmaceutical-related artefacts can occur due to 
tracer injection, with eventual hot clots or extravasation, 
which could be interpreted as abnormalities [6]. Foci of 
increased uptake in the lungs not corresponding to a nod-
ule or any other lung abnormality and axillary lymph nodes 
with increased uptake ipsilateral to the injection site with 
extravasation of the radiopharmaceutical are examples of 
radiopharmaceutical-related artefacts. Halo or photopenic 
artefacts formed in regions with a high tracer uptake, such 

as the kidneys, ureters, urinary catheters and bladder, might 
impede the correct interpretation of PET images. Halo arte-
facts can be caused by incorrect scatter correction (negative 
values near high activity regions) during image reconstruction 
(non-negativity constraint in statistical reconstruction) [11]. 
This artefact could result in misdiagnosis and often requires 
repeated scans, since it cannot be recovered using conven-
tional algorithms [17, 18].

In the last few years, various deep-learning (DL)-based 
algorithms have been developed for quantitative PET image 
reconstruction [19–21]. Numerous ASC methodologies have 
been suggested, including scatter and attenuation estimation 
in the sinogram domain, indirect (attenuation map genera-
tion) and direct attenuation correction [6, 10, 22–29]. Further-
more, various DL algorithms have been proposed for artefact 
correction in single-modality PET, CT or MR imaging [6, 
27, 28, 30, 31]. For example, we demonstrated in a previous 
study the potential of direct ASC framework for artefact cor-
rection in 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) PET/
CT [6, 10, 31]. In addition, DL-based metal artefact reduc-
tion in PET/CT in the image and projection domains showed 
that the DL algorithm outperformed conventional algorithms 
[32]. Another study successfully used DL for truncation and 
metallic artefact compensation in PET/MRI [33]. Ultimately, 
a more recent study investigated MR image artefact disentan-
glement using unpaired data and a DL algorithm [34].

DL algorithms commonly require a significant sample size 
for appropriate training [9, 28, 29, 35–40]. Moreover, build-
ing a robust DL model requires a large dataset involving a 
wide range of scanners, image acquisition and reconstruction 
protocols [9, 28, 29, 35–40]. However, data exchange across 
hospitals is restricted by ethical and regulatory considerations 
[9, 28, 29, 35–38]. In addition, all hospitals do not necessar-
ily staffed by AI scientist, having access to computational 
resources for building centre-based models, and gathering 
large heterogeneous datasets remains challenging [9, 28, 29, 
35–38]. Federated learning (FL) is a technique that allows 
DL models to be developed on distributed datasets spread 
across several hospitals or institutes [9, 29, 35–38, 41, 42]. 
FL aims to train a model that can draw knowledge from vari-
ous decentralized datasets without moving the data to a single 
location [9, 29, 35–40]. This is especially helpful if the data 
are private or sensitive and cannot be shared with a central 
server or other hospitals [9, 29, 35–38, 43, 44].

There are several approaches to FL, including weighted 
federated averaging, which involves training a local model 
on each decentralized dataset and then averaging the model 
weights across all centres to create a global model [9, 29, 
35–43]. In this scenario, the idea is to build one competi-
tive global model with a centralized model [9, 29, 35–43]. 
Another approach referred to as federated transfer learn-
ing (FTL) involves a global model development through 
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decentralized training and then fine-tuning the global model 
in each centre separately to create a centre-specific personal-
ized model [9, 28, 29, 35–40]. FTL is useful in training DL 
models considering the high variability and heterogeneity of 
datasets across different centres, which requires large datasets 
and centre-specific models [9, 28, 29, 35–38].

As mentioned earlier, image artefacts remain a challenge 
in clinical molecular imaging, especially mismatch and halo 
artefacts in 68Ga PET imaging. Correcting these artefacts 
requires novel algorithmic developments since conventional 
algorithms have failed to address them adequately. In the cur-
rent study, we employed differential privacy FTL to manage 
the data-sharing issue in the clinic for building DL models. 
In addition, we used FTL approaches to build centre-specific 
models with prior knowledge of different centres’ data that 
are specific to each centre. Furthermore, we employed this 
method for PET image artefact disentanglement on 68Ga-
labelled compounds and evaluated its performance qualita-
tively and quantitatively. Finally, we compared the proposed 
method with centre-based and centralized algorithms.

Materials and methods

PET image acquisition and preprocessing

The institutional ethics committee of Geneva University 
Hospital approved this retrospective multi-institution study. 
This study enrolled a total of 1413 patients with 68Ga-
prostate-specific membrane antigen (PSMA)/DOTA-TATE 
(TOC) PET/CT scans from 3 countries (Switzerland, Iran 
and Canada), scanned at 8 centres. An experienced nuclear 
medicine physician reviewed all images to select high-qual-
ity and artefact-free PET images for model development 
(421 clean data out of 1413). Table 1 provides details of 
the datasets from the different centres. CT-based ASC (CT-
ASC) was used for PET image correction. Corrected and 
non-corrected PET images were converted to SUV units 
(units changed from Bq/ml to SUV) using injected dose, 

decay factor and patient’s weights [6, 9, 10, 28, 29]. All PET 
images were first cropped to the body contour and then zero-
padded to the same bounding box (232 × 168 × Z, where Z 
is the slice number) to preserve both image resolution and 
body shape. All images were normalized between 0 and 1 
using 90% of the histogram by dividing the value of non-
ASC and CT-ASC by 2 and 5, respectively [6, 9, 10, 28, 29].

Deep neural network

In the current study, we implemented a modified version of 
the U2Net [9, 45]. U2Net architecture incorporates residual 
blocks and deep supervision [9]. In the U2Net architecture, 
each conventional U-Net block consists of U-Net network, 
comprising classical U-Net blocks, including convolution, 
batch normalization, ReLU activation function and up and 
down sampling with a symmetric encoder and decoder [9, 
45]. The input of the deep neural networks in the different 
scenarios was non-ASC PET, with the target being CT-ASC 
to generate DL-ASC PET images as output automatically. The 
network was trained in 2D using the Adam optimizer with a 
learning rate of 0.001, L2-norm loss and a weight decay of 
0.0001 [9, 45]. The network schema is shown in Supplemental 
Fig. 1. Artefact-free clean data sets were used for train, valida-
tion and test set.

Different learning scenarios

Different scenarios were used to develop DL algorithms, 
including (i) centre-based (CeBa), (ii) centralized (CeZe) 
and (v) federated transfer learning (FTL).

CeBa  Each hospital independently developed the DL model 
using its own dataset [9, 28, 29, 35–42]. This training frame-
work has trouble properly adjusting to unobserved new cases 
[9, 28, 29, 35–42]. Moreover, all hospitals do not necessar-
ily have access to curated and large heterogeneous datasets, 
computational power and machine learning (ML) developers 
[9, 28, 29, 35–42].

Table 1   Image acquisition and reconstruction settings in 8 different imaging centres

Centre No Clean Train Test Scanner Reconstruction Tracers Matrix size

Centre 1 70 16 12 4 Siemens Horizon PSF + TOF + 3D-OSEM 68 Ga-PSMA 180 × 180
Centre 2 315 71 56 15 Siemens Biograph 6 3D-OSEM 68 Ga-PSMA 168 × 168
Centre 3 97 49 39 10 Siemens mCT PSF + TOF + 3D-OSEM 68 Ga-PSMA 256 × 256
Centre 4 97 49 39 10 Siemens Vision PSF + TOF + 3D-OSEM 68 Ga-PSMA 440 × 440
Centre 5 261 51 40 11 Siemens Biograph 6 PSF + 3D-OSEM 68 Ga-PSMA 168 × 168
Centre 6 295 57 45 12 Siemens mCT 3D-OSEM 68 Ga-PSMA 200 × 200
Centre 7 183 89 71 18 GE Discovery 690 3D-OSEM 68 Ga-DOTA-TATE 192 × 192
Centre 8 95 39 31 8 GE Discovery IQ 3D-OSEM 68 Ga-PSMA 192 × 192
Total 1413 421 333 88 - - − -
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CeZe  Different hospitals send data to a core hospital to cre-
ate and develop a global ML model [9, 28, 29, 35–42]. This 
scenario jeopardizes the privacy of the data and hinders col-
laboration among different hospitals [9, 28, 29, 35–42].

FTL  The data are decentralized and not shared among hospi-
tals in a FL framework, but the hospitals can work together 
and exchange DL model parameters to develop a global 
model [9, 28, 29, 35–42, 46, 47]. Each hospital keeps its 
own datasets, and the local datasets are used to develop the 
DL models independently [9, 28, 29, 35–38]. Each hospital 
sends model updates to a core hospital after training the local 
model. Then, the central server in the core hospital combines 
the model updates to create a global DL model. We imple-
mented Gaussian differential privacy FL [9, 28, 29, 35–38, 
48, 49] to build the global model using a decentralized data 
set and then fine-tuned the model for each hospital to develop 
personalized models for each hospital. More details were pro-
vided in the supplementary dataset. All models were imple-
mented in Tensorflow and TensorFlow Federated (TFF) [50] 
using a server with multiple GPUs (RTX 2080 Ti) [9, 28, 
29, 35–38]. The model trained on 80% of the clean data set 
(20% as the test set) at each hospital, and 10% of the training 
in each hospital (clean data) was used as a validation set to 
optimize the hyperparameters of the models.

Evaluation strategies

Two different test sets were used for the evaluation of our 
proposed method. This includes an artefact-free clean test 
set (20% of each centre clean dataset) used for quantitative 
analysis and a second test set consisting of images presenting 
with artefacts (128 patients) for blind qualitative analysis.

Quantitative analysis

Model performance was evaluated using image-derived PET 
metrics, including voxel-wise mean absolute error (MAE), 
mean squared error (MSE), structural similarity index 
(SSIM) and peak signal-to-noise ratio (PSNR) between 
ground truth CT-ASC and predicted DL-ASC PET images 
using artefact-free clean test set [10].

Qualitative assessment of artefacted images

Two nuclear medicine experts blindly performed the qualita-
tive analysis of 258 images from 128 cases. CT-ASC (128 
images) and FLT-ASC (128 images) image assessments 
were performed blindly in terms of image artefacts (1: unac-
ceptable, 2: mild, 3: moderate, 4: minor and 5: none), diag-
nostic confidence (1: very poor, 2: poor, 3: average, 4: high 
and 5: excellent) and image quality (1: very poor, 2: poor, 

3: average, 4: high and 5: excellent). These analyses were 
performed separately for different body regions, including 
the head and neck (including the brain), chest, chest abdo-
men interval (diaphragm region), abdomen, pelvis and 
extremities, and whole images (all regions). Moreover, 30 
images (15 from FLT-ASC and 15 from CT-ASC) were used 
to assess the intra-observer variability of each physician. 
Inter-observer variability was calculated across 256 images.

Statistical analysis

Quantitative analyses were performed on the same clean 
test sets. Images with artefacts were used only for qualita-
tive analysis. We used the Wilcoxon test to compare image-
derived metrics between the different scenarios. The p-value 
was corrected using the false discovery rate correction 
method developed by Benjamin Hochberg [51] to provide 
an adjusted p-value (q-value). To assess consistency, we 
used the intraclass correlation coefficient (ICC) test based 
on a two-way mixed effects model for intra-/inter-observer 
variability assessment. ICC classified as poor reproducibility 
(ICC < 0.40), fair reproducibility (0.40 < ICC < 0.59), good 
reproducibility (0.60 < ICC < 0.74), or excellent reproduc-
ibility (0.75 < ICC < 1.00) [52]. The McNemar test was 
used for pairwise comparisons of image quality, artefacts 
and diagnostic confidence between CT-ASC and FLT-ASC 
images. The marginal homogeneity test compared these fac-
tors’ distributions between CT-ASC and FLT-ASC. We also 
used generalized linear models (GLMs) to adjust for reader 
and rate confounders, the centres and scanners and compare 
the distributions of image quality, artefacts and diagnostic 
confidence between CT-ASC and FLT-ASC in each region. 
Statistical analysis was performed using R software version 
4.2.0, using a significance level of 0.05.

Results

Quantitative analysis of artefact‑free images

Image‑based analysis  The three approaches evaluated in 
this study for 68 Ga-PET imaging (CeBa, CeZe and FTL) 
resulted in MAE values of 0.42 ± 0.21 (CI 95%: 0.38 to 
0.47), 0.32 ± 0.23 (CI 95%: 0.27 to 0.37) and 0.28 ± 0.15 (CI 
95%: 0.25 to 0.31), respectively. Regarding SSIM, the FTL 
approach had a value of 0.80 ± 0.10 (CI 95%: 0.78 to 0.82). 
According to the Wilcoxon test, there were significant dif-
ferences between the three approaches, with CeZe achiev-
ing 0.75 ± 0.15 (CI 95%: 0.72 to 0.79) and CeBa attaining 
0.71 ± 0.15 (CI 95%: 0.68 to 0.74). The results showed that 
FTL-ASC outperformed CeBa and CeZe (p-value < 0.05). 
Supplemental Fig. 2 and Supplemental Table 1 compare the 
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different metrics across different approaches in the test set. 
Supplemental Tables 2 and 3 provide more details for each 
centre for CeBa and FTL. We continued qualitative analysis 
of FTL-ASC PET images since FTL resulted in high quantita-
tive accuracy.

Qualitative assessment of artefacted images

Intra and inter‑observer variability  The ICC values for 
image quality, artefacts and diagnostic confidence are shown 
in Table 2. Both inter- and intra-observer variability showed 
fair reproducibility in the extremities and good and excellent 
reproducibility in other regions of the body.

Overall image quality  Table 3 (generalized linear model 
tests) and Supplemental Tables 4–6 (McNemar and marginal 
homogeneity tests) compare the image quality, artefacts and 
diagnostic confidence between CT-ASC and FTL-ASC. 
In addition, the data are visualized in bar plots in Fig. 1. 
These results demonstrate that image quality improved 
significantly for the chest/abdomen and abdomen regions. 
In the pelvic region, image quality improved significantly 
from 34.38 to 55.08%, while very poor image quality sig-
nificantly decreased from 4.3 to 1.17%. The overall image 
quality is significantly improved in all regions of the body 
(total image). Diagnostic image confidence was significantly 
improved in the chest, chest/abdomen and abdomen regions.

Moreover, high and very-poor diagnostic confidence in 
the pelvic region significantly increased and decreased, 
respectively, using FTL-ASC. FTL-ASC PET images sig-
nificantly improved overall diagnostic confidence. The 
mismatch artefacts in the chest/abdomen region and halo 
artefacts in the abdomen and pelvis significantly decreased 
when using FTL-ASC.

Mismatch and halo artefacts  The images generated using 
the FTL approach successfully corrected the mismatch 
artefact in the diaphragm region and reduced photopenic 
artefacts in the lung, liver and spleen region, as shown in 
Fig. 2. The results of our study demonstrate that FTL-ASC 
effectively disentangles halo artefacts in the abdominal and 
pelvic regions (Figs. 3 and 4).

Case study with repeated scans (upon request from the 
nuclear medicine physician immediately after the initial scan).

Figure 5 represents a patient with a halo artefact in the 
pelvic region and the repeated scan performed for this 
patient in the kidney and pelvic region. FTL-ASC shows 
high-quality artefact-free images in both scans. This artefact 
was removed in the repeated CT-ASC scan, and FTL-ASC 
PET images reported almost similar image quality, diagnos-
tic confidence and pattern as the first scan.

Figure 6 shows a case with a halo artefact in the kid-
neys. The repeated scan was performed for this patient in 
this region owing to low image quality and diagnostic con-
fidence. Unfortunately, the repeated scan could not remove 
this artefact. The halo artefact is still visible in the same 
region. However, the FTL-ASC model successfully removed 
this artefact in both scans.

Figure 7 represents a patient with moderate halo artefacts 
in the abdomen and pelvic area, with the repeated scan per-
formed for this patient. However, the repeated scan exag-
gerated the halo artefact resulting in low-quality and low 
diagnostic confidence images. The FTL-ASC PET image 
recovered high quality and high confidence for both scans.

Table 2   Intra and inter-reader ICC for image quality, diagnostic con-
fidence and image artefacts in all data for both readers

Intra and Inter-reader analysis

Region Image 
quality

Diagnostic 
confidence

Image artefact

Intra-Reader Analysis using 30 Images
  Head and neck 0.85 0.88
  Chest 0.71 0.79
  Chest abdomen interval 0.80 0.82 Motion: 0.86
  Abdomen 0.73 0.76 Halo: 0.88
  Pelvis 0.70 0.75 Halo: 0.82
  Extremities 0.55 0.60
  All regions 0.72 0.76

Inter-Reader Analysis using 256 Images
  Head and neck 0.66 0.66
  Chest 0.61 0.60
  Chest abdomen interval 0.72 0.74 Motion: 0.73
  Abdomen 0.71 0.72 Halo: 0.82
  Pelvis 0.60 0.61 Halo: 0.74
  Extremities 0.41 0.47
  All regions 0.60 0.61

Table 3   Comparison of image quality, diagnostic confidence and 
image artefacts between CT-ASC and FLT-ASC. The reported 
p-value is based on a generalized linear model after adjustment of 
ICC for all raters (CT-ASC and FLT-ASC), readers and centres

Significant value mentioned in the text. P-value less than 0.05

Region Image quality Diagnostic confidence Image artefact

Head and neck 0.566 0.711 -
Chest 0.062 0.015 -
Chest abdo-

men interval
 < 0.001  < 0.001 Motion: < 0.005

Abdomen  < 0.002  < 0.001 Halo: < 0.001
Pelvis 0.211 0.211 Halo: < 0.05
Extremities 0.801 0.801 -
All regions 0.001 0.001 -
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Discussion

A single universal model may not be effective due to differ-
ences in tracer injected activity, equipment, image acquisi-
tion and reconstruction strategies across different hospitals 
[9, 10, 28, 29, 35–42, 46, 47]. Therefore, it is necessary 
to create personalized models using large, heterogeneous 
datasets to overcome this issue [9, 28, 29, 35–38]. In the 
current study, we utilized differential privacy-preserving 
FTL to adopt a centralized model for each centre separately, 
resulting in improved accuracy for ASC in PET images and 
simultaneously addressing data-sharing privacy issues.

ASCs are the two major corrections based on CT images 
toward quantitative 68Ga PET imaging [6, 9, 10, 25, 28, 29]. 
However, mismatch and halo artefacts might appear on 68Ga 
PET images during this process, leading to potential changes 
in the diagnosis and prognosis of patients [11, 13, 14, 16–18]. 
In addition, these artefacts are difficult to detect and correct 

in real clinical scenarios [6]. The developed model does not 
require iterative image reconstruction incorporating ASC. In 
addition, we addressed the data-sharing issue using differen-
tial privacy FTL and showed that our model quantitatively 
outperformed centralized and centre-based models. We then 
used FTL-ASC for further qualitative analysis. Through quan-
titative analysis, we observe the impact of radiotracers and 
scanners on the performance of the models. We observed that 
FTL enhanced significantly the quantitative accuracy of the 
models in both situations, outperforming the CeBa approach. 
Different sources, such as scanner and radiotracer, significantly 
affect FTL’s effectiveness. Notably, FTL performs more effi-
ciently when different scanners use the same radiotracer, rather 
than when diverse radiotracers are used on the same scanner. 
Qualitative analysis revealed the performance of our proposed 
model for effective mismatch and halo artefact detection and 
correction in the chest, abdomen and pelvic regions without 
knowledge of the ground truth in 68Ga PET images.

Fig. 1   Image quality, image diagnostic confidence, halo and mismatch artefact comparison between CT-ASC and FTL-ASC in different regions 
of the body
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Different DL-based ASC methods have been proposed 
for PET, including indirect methods generating attenuation 
maps from MRI and non-ASC images or using maximum 
likelihood estimation of activity and attenuation (MLAA) and 
then using these attenuation maps for ASC during the recon-
struction process [21, 27]. For example, Liu et al. [22] used 
a GAN network to generate pseudo-CT from PET-nonAC in 
brain PET images, whereas Dong et al. [23] used the same 
approach in whole-body imaging. In addition, Hwang et al. 
[24] improved the performance of MLAA by dealing with 
its main limitations (crosstalk artefacts, slow convergence 
speed and noisy attenuation maps) through DL for 18F-FDG 
brain PET and tested this methodology in whole-body PET 
imaging [25]. The direct DL-based ASC framework directly 
generates ASC PET images from non-ASC images [9, 10, 
21]. Our group first implemented this approach in brain PET 
imaging [53]. Furthermore, our group [10] and Dong et al. 
[26] independently assessed the performance of direct ASC 
in whole-body 18F-FDG PET imaging.

A low injected tracer activity and the high positron range 
of 68Ga-labelled radiopharmaceuticals produce low-quality 
images, compared to 18F-labelled compounds, adding chal-
lenges to direct ASC [11, 13, 14, 16–18]. At first glance, 
direct ASC utilizing DL appears as an excessive use of arti-
ficial intelligence in PET. However, it not only generates 
quantitatively and qualitatively corrected PET images but 
also has some potential, which we emphasized in the current 
study [10]. The main potential of this approach is mismatch 
and halo artefact detection and correction of 68 Ga PET 
images without using anatomical images. In indirect tech-
niques, reconstruction is mandatory to produce ASC PET 
images, potentially capable of addressing mismatch artefacts 
using a clean dataset [54, 55]. However, these approaches 
do not address halo artefacts, as this artefact appears dur-
ing the reconstruction process and depends mostly on PET 
images (not CT images). Mismatch and halo artefacts were 
evaluated in the current study, where they were successfully 
detected and corrected in different regions of the body. We 

Fig. 2   Coronal views of 8 representative clinical studies showing 
from left to right: non-ASC, CT-ASC, FTL-ASC and the difference 
images of CT-ASC and FTL-ASC. The images generated using the 

FTL approach successfully corrected the mismatch artefact in the dia-
phragm region (depicted by the arrows) and reduced photopenic arte-
facts in the lung, liver and spleen regions in the different cases
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presented cases in which artefacts appeared in the original 
68 Ga PET images, and FTL-ASC successfully removed 
these artefacts. Moreover, blind analysis performed by 
physicians showed significant improvement in image qual-
ity, confidence in diagnostic accuracy and removal of arte-
facts. In addition, we showed different scenarios in which 
repeated scans could be performed to remove these artefacts 
and observed that DL-based algorithms properly recovered 
important clinically relevant features. Meanwhile, there were 
a number of cases in which repeated scans could not remove 
and even exaggerated these artefacts. In this situation, our 
proposed DL-based algorithms could disentangle these arte-
facts without knowledge of the ground truth.

Most previous studies were performed on single-cen-
tre datasets, limiting the DL model generalizability [10, 
22–26]. A multicentre study could potentially address this 
issue, where FL is definitely a good option. More recently, 
we developed a decentralized, federated DL model for ASC 
of 18F-FDG PET images using 300 clinical studies from 6 
different centres [9]. We evaluated two different FL algo-
rithms, parallel and sequential, without a privacy-preserving 

mechanism, such as the differential privacy implemented 
in the current study. We reported that both models outper-
formed the centre-based model and achieved performance 
levels comparable to the centralized model [9]. The differ-
ential privacy-preserving mechanism implemented in the 
current study can protect the model against various attacks, 
as FL by itself does not offer that protection [9]. One of the 
main advantages of FTL is the ability to create personalized 
DL models using data from various centres without com-
promising privacy. Furthermore, by enabling DL models to 
gain knowledge from a wider variety of data, FTL has the 
potential to enhance the performance of these models.

The use of FL poses additional challenges that need to 
be considered [39–42, 46, 47]. Decentralized datasets may 
be heterogeneous due to variations in data acquisition and 
reconstruction protocols across the different centres [9]. As 
a result, combining model updates and building a compre-
hensive global model might be challenging. In CeBa and 
CeZe training, the data set is small and highly heterogene-
ous, respectively [9, 36, 38]. In addition, a global FL model 
would achieve the accuracy of CeZe in the ideal scenario [9]. 

Fig. 3   Coronal views of 8 representative clinical studies showing from left to right: non-ASC, CT-ASC, FTL-ASC and the difference images of 
CT-ASC and FTL-ASC. FTL-ASC effectively disentangles halo artefacts in the kidney area (depicted by the arrows) in the different cases
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The current study used FTL algorithms to address the limita-
tions of CeBa, CeZe and FL model development by building 
a global FL model in the first steps from the heterogeneous 
multicentric dataset and subsequently developing a centre-
specific model using transfer learning [9]. FTL can be com-
putationally demanding because it necessitates coordinating 
the training process across various centres, aggregating the 
model updates and providing a centre-specific model in each 
centre separately [36].

One of the main limitations of the current study is that 
model development took place on a single server equipped 
with multiple GPUs [9, 36, 38]. Future research should 
implement a more realistic computational model addressing 

the major challenges, such as the communication burden 
between different centres or the computation power of each 
centre [9, 36, 38]. Furthermore, various attacks should 
be designed to assess the performance of the differential 
privacy-preserving mechanism in protecting the privacy of 
data in different scenarios [9, 36, 38]. Additionally, since 
this method was developed based on direct ASC of 68Ga 
images, it is not suitable for other radiotracers, such as 18F-
FDG, as it will fail to generate correct images due to domain 
and concept shifts [6, 9, 10, 29]. Further studies should be 
conducted to develop and evaluate the proposed artefact cor-
rection techniques for other tracers and other PET image 
artefacts [6, 9, 10, 29].

Fig. 4   Coronal views of 4 
representative clinical studies 
showing from left to right: 
non-ASC, CT-ASC, FTL-ASC 
and the difference images of 
CT-ASC and FTL-ASC. FTL-
ASC effectively disentangles 
halo artefacts in the pelvic area 
(depicted by the arrows) in the 
different cases
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Fig. 6   Coronal and axial views 
showing from left to right: 
non-ASC, CT-ASC, FTL-ASC 
and the difference images of 
CT-ASC and FTL-ASC. The 
top panel shows the initial 
scan, whereas the bottom panel 
depicts the repeated scan in 
the artefacted region (depicted 
by the arrows). The repeated 
scan could not remove this 
artefact, where the halo artefact 
remained visible in the same 
region. However, FTL-ASC 
successfully removed this arte-
fact in both scans

Fig. 5   Coronal and axial views 
showing from left to right: 
non-ASC, CT-ASC, FTL-ASC 
and the difference images of 
CT-ASC and FTL-ASC. The 
top panel shows the initial 
scan, whereas the bottom panel 
depicts the repeated scan in 
the artefacted region (depicted 
by the arrows). In the repeated 
CT-ASC scan, this artefact was 
removed from the images. FTL-
ASC produced high-quality 
artefact-free images in both 
scans
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Conclusion

We employed a differential privacy-preserving FTL framework 
for artefact detection and disentanglement in PET imaging of 
68Ga-labelled compounds. The proposed approach benefits 
from using large datasets from multiple centres while pre-
serving patient privacy. Simultaneously, it uses the transfer 
learning concept, providing site-specific models that outper-
form centralized and centre-based models. In addition, the 
qualitative analysis demonstrated that the proposed model 
correctly addresses two main challenging artefacts in 68Ga-
PET imaging.
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