
ABSTRACT

Feed efficiency has become an increasingly important 
research topic in recent years. As feed costs rise and the 
environmental impacts of agriculture become more ap-
parent, improving the efficiency with which dairy cows 
convert feed to milk is increasingly important. However, 
feed intake is expensive to measure accurately on large 
populations, making the inclusion of this trait in breed-
ing programs difficult. Understanding how the genetic 
parameters of feed efficiency and traits related to feed 
efficiency vary throughout the lactation period is valu-
able to gain understanding into the genetic nature of feed 
efficiency. This study used 121,226 dry matter intake 
(DMI) records, 120,500 energy corrected milk (ECM) 
records, and 98,975 metabolic body weight (MBW) 
records, collected on 7,440 first lactation Holstein cows 
from 6 countries (Canada, Denmark, Germany, Spain, 
Switzerland, and United States of America), from Janu-
ary 2003 to February 2022. Genetic parameters were es-
timated using a multiple-trait random regression model 
with a fourth order Legendre polynomial for all traits. 
Weekly phenotypes for DMI were re-parameterized us-
ing linear regressions of DMI on ECM and MBW, cre-
ating a measure of feed efficiency that was genetically 
corrected for ECM and MBW, referred to as genomic 

residual feed intake (gRFI). Heritability (SE) estimates 
varied from 0.15 (0.03) to 0.29 (0.02) for DMI, 0.24 
(0.01) to 0.29 (0.03) for ECM, 0.55 (0.03) to 0.83 (0.05) 
for MBW, and 0.12 (0.03) to 0.22 (0.06) for gRFI. In 
general, heritability estimates were lower in the first 
stage of lactation compared with the later stages of 
lactation. Additive genetic correlations between weeks 
of lactation varied, with stronger correlations between 
weeks of lactation that were close together. The results 
of this study contribute to a better understanding of the 
change in genetic parameters across the first lactation, 
providing insight into potential selection strategies to 
include feed efficiency in breeding programs.
Key Words: dry matter intake, energy corrected milk, 
metabolic body weight, feed efficiency

INTRODUCTION

As the global population expands and consumer 
awareness of animal production practices grows, the 
importance of sustainable dairy production is increas-
ingly emphasized. Improving feed efficiency is one way 
to increase sustainability and reduce the environmental 
impact of dairy farms. Feed efficiency is defined as 
the ability of a cow to convert feed to milk; therefore, 
an efficient cow is one that consumes less feed while 
maintaining milk production. Feed is a major expense 
for the dairy industry, and it accounts for over half of 
the total cost of farm operations (Connor, 2015; Van 
Biert, 2019). Previous studies have shown that genetic 
selection for improved feed efficiency directly impacts 
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operational farm costs (Beever et al., 2007; Hemme et 
al., 2014; Tempelman et al., 2015).

In the context of genetic selection for feed efficiency, 
many accurate records for dry matter intake (DMI) 
are required (Seymour et al., 2019; Brito et al., 2020). 
However, acquiring records for DMI is expensive and 
time-consuming, making it challenging to include this 
trait in selection programs (Negussie et al., 2019). 
Moreover, the inclusion of DMI alone is not sufficient 
for improving feed efficiency, as it does not account for 
energy sinks. Several measures of feed efficiency have 
been discussed as potential traits to include in breed-
ing programs, including residual feed intake (Koch et 
al., 1963). Residual feed intake is usually defined as 
the residual of a fixed linear regression of DMI on en-
ergy sinks, such as energy corrected milk (ECM) and 
metabolic body weight (MBW) (Kennedy et al., 1993; 
Veerkamp et al., 1998; Li et al., 2018). An alternative 
way of calculated feed efficiency was proposed by Lu 
et al. (2015), Tempelman et al. (2020), Jamrozik et 
al. (2021), and Martin et al. (2021), where estimated 
breeding values for DMI were re-parameterized using 
linear regressions of DMI on ECM and MBW, to cre-
ate a measure of Feed efficiency that was genetically 
uncorrelated to ECM and MBW. Improving knowledge 
about the genetic relationship between feed efficiency 
indicator traits is critical when defining the optimal 
traits to be included in the selection program (Liinamo 
et al., 2012; Berry et al., 2014).

Most studies have used only a few time points to ana-
lyze feed efficiency indicator traits (e.g., Connor et al., 
2013; Tempelman et al., 2015; Li et al., 2016). However, 
considering dynamic changes in physiology over entire 
lactation might have a substantial influence on accurate 
estimation of genetic parameters for these traits. For 
instance, the lactation peak normally occurs between 6 
to 8 weeks after calving, and during this phase the cows 
are usually in negative energy balance (Connor et al., 
2013). On the other hand, after the lactation peak there 
is an excess of energy consumed compared with energy 
output in the milk. Moreover, it has been suggested 
that feed intake is dynamic throughout the lactation 
(e.g., Seymour et al., 2020; Martin et al., 2021), further 
emphasizing the need to analyze feed efficiency and its 
underlying traits across the entire lactation.

Random regression is a powerful tool to take into 
account the genetic variation of a trait over time, which 
allows estimation of variance components and breeding 
values for all time points evaluated (Schaeffer, 2004; 
Oliveira et al., 2019). In addition, the random regres-
sion model (RRM) can account for changing environ-
mental effects over a complete lactation cycle, which 
can improve the accuracy of breeding values (Jamrozik 
and Schaeffer, 1997). In summary, additive genetic 

and permanent environmental effects are predicted 
as deviations from a fixed curve, allowing animals to 
have differently shaped curves over the lactation for 
feed intake, body weight, milk yield, etc. (Jamrozik and 
Schaeffer, 1997). Therefore, the main objective of this 
study was to estimate variance components and genetic 
parameters over days in milk (DIM) of first lactation 
cows for DMI, ECM, MBW, and genomic residual feed 
intake (gRFI), using RRM

MATERIALS AND METHODS

Ethics and Animal Care

All data was obtained from pre-existing databases 
through studies performed in accordance with the legis-
lation and institutional guidelines in each country.

Data and Quality Control

The data set used in this study was provided through 
the Resilient Dairy Genome Project (http: / / www 
.resilientdairy .ca/ ). The data consisted of 121,226 DMI, 
120,500 ECM records, and 98,975 MBW records, col-
lected on 7,440 first lactation Holstein cows from 6 
countries, namely Canada, Denmark, Germany, Spain, 
Switzerland and United States of America. Data were 
collected over a 305-d lactation, with the number of 
records from each source varying. All records were 
collected between January 2003 and February 2022 on 
animals with the first calving before 40 mo of age. Data 
were collected on a daily, weekly, or monthly basis, 
depending on the trait and country. For more details 
on the methodology of data collection please refer to 
van Staaveren et al. (2022). The pedigree file included 
information up to 10 generations for phenotyped cows, 
resulting in a file with 30,776 animals, where there were 
5,410 sires and 22,399 dams. Ten generations were used 
as this captured founder animals and maintained a 
manageable pedigree size for computation.

Phenotypic data recorded from 5 to 305 DIM were 
used to create weekly phenotypes. In total 43 weeks 
of lactation (WOL) were defined based on DIM, as 
(DIM-4)/7. Weekly phenotypes were then computed as 
averages of daily measures within a WOL. The MBW 
was calculated as body weight0.75 and ECM was calcu-
lated following the formula presented by Sjaunja et al. 
(1990):

 ECM(kg) = (0.25 × milk kg) + (12.2 × fat kg) + (7.7 
× protein kg). 

Data editing was performed based on biological limita-
tions. Before the calculation of ECM, records of milk 
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yield less than 4kg were removed and fat and protein 
yield were required to be greater than zero. The MBW 
was required to be at least 50kg0.75 and DMI needed to 
be between 4kg and 50kg. In addition, animals were 
required to have at least 3 WOL records for a given 
trait (DMI, ECM or MBW) and to have at least 2 
daily records in a given WOL. It was also required that 
each year-season (YS) model factor had a minimum of 
5 animals. On average a single animal had 17.5 weeks’ 
worth of data. Due to a lack of homogeneity between 
the countries (van Staaveren et al., 2022), the data 
were standardized to the mean and standard deviation 
of the Canadian data. Descriptive statistics of the data 
are presented in Table 1. Figure 1 indicates the number 
of records per WOL.

Variance Component Estimation

Additive genetic, permanent environmental (PE), and 
residual variances were estimated for DMI, ECM, and 
MBW using a multiple-trait random regression animal 
model. The variance components were estimated using 
the Average Information Restricted Maximum Likeli-

hood (AIREML) algorithm implemented in WOMBAT 
(Meyer, 2007). A fourth order Legendre polynomial was 
used for all analyses, as it was the best fit of orders one 
through 4. It is worth noting that Legendre polynomi-
als above the fourth order were not analyzed due to 
convergence issues. All parameters in the model were 
tested and found to be significant for the data ana-
lyzed. The general model used for all traits is described 
as follows:
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where yijklm is the observation of the ith cow in the jth 
WOL; μ is the overall mean; YSk is the fixed effect of 
kth year-season of calving (77 levels for DMI, 72 levels 
for ECM and MBW); ACl is the fixed effect of lth class 
of age at calving (5 classes: < 22, 23, 24, 25, and > 26 
mo); HYmn is the nth coefficient of the fixed regression 
on WOL of the mth herd-year of calving to represent 
the average curves; ain is the nth random regression 
coefficient for the additive genetic effect of the ith cow; 
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Table 1: Descriptive statistics for dry matter intake (DMI), energy corrected milk (ECM), metabolic body weight (MBW) 
and genomic residual feed intake (gRFI) for first lactation Holsteins, standardized to the mean and standard deviation of 
Canada

Trait Number of records Number of animals Mean SD Minimum Maximum CV(%)

DMI (kg) 121,544 6,889 20.76 4.00 2.11 40.67 19.28
ECM (kg) 121,271 7,489 32.43 5.19 11.10 56.20 15.99
MBW (kg) 99,540 6,416 127.54 9.28 90.88 170.69 7.27
gRFI (kg) 80,633 6,242 20.80 3.39 −0.57 38.62 16.30

Figure 1. Number of records for dry matter intake, energy corrected milk, metabolic body weight, and feed efficiency across the first lacta-
tion.
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pein is the nth random regression coefficient for the PE 
effect of the ith cow with record; tij is the jth WOL of 
the ith cow standardized from −1 (WOL 1) to 1 (WOL 
43);  ∅ ( )n ijt  is the Legendre polynomial coefficient 
(Kirkpatrick et al., 1990) for the parameter n evaluated 
at standardized WOL of the ith cow at tij, and eijklm is 
the residual for each observation. In matrix notation, 
the previous single trait RRM is described as:

 y = Xb + Za + Wpe + e, 

where y is the vector of phenotypic records; X, Z, and 
W are the incidence matrices for the vectors of fixed 
(b), additive genetic (a), and PE (pe) effects; and e is 
the vector of random residuals. The model assumptions 
are:

E[y] = Xb

 Var
a
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e
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Where G0 and P0 are the additive genetic and PE 
variance-covariance matrices for the random regression 
coefficients, respectively; σe

2 is the residual variance for 
WOL (assumed homogenous across WOL); A is the 
numerator relationship matrix; I is the identity matrix. 
The G0 and P0  covariance matrices were used to cal-
culate the additive genetic and PE (co)variances for all 
WOL (G and P, respectively) as (Kirkpatrick et al., 
1990):

 G = ϕtG0ϕ and P = ϕtP0ϕ,

Where ϕ is a matrix of orthogonal coefficients associ-
ated with the Legendre polynomial function; and G 
and P are the additive genetic and PE covariance ma-
trices. Heritability estimated for the different WOL 
were calculated using the diagonal elements of G and P 
associated with the corresponding WOL analyzed and 
the homogeneous σe

2 of each trait.
The residual covariance structure for the multiple 

trait analysis was as follows, assuming correlated re-
siduals between traits:
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Approximate standard errors for the additive genetic, 
PE, and phenotypic correlations between WOL were 
estimated using the methodology described in Robert-
son (1959):
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where roj j, ' is the additive genetic, permanent environ-

mental, or phenotypic correlation between WOL j and 
’j  for trait o; seyj  and seyj ' are the standard errors for 

the heritabilities for WOL j and ’j  (in the case of addi-

tive genetic correlation), PE ratio 
σpe

total

2
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 (pe correla-

tion), or the phenotypic variance (phenotypic correla-
tion) for WOL j and ’;j  and qj and qj ' are the herita-
bilities (used for the additive genetic correlation), PE 
ratio (pe correlation), or phenotypic variance (pheno-
typic correlation) for WOL j and ’.j

Calculation of Feed Efficiency

Using the genetic (co)variance components from the 
multiple-trait random regression model, partial regres-
sion coefficients for ECM and MBW were calculated for 
each WOL as described by Jamrozik et al. (2017) and 
Jamrozik et al. (2021). In brief, the partial regression 
coefficients were calculated based on elements of the 
genetic covariance for each jth WOL.

 GCOVj =
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The elements of the genetic covariance matrix 
(GCOVj), for each WOL are used as shown in the 
equations below, where, PCECM and PCMBW are the 
partial regression coefficients of ECM and MBW re-
spectively, for the jth WOL.

 PCECM =
×( )− ×( )
×( )−

GCOV GCOV GCOV GCOV
GCOV GCOV GCOV

12 23 13 22

12 12 111 22×( )GCOV
 

 PCMBW =
×( )− ×( )
×( )−

GCOV GCOV GCOV GCOV
GCOV GCOV GCOV

12 13 11 23

12 12 111 22×( )GCOV

The partial regression coefficients were used in a linear 
transformation on the phenotype of DMI. Adjusted 
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DMI, which will be referred to hereafter as gRFI, can 
be interpreted as DMI adjusted for energy sinks based 
on their genetic relationship. The linear transformation 
was as follows:

 gRFI DMI PC ECM PC MBWij ij ECMj ij MBWj ij= − × − × ,

where, DMIij, ECMij and MBWij are the phenotypes of 
the ith cow in the jth WOL, PCECMj, and PCMBWj are 
the partial regression coefficients for ECM and MBW, 
respectively, in the jth WOL. Accordingly, ECMij and 
MBWij were pre-adjusted with their respective fixed 
effects before multiplying with the partial regression 
coefficients and subtracting from DMIij to create the 
gRFIij. This method was performed following the 
proposition of Kennedy et al. (1993).

Variance components of gRFI were obtained using 
the previously described random regression methodol-
ogy, where bivariate analyses between gRFI and the 
other traits were performed. Final variance components 
for gRFI were obtained as averages of the estimates 
obtained from the bivariate analyses.

RESULTS AND DISCUSSION

Heritability Estimates

Heritability estimates for DMI, ECM, MBW, and 
gRFI are shown in Figure 2. All variance component 
estimates (additive genetic variance, PE variance, re-
sidual error variance, phenotypic variance), heritability 
and their corresponding standard errors are presented 
in Supplementary Material Tables S1 to S4. In general, 
moderate heritability estimates were observed for DMI, 
ranging from 0.15 (0.03) at WOL 33 to 36 (231 to 252 
DIM), to 0.29 (0.02) at WOL 16 to 20 (112 to 140 
DIM). Heritability estimates for ECM remained fairly 
stable across the lactation, ranging from 0.24 (0.01) 
to 0.29 (0.03). The highest heritability estimates were 
observed for MBW, with estimates ranging from 0.55 
(0.03) in 28 to 32 WOL (196 to 224 DIM) to 0.83 (0.05) 
in the final WOL. Heritability estimates for gRFI were 
moderate, ranging from 0.12 (0.03) in WOL 26 to 31 
(182 to 217 DIM) to 0.22 (0.06) in WOL 41 and 42 (287 
to 305 DIM). A substantial increase in estimates was 
observed for MBW at the end of lactation, which could 
be related to the smaller number of records available in 
later stages of lactation and the known behavior of Leg-
endre polynomials under this situation (Misztal, 2006; 
Oliveira et al., 2019). It is also worth noting that the 
PE was also dynamic over the course of the lactation, 
indicating that the changes in the PE effect also need 
to be considered.

Early lactation (WOL 1 to 8; ~5 to 56 DIM) heri-
tability estimated for DMI (0.24 (0.03) to 0.25 (0.04)) 
were similar to heritabilities reported by Byskov et 
al., (2017), Li et al., (2018), and Krattenmacher et al., 
(2019). The heritabilities estimated in the mid and late 
lactation (0.15 (0.03) to 0.29 (0.02)) were also similar 
to previous studies (Spurlock et al., 2012; Li et al., 
2016; Manzanilla-Pech et al., 2016; Byskov et al., 2017). 
Heritabilities reported by Li et al., (2018) were slightly 
higher (0.30 to 0.55) than the heritabilities estimated 
in this study, but the pattern of heritabilities over the 
lactation was similar.

Heritability estimates for ECM in this study (0.24 
to 0.29 (0.04)) were within the range of those previ-
ously estimated (Spurlock et al., 2012; Li et al., 2018). 
Byskov et al., (2017) compared genetic parameters esti-
mated for a research herd and a commercial farm, and 
they found slightly higher heritabilities for mid and late 
lactation for the commercial herd (0.53 (0.08) to 0.70 
(0.08)), and similar heritabilities for the research herd 
(0.23 (0.06) to 0.35 (0.08)) compared with this study 
(0.28 (0.03) to 0.44 (0.06)). The pattern of the herita-
bility curve estimated for ECM in our study (slightly 
parabolic) has also been reported in previous studies 
(Li et al., 2018; Krattenmacher et al., 2019), in which a 
quadratic polynomial was used.

The heritability estimates observed in previous 
studies for MBW were reported between 0.17 (0.05) 
and 0.53 (0.07) (Manzanilla-Pech et al., 2016; Hur-
ley et al., 2017), which were similar to the lactation 
heritability estimates found in this study (0.60 (0.03)). 
Most notably, Manzanilla-Pech et al., (2016) found 
heritability estimates of 0.53 (0.07) and 0.43 (0.06) for 
Holstein animals from the Netherlands and the United 
States, respectively. The heritability estimates found in 
Manzanilla-Pech et al., (2016) had the same pattern 
as those in our study, which ranged from 0.53 (0.05) 
in early lactation to 0.79 (0.12) in later lactation. In 
addition to MBW, Manzanilla-Pech et al. (2016), Li et 
al. (2018) and Spurlock et al. (2012) also investigated 
the heritability of body weight, which ranged from 0.49 
(0.08) to 0.74 (0.12). Heritabilities estimated for body 
weight by Manzanilla-Pech et al. (2016) were similar to 
those estimated for MBW in our study. Similarities be-
tween heritability estimates for body weight and MBW 
are expected, as MBW is a function of body weight 
(MBW = body weight0.75).

The heritability estimates observed in this study 
for gRFI ranged from 0.12 (0.02) to 0.23 (0.07). This 
is in line with previous studies (Tempelman et al., 
2015; Li et al., 2017), which estimated heritabilities 
for gRFI ranging from 0.10 to 0.25. In this context, 
it is important to highlight that previous studies used 
slightly different energy sinks compared with this 

Houlahan et al.: GENETICS OF FEED EFFICIENCY TRAITS ACROSS LACTATION



Journal of Dairy Science Vol. TBC No. TBC, TBC

study, which included change in body weight, body 
weight, fat-protein corrected milk, and milk energy. Li 
et al. (2018) found a tertiary shape in the heritability 
curve for gRFI throughout a 305-d lactation using a 
fifth-order Legendre polynomial, whereas Tempelman 
et al. (2015) showed varying shapes in the heritability 
curve, depending on the data considered using a third-
order Legendre polynomial. The heritability curve in 
this study was similar to the curve based on data from 
the Netherlands presented in Tempelman et al. (2015).

Correlations

All traits within this study are controlled by biologi-
cal processes, with some evidence that these traits have 
different regulatory control affecting them through 
lactation, leading to a change in the observed phe-
notype across lactation stages (Strucken et al., 2015; 
Krattenmacher et al., 2019). Most notably, it has been 
suggested that feed intake is a genetically different trait 
at various stages of lactation (Liinamo et al., 2012; Li 
et al., 2018). To identify these biological patterns across 
the lactation, we investigated the changes in genetic 
and phenotypic correlations over time within a trait. 
Due to the large standard errors of the estimated cor-
relations between-traits, only their trends and potential 
biological reasons will be discussed.

Within Trait Correlations

Additive Genetic Correlations. The current 
study found variation within DMI when comparing 

early (WOL 1 to 8; ~5 to 56 DIM), mid (WOL 9 to 23; 
~70 to 154 DIM), and late lactation (WOL 24 to 43; 
~168 to 305 DIM) (Figure 3A). Additive genetic cor-
relations for DMI were, as expected, stronger for WOL 
close to each other. For instance, correlations ranged 
between 0.31 (0.17) for weeks far apart (e.g., WOL 1 
(5 DIM) and WOL 43 (305 DIM)) to 0.99 (<0.01) for 
weeks close together (e.g., WOL 6 and WOL 7; 42 to 
49 DIM). When comparing the genetic correlations 
between early lactation and mid and late lactation, 
correlations decreased as cows moved through the lac-
tation. This decrease of genetic correlations from early 
to late lactation, especially moderately low genetic cor-
relations between early and late lactation for DMI, has 
been reported in previous studies (Karacaören et al., 
2006; Manzanilla-Pech et al., 2014a; Li et al., 2018). 
Similar to the results presented by Krattenmacher et 
al. (2019), genetic correlations between early and mid-
lactation were moderate, with an average correlation of 
0.66 (0.06). The results of this study supported the con-
cept that DMI is a genetically different trait at various 
stages of lactation (Berry et al., 2007; Liinamo et al., 
2012; Li et al., 2018). Multiple measures of DMI should 
be taken throughout the lactation, either directly or 
using proxies, to allow including this trait in the breed-
ing goal and to ensure accurate predictions (Liinamo et 
al., 2012; Krattenmacher et al., 2019). Results of this 
study are in line with previous studies; however, it is 
important to use caution when interpreting the results 
at the extremes of the lactation period (very early and 
very late lactation), due to the limited amount of data 
at these time points. Further to this point, relationship 
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Figure 2. Heritabilities estimated for dry matter intake, energy corrected milk, metabolic body weight, and feed efficiency over the first 
lactation. Shadowing indicates the standard error of the estimates.
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between the extremes of the lactation had standard er-
rors upwards of 0.17. Nevertheless, it is still relevant 
to observe the relationship of gRFI and its underlying 
traits throughout lactation when implementing gRFI 
into breeding programs, as also reported by Khanal et 
al. (2022).

Like DMI, variation in correlation between stages of 
lactation were observed for gRFI (Figure 3D), ranging 
from 0.04 (0.16) to 0.99 (0.01). The lowest correlations 
were observed between early and mid-lactation. Li-
inamo et al. (2015) reported similar results, where the 
lowest correlations were observed within mid-lactation, 
however strong correlations were observed in the later 
stages of lactation. Li et al. (2017) reported a more uni-

form pattern of correlations throughout the lactation, 
although weaker correlations were observed between 
early and mid to late lactation, which is in line with the 
results of the current study. The results of this study 
are further supported by Nehme Marinho et al. (2021).

The genetic correlation estimates over lactation for 
ECM did not have the same variation as those observed 
for DMI or gRFI, being relatively stable across the 
lactation (Figure 3B). Correlations ranged from 0.72 
(0.06) between mid and late lactation to 0.99 (<0.01) 
between close WOL. Li et al. (2018) reported moderate 
correlation (0.50) between early and late lactation, and 
Krattenmacher et al. (2019) reported 0.59 as the lowest 
correlation between all weeks in early to mid-lactation. 
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Figure 3. Heat map of within-trait genetic correlations over the first lactation for: A) dry matter intake (DMI; standard errors between < 
0.01 and 0.17); B) energy corrected milk (ECM; standard errors between < 0.01 and 0.10); C) metabolic body weight (MBW; standard errors 
between < 0.01 and 0.04); and D) feed efficiency (gRFI; standard errors between < 0.01 and 0.22) across the lactation. Axes labels run from 7 
to 301 DIM (each pixel represents one week of lactation).
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Manzanilla-Pech et al. (2014) reported correlations > 
0.80 between most of the weeks of lactation, with some 
negative correlations reported in early (before 50 d in 
milk) and very late (after 300 d in milk) lactation. The 
negative correlations reported in Manzanilla-Pech et al. 
(2014) at the extreme ends of the lactation were not 
found in the current study. While there is more unifor-
mity in correlations across the lactation compared with 
DMI, ECM still showed variation within the lactation. 
It is important to consider how ECM changes with 
various stages of lactation, as timing of trait assessment 
within the lactation could have important implications 
in selection to improve milk production and gRFI.

Like ECM, MBW had more consistent correlations 
throughout the lactation compared with DMI (Figure 
3C). Genetic correlations between stages of lactation 
were between 0.53 (0.04) and 0.99 (<0.01). The mini-
mum correlation observed (0.53 (0.04)) was estimated 
between WOL 23 and the last WOL. Previous studies 
considered body weight instead of MBW, with similar 
estimates reported. For instance, Li et al. (2018) re-
ported the correlation for body weight between WOL 
as the most consistent when compared with DMI and 
ECM. They reported the genetic correlation equal to 
or greater than 0.74 (0.08) for time points throughout 
the lactation. More in line with the results presented in 
our study, Liinamo et al. (2012) and Manzanilla Pech 
et al. (2014) also found body weight to be a more uni-
form trait across lactation, where the minimum genetic 
correlations observed were 0.60 and 0.69, respectively. 
Since MBW has moderate to strong genetic correla-
tions across the lactation, the need for measurements 
at multiple time points is not as critical as for DMI. 
However, it is important to consider that a change in 
body weight across the lactation can have implications 
regarding gRFI, animal health, and performance.

Phenotypic Correlations. Phenotypic correlations 
estimated between WOL varied across lactation for all 
traits (Figure 4). Phenotypic correlations ranged from 
0.21 (0.02) to 0.84 (0.01) for DMI, 0.25 (0.02) to 0.81 
(0.01) for ECM, 0.53 (0.02) to 0.96 (0.01) for MBW, 
and −0.05 (0.03) to 0.75 (0.01) for gRFI. Following the 
trends observed for the additive genetic correlations, 
and as expected, phenotypic correlations were strongest 
between WOL closest together and weakest between 
WOL far apart. Phenotypically, DMI appears to be re-
lated through low to moderate correlations throughout 
the lactation, which supports that DMI should be con-
sidered as different traits at various lactation stages. 
This phenomenon was also reported by Seymour et al. 
(2020), as they observed that feed intake is dynamic 
and changes daily. This dynamic behavior of DMI can 
also be extrapolated to gRFI, as the phenotypic behav-
ior of DMI influences phenotypic behavior of gRFI. As 

expected, the phenotypic correlations between WOL for 
ECM and MBW had weaker correlations in the early 
part of lactation with the end of lactation.

Between-Trait Correlations

Additive Genetic Correlations. Additive genetic 
correlations estimated between traits varied in differ-
ent stages of lactation (Figure 5). The trend of weak 
correlations between feed intake (DMI) and production 
(ECM) in early lactation (Figure 5A), increasing to 
moderate or high correlations by mid to later lactation, 
has been shown in other studies (Liinamo et al., 2012; 
Manzanilla-Pech et al., 2014a; Li et al., 2018; Kratten-
macher et al., 2019). These same trends were observed 
between ECM and gRFI (Figure 5E) in this study. It is 
important to note that the genetic correlations between 
ECM and gRFI within a given week were zero, which 
was expected based on the definition of gRFI. These 
weak correlations within the early part of lactation 
can be due to feed intake not meeting the demand for 
milk production. The transition to stronger positive 
correlations as the lactation progresses coincided with 
the points of lactation where the intake meets produc-
tion demand (Liinamo et al., 2012). Additionally, the 
correlations observed in early lactation suggest that 
selecting to increase ECM would have a small change 
on DMI and gRFI. However, an increase in produc-
tion without an increase in DMI, especially in early 
lactation, has the potential to extend negative energy 
balance (Buttchereit et al., 2011; Li et al., 2018). An 
extension of negative energy balance has many unfavor-
able effects, most notably related to health and fertil-
ity (Veerkamp et al., 2000; Banos and Coffey, 2010). 
Therefore, selecting to improve feed efficiency while 
increasing milk production should be avoided in early 
lactation.

The genetic correlation between MBW and ECM 
(Figure 5D) further highlights the change in the alloca-
tion of energy throughout lactation. In this study, the 
genetic correlations between MBW and ECM ranged 
from −0.19 (0.11) to 0.21 (0.13), with low positive 
correlations in early lactation moving to low negative 
correlations in late lactation. Li et al. (2018) also re-
ported low positive correlations in early lactation, sug-
gesting that larger cows have a greater capacity for 
milk production in early lactation. The rapid change in 
correlations to weak negative correlations observed in 
this study might suggest that the animals’ metabolism 
changes to put on weight during the later stages of 
lactation, as milk production declines and pregnancy.

The genetic relationship between DMI and MBW 
(Figure 5B) varies throughout lactation. The correla-
tions ranged from −0.01 (0.13) in late lactation to 0.69 

Houlahan et al.: GENETICS OF FEED EFFICIENCY TRAITS ACROSS LACTATION



Journal of Dairy Science Vol. TBC No. TBC, TBC

(0.13) in early to mid-lactation. A similar pattern was 
observed with correlations between gRFI and MBW, 
which ranged from −0.20 (0.11) in early to mid-lacta-
tion, to 0.26 (0.13) late-lactation. Again, it is important 
to note that the genetic correlations between gRFI 
and MBW within each WOL were zero, which was as 
expected due to the definition of gRFI. Hüttmann et 
al. (2009) found weak correlations after calving with a 
slight increase throughout lactation, while Manzanilla-
Pech et al. (2014) and Li et al. (2018) reported the 
highest correlation in early lactation (wk 4 and 7, re-
spectively), and correlations weakening throughout the 
lactation. These changes in correlations suggest that 
increasing intake in the early stages of lactation will 
improve MBW in the early part of lactation, however, 

it may have negative implications in the later stages of 
lactation.

The genetic correlations estimated between traits 
over time indicate that potentially different metabolic 
mechanisms are active between stages of lactation (Li-
inamo et al., 2012; Manzanilla-Pech et al., 2014a; Li 
et al., 2018). Due to the changes in these correlations 
throughout lactation, it is important to consider differ-
ent stages of lactation separately, and to consider all 
traits simultaneously in a selection program. Under-
standing the relationship between DMI, MBW, ECM, 
and gRFI and traits such as energy balance and body 
condition score is important for an integrated and suc-
cessful approach to breeding for gRFI.
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Figure 4. Heat map of the within-trait phenotypic correlations over the first lactation for: A) dry matter intake (DMI; standard errors 
between 0.01 and 0.05); B) energy corrected milk (ECM; standard errors between 0.01 and 0.03); C) metabolic body weight (MBW; standard 
errors between 0.01 and 0.06); and D) feed efficiency (gRFI; standard errors between 0.01 and 0.10) across the lactation. Axes labels run from 
7 to 301 DIM (each pixel represents one week of lactation).
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Phenotypic Correlations

Between-trait phenotypic correlations were low over 
lactation for all traits. Correlations estimated between 
DMI and ECM (Figure 6A) ranged from 0.06 (0.10) in 
early lactation to 0.52 (0.06) in late lactation. The low 
phenotypic correlations observed in early lactation may 
suggest that intake does not meet demands for milk 
production in early lactation. Phenotypic correlation 
estimates between MBW and ECM (Figure 6D) ranged 
from −0.16 (0.18) to 0.25 (0.13); indicating that these 
traits are generally unrelated phenotypically. Pheno-
typic correlations between DMI and MBW (Figure 6B) 
ranged from 0.04 (0.13) to 0.38 (0.05). Phenotypic cor-
relations between gRFI and MBW, and between gRFI 
and ECM were relatively low for all WOL, ranging 
from −0.17 (0.10) to 0.16 (0.14) for gRFI and MBW 
and −0.24 (0.08) to 0.14 (0.11) for gRFI and ECM. 
However, DMI and gRFI (Figure 6C) had strong posi-
tive correlations in the same and similar WOL, but all 
other WOL had weak correlations. This could reflect 
the dynamic phenotypic behavior of DMI and its influ-
ence on gRFI.

The results of this study provide a deeper look into 
how the genetic parameters of traits associated with 
gRFI change over time. That said, it is important to 

note that more data from first lactation and from later 
lactations should be included in subsequent analyses. 
Additional traits, such as change in body weight, should 
also be considered in the definition of gRFI to provide a 
more complete picture of the biology behind the trait, 
as also suggested in Islam et al. (2020) and Khanal 
et al. (2022). As research continues, the data available 
for these types of analyses will continue to grow. This 
study provides the groundwork for these methods to be 
developed further as the database expands.

CONCLUSIONS

The results presented in this study provide an insight 
into the dynamic behavior of phenotypic and genetic 
parameters of DMI, ECM, MBW, and gRFI when as-
sessed throughout lactation. Genetic parameters esti-
mated in this study changed over time, highlighting 
the need to consider how the traits change throughout 
lactation and consider multiple time points when col-
lecting data and performing genetic evaluations. To 
validate the results of this study and gain a deeper 
understanding of the changes that happen within DMI, 
ECM, MBW, and gRFI throughout a lactation, future 
studies with a larger population should be conducted 
exploiting available genomic information.
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Figure 5. Heat map of the genetic correlations between traits over the first lactation (days in milk from 1 to 305 running left to right and 
top to bottom). Pair of traits analyzed are: A) dry matter intake and energy corrected milk (DMI and ECM; standard errors between 0.04 and 
0.17); B) dry matter intake and metabolic body weight (DMI and MBW; standard errors between 0.05 and 0.14); C) dry matter intake and 
feed efficiency (DMI and gRFI; standard errors between 0.05 and 0.17); D) energy corrected milk and metabolic body weight (ECM and MBW; 
standard errors between 0.05 and 0.17); E) energy corrected milk and feed efficiency (ECM and gRFI; standard errors between 0.02 and 0.20); 
and F) metabolic body weight feed efficiency (MBW and gRFI; standard errors between 0.07 and 0.19). Axes labels run from 7 to 301 DIM 
(each pixel represents one week of lactation).
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