
ABSTRACT

The Resilient Dairy Genome Project (RDGP) is an 
international large-scale applied research project that 
aims to generate genomic tools to breed more resilient 
dairy cows. In this context, improving feed efficiency 
and reducing greenhouse gases from dairy is a high pri-
ority. The inclusion of traits related to feed efficiency 
(e.g., dry matter intake [DMI]) or greenhouse gases 
(e.g., methane emissions [CH4]) relies on available gen-
otypes as well as high quality phenotypes. Currently, 7 
countries, i.e., Australia [AUS], Canada [CAN], Den-
mark [DNK], Germany [DEU], Spain [ESP], Swit-

zerland [CHE], and United States of America [USA] 
contribute with genotypes and phenotypes including 
DMI and CH4. However, combining data is challenging 
due to differences in recording protocols, measurement 
technology, genotyping, and animal management across 
sources. In this study, we provide an overview of how 
the RDGP partners address these issues to advance 
international collaboration to generate genomic tools 
for resilient dairy. Specifically, we describe the current 
state of the RDGP database, data collection protocols 
in each country, and the strategies used for managing 
the shared data. As of February 2022, the database 
contains 1,289,593 DMI records from 12,687 cows and 
17,403 CH4 records from 3,093 cows and continues to 
grow as countries upload new data over the coming 
years. No strong genomic differentiation between the 
populations was identified in this study, which may 
be beneficial for eventual across-country genomic 
predictions. Moreover, our results reinforce the need 
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to account for the heterogeneity in the DMI and CH4 
phenotypes in genomic analysis.
Keywords: resilience, feed efficiency, dairy cattle 
breeding, methane, dry matter intake

INTRODUCTION

Dairy farming success relies on the ability of cows 
to produce milk, while minimizing environmental im-
pact, as well as enhancing animals’ health and welfare, 
within socially acceptable standards (Cardoso et al., 
2016; Brito et al., 2021). Breeding goals in dairy cattle 
have thus shifted from a focus on production to a more 
balanced and comprehensive goal with emphasis on 
traits related to longevity, fertility, calving, health and 
welfare, workability, milk quality, environmental effi-
ciency, and overall resilience (Calus et al., 2013; Miglior 
et al., 2017; Mulder and Rashidi, 2017; Herzog et al., 
2018; Berghof et al., 2019; Seymour et al., 2019; König 
and May, 2019; Adriaens et al., 2020; Brito et al., 2021; 
Manzanilla-Pech et al., 2021; Ouweltjes et al., 2021; 
Zhang et al., 2022). In Canada, the Resilient Dairy Ge-
nome Project (RDGP; http:​/​/​www​.resilientdairy​.ca) 
is a continuation of the Efficient Dairy Genome Project 
(EDGP; https:​/​/​genomedairy​.ualberta​.ca/​). The over-
arching goal of the RDGP is to generate genomic tools 
to breed more resilient dairy cows. Resilience can be 
defined in different ways (Colditz and Hine, 2016), but 
within the RDGP it is defined as the capacity of the 
animal to adapt rapidly to changing environmental con-
ditions, without compromising its productivity, health 
or fertility while becoming more resource-efficient and 
reducing its environmental burden.

Within this context, 2 main components that play 
a crucial role are feed efficiency and CH4 emissions. 
Feed accounts for the largest proportion of operational 
costs in a dairy farm. Additionally, CH4, formed dur-
ing enteric fermentation, is a source of feed energy 
loss (Johnson et al., 1994) and a major greenhouse 
gas. While CH4 has a 28 times greater global warming 
potential than carbon dioxide (CO2), it has a shorter 
half-life, which may reduce its overall impact on global 
warming (IPCC, 2014; Knapp et al., 2014; Liu et al., 
2021). While the relationship between feed efficiency 
and CH4 emissions is not fully elucidated (Løvendahl et 
al., 2018), evidence suggests that genetic improvements 
in feed efficiency could reduce methane emissions (Yan 
et al., 2010; Waghorn and Hegarty, 2011; Basarab et 
al., 2013; Hayes et al., 2013; Knapp et al., 2014; Dif-
ford et al., 2020; Manzanilla-Pech et al., 2021). This 
simultaneous benefit can be achieved when nutrient 
utilization is optimized to achieve a greater productive 
output per animal (under the same input) and fewer 
animals are needed to produce the same amount of milk 

(Knapp et al., 2014). Furthermore, producers’ profit 
can be maximized not only by saving on feed costs, 
but through financial benefits provided by, for example, 
governmental programs related to emissions trading 
markets (Zhang et al., 2021).

Improvements in feed efficiency and methane emis-
sion through selective breeding are permanent and 
cumulative (Lassen and Difford, 2020; de Haas et al., 
2021); however, results depend on several factors such 
as trait definitions, economic weights, and selection 
strategies used in breeding programs (González-Recio 
et al., 2020; de Haas et al., 2021; Houlahan et al., 
2021; Manzanilla-Pech et al., 2021). Moreover, there 
is a need for clearly defined and standardized pheno-
types that can be cost-effectively recorded on a large 
number of animals, which is especially challenging for 
traits related to feed efficiency and methane emissions. 
Advancements in genomics allow breeding values to be 
accurately predicted for selection candidates without 
phenotypes, if a sufficiently large and diverse training 
population is available (Miglior et al., 2017). For in-
stance, it has been suggested that a training population 
of over 30,000 animals is needed to achieve desired reli-
abilities for feed efficiency related traits such as residual 
feed intake (reviewed by Brito et al., 2020). Similarly, 
de Haas et al. (2021) suggested that methane records 
would be needed for an average of 150 cows at over 
100 farms for a minimum of 2 years to achieve desired 
reliabilities for genomic predictions.

The size of the training population for feed efficiency 
and methane emissions can be increased through col-
laboration at national and international levels (Berry 
et al., 2014; de Haas et al., 2015; Tempelman et al., 
2015; Lassen and Difford, 2020; Manzanilla-Pech et al., 
2021). Consequently, several major countries, including 
Australia, United States of America, Denmark, Nor-
way, Finland, Sweden, New Zealand, The Netherlands, 
United Kingdom, and Canada, have now included feed 
efficiency as a selection criterion in their breeding pro-
grams (reviewed by Brito et al., 2020; Houlahan, 2021; 
Stephansen et al., 2021). In contrast, to the best of our 
knowledge, no official genomic evaluations have been 
performed for methane emissions yet despite on-going 
efforts (González-Recio et al., 2020; Manzanilla-Pech et 
al., 2021; Richardson et al., 2021b). Australia recently 
released a Sustainability Index which does not include 
methane directly, but instead places emphasis on traits 
associated with methane emissions (Richardson et al., 
2021a). Moreover, Canada has launched the first offi-
cial genomic evaluation for methane efficiency in April 
2023, but using an approach that predicts methane us-
ing a relatively small reference population and artificial 
neural networks (Lactanet Canada, 2023). This is likely 
due to the difficulty in collecting these data but also 
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because methane emissions currently have little direct 
economic value to farmers (Boaitey et al., 2019; Lassen 
and Difford, 2020), which is expected to change in the 
next few years as several global initiatives are being im-
plemented to reduce greenhouse gas emissions (Global 
Dairy Platform, 2021; Dairy Farmers of Canada, 2022; 
Oliveira et al., 2022a).

A larger training population can increase the accu-
racy of genomic estimated breeding values and enable 
genetic progress for feed efficiency and methane emis-
sion traits worldwide. One of the specific objectives 
within the RDGP is to enlarge the training population 
for genomic evaluations of feed efficiency and methane 
emissions by expanding on the international database 
established as part of the EDGP. Currently, 7 countries 
namely Australia [AUS], Canada [CAN], Denmark 
[DNK], Germany [DEU], Spain [ESP], Switzerland 
[CHE], and United States of America [USA] have 
contributed with genotypes and phenotypes for feed 
efficiency and methane emissions. However, combin-
ing data is challenging due to differences in recording 
protocols, measurement technology, genotyping (e.g., 
densities of single nucleotide polymorphism [SNP] pan-
els), management and nutrition across data sources (de 
Haas et al., 2015; Hristov et al., 2018; Manzanilla-Pech 
et al., 2021). The aim of this study was to overcome 
these obstacles and provide the basis for future research 
and genomic evaluations using data contributed by the 
partners in this project. More specifically, this study 
aimed to: 1) describe the data currently available in the 
RDGP database, as well as the data collection protocols 
in each country; and 2) define the methods currently 
used for managing the shared data.

MATERIALS AND METHODS

Data Collection

Data were collected as part of the global Resilient 
Dairy Genome Project (2020 to 2023, http:​/​/​www​
.resilientdairy​.ca/​), which is a continuation of the Ef-
ficient Dairy Genome Project (2015 to 2020, https:​/​
/​genomedairy​.ualberta​.ca/​). All traits were collected 
from dairy herds of research or commercial partners in 
Australia (1 herd), Canada (3 herds), USA (8 herds), 
Denmark (1 herd), Switzerland (2 herds), Germany (5 
herds), and Spain (22 herds). Thus, data were provided 
from experiments according to local guidelines and 
regulations. The database built through this project 
is updated with new data 3 times per year to align 
with national evaluations, and hence, it is continuously 
expanding. The data presented here consist of the last 
extraction in February 2022. Data consist of pedigree, 
calving, production, feed efficiency, environmental 

emissions, genotype, and milk mid-infrared spectral 
files and are merged to provide a database containing 
all records from each country. One record could be up-
loaded for each individual cow on a specific date, with 
countries providing daily, weekly, or monthly averages 
depending on the data collection methods as described 
further.

The main traits recorded in the database include 
among others milk yield (MY, g), fat yield (FY, g), 
protein yield (PY, g), lactose yield (LY, g), somatic 
cell count (SCC, 103/mL divided by 1,000), milk urea 
nitrogen (MUN, g), milk β hydroxybutyrate (BHB, 
mmol/L multiplied by 1,000), milk mid-infrared spectral 
data (MIR, cm−1), dry matter intake (DMI, g/day), 
body weight (BW, kg), body condition score (BCS, 
1 to 5 scale), CH4 emission (g/day), and CO2 emission 
(g/day). Units provided are those as required in the 
database to ensure standardized traits. The number of 
cows for each trait provided by each country is shown 
in Figure 1. In order, traits with the total number of 
cows decreased from MY (15,577), PY (15,333), FY 
(15,332), DMI (12,687), BW (12,250), SCC (11,727), 
LY (11,474), BCS (8,476), MUN (8,153), CH4 (3,093), 
MIR (3,015), BHB (2,238), to CO2 (814).

Detailed information on data collection of all traits 
for each herd in the different countries is described in 
the Supplementary Material I. While some countries 
collected data on different cattle breeds, only data on 
Holstein dairy cows is considered in this paper. A gen-
eral overview of the housing, management, and data 
collection in each country is shown in Table 1. With the 
exception of one herd in AUS and ESP who kept cows 
predominantly on pasture, all cows were housed indoors 
and on a partial or total mixed ration. Animals were 
milked using standard commercial practices i.e., 2 to 3 
times a day in a parlor setting, or through a voluntary 
milking system (robot).

A main area of research within the RDGP is the 
genetic evaluation of feed efficiency and CH4 emissions 
traits, and thus for conciseness, we will only discuss 
these 2 traits within this paper. Feed intake and CH4 
emission data were collected from 24 and 20 herds, 
respectively. Dry matter intake data collection ranged 
from 30 d before calving to 305 d in milk (DIM), while 
CH4 emission data were collected only for lactating 
animals. Some countries focused on specific parities or 
time points within the lactation, while others collected 
data spanning the entire 305-d lactation in primiparous 
and multiparous cows (Supplementary Material I). 
All animals had ad libitum access to feed and water. 
Feed intake data were collected through a variety of 
methods. These methods included automated data col-
lection (Insentec Roughage Intake Control feed bunks, 
Hokofarms Group B.V., Marknesse, The Netherlands; 
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GrowSafe ® dairy feed intake system, GrowSafe 
Calgary, Alberta, Canada; Waagen Döhrn, Wesel, 
Germany; and Landtechnick Weihenstephan, Weihen-
stephan, Germany) and manual weights, where feed 
offered was weighed at the time of feeding and the feed 
refused was weighed 24 h later with cows in tie-stall 
barns or in freestall barns equipped with individual 
feeding gates (e.g., American Calan Inc., Northwood, 
NH). Methane emissions were collected using 4 differ-
ent methods, including respiration chambers (CHE), 
GreenFeed (C-Lock Inc., Rapid City, SD, USA; CAN, 
CHE and USA), sniffers (DNK and ESP), and modified 
SF6 tracer (AUS and CHE). All countries uploaded 
CH4 production in g/d as the final trait. Depending 
on the herd, measurements could be taken at differ-
ent frequency, with most of the herds collecting data 
daily during specific periods within a lactation (for full 
details see Supplementary Material I). Additionally, it 
should be noted that CHE (CH4), DEU (DMI, BW), 

DNK (DMI, CH4), and ESP (DMI, BW, CH4) reported 
weekly averages.

Pedigree and Genotypes

Pedigree information was traced back to 1940 and 
available for 72,682 animals. Of this, a total of 11,819 
cows were genotyped using 28 different SNP panels. 
The current number of genotyped cows per trait and 
a summary of the SNP panels included in the RDGP, 
split by country, are shown in the Supplementary Ma-
terial II. All SNP marker positions were updated to 
the ARS-UCD1.2 bovine reference genome assembly 
(Rosen et al., 2020). Concordance between SNP panels 
used in the different countries was evaluated based on 
the Pearson correlation coefficient of allele frequencies, 
using the SNPs in common across all SNP panels (n 
= 3,888 SNPs) that remained after the quality control 
(as described in the “Genotypic quality control” topic). 
Allele frequencies were calculated using the–freq flag 
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Figure 1. Number of cows provided for each trait by each country at the end of February 2022. Countries: Australia (AUS), Canada (CAN), 
Switzerland (CHE), Germany (DEU), Denmark (DNK), Spain (ESP), and United States of America (USA). Production traits: milk yield (MY, 
g), fat yield (FY, g), protein yield (PY, g), lactose yield (LY, g), milk mid-infrared spectral data (MIR, cm-1), somatic cell count (SCC, 103/mL 
divided by 1,000), milk urea nitrogen (MUN, g), and milk β hydroxybutyrate (BHB, mmol/L multiplied by 1,000). Efficiency traits: dry matter 
intake (DMI, g/day), live body weight (BW, kg), body condition score (BCS, 1–5 score), methane emission (g/day), carbon dioxide emission 
(CO2, g/day).
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available in the PLINK 1.9 software (Purcell et al., 
2007).

Genotype imputation. Imputation of genotypes 
was performed with the objective that all cows in the 
RDGP database had the same SNP density. As most 
cows were genotyped using a version of a 50K SNP 
chip, this was the target density for the imputation 
process. The analyses were divided in 2 steps. First, all 
cows originally genotyped using panels with more than 
45K SNPs were considered as the reference data set, 
comprising of 8,484 animals (approx. 72% of the avail-
able animals). After imputing this reference data set 
to 50K (54,015 SNPs), it was used to bring up lower-
density panels to the same density. Genotype phasing 
and imputation were performed using the BEAGLE 
v5.3 (Browning et al., 2021). BEAGLE is a commonly 
used population-based imputation program (it does not 
rely on pedigree information) that adopts a stochastic 
procedure based on a Hidden Markov Monte-Carlo 
process to infer the probabilities of each haplotype/
genotype. Only autosomes were considered. Imputation 
accuracy was assessed by Pearson correlation between 
imputed and observed genotypes. This was done by set-
ting aside 100 randomly chosen animals that had their 
50K genotypes masked to a lower density panel (i.e., 
7K) of this study. These animals were then imputed 
to their original panel density (i.e., 50K), and the cor-
relations were calculated using only the information of 
imputed markers.

Genotypic quality control. Genotypic quality con-
trol was performed before and after imputation within 
each country. In addition, extra quality control was 
performed considering all animals together, using the 
common SNP panel established. In general, SNPs with 
unknown genomic positions and/or located in the sex 
chromosomes, those with minor allele frequency (MAF) 
lower than 0.05, those with sample or SNP call rate 
lower than 95%, and extreme departure from Hardy 
Weinberg equilibrium (p-value < 10−15) were excluded. 
Genotypic quality controls were performed using the 
PLINK 1.9 software (Purcell et al., 2007). The total 
SNPs and genotyped animals that remained after the 
quality control were 54,015 and 11,580, respectively 
(from which 557 were from AUS, 1,696 from CAN, 132 
from CHE, 441 from DNK, 1,404 from ESP, and 4,409 
from USA).

Population Characterization

To evaluate the level of relatedness between the 
animals in the different countries, the entire population 
was characterized using 2 criteria calculated using the 
imputed genotypes: 1) proximity in the principal com-
ponent analysis (PCA), and 2) consistency of gametic 
phase.

PCA. Principal component analysis was performed 
to investigate the genomic similarities between geno-
typed cows from the different countries, using the–pca 
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Table 1. General overview of housing, management, and data collection of Holstein dairy cows in each country participating in the Resilient 
Dairy Genome Project

  AUS   CAN   CHE   DEU   DNK   ESP   USA

Farm              
Research X X X X X X X
Commercial   X       X  
Housing              
Outdoor X         X  
Tiestall   X X     X X
Freestall   X X X X X X
Parity 1–9 1–10 1–8 1–11 1–6 1–9 1–8
Feed              
Pasture X         X  
Partial mixed ration   X X X      
Total mixed ration   X   X X X X
CH4 method              
Chamber     X        
GreenFeed   X X       X
SF6 X   X        
Sniffer         X X  
Measurement frequency1              
DMI d d d, w d, w2 d, w2 d, w2 d
BW d d, w, m d w2, m2 d d, w2 d, w
CH4 d d d, w2   d, w2 d, w2 d

Countries: Australia (AUS), Canada (CAN), Switzerland (CHE), Germany (DEU), Denmark (DNK), Spain (ESP), and United States of 
America (USA). Dry matter intake (DMI), body weight (BW), methane emission (CH4).
1Frequency of measurement: daily (d), weekly (w), monthly (m).
2Measurements were used to calculate a weekly average which was uploaded to the database.
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flag available in the PLINK 1.9 software (Purcell et al., 
2007). Principal components were estimated based on 
the variance-standardized genomic relationship matrix 
(G), calculated as the first method shown in VanRaden 
et al. (2008).

Consistency of gametic phase. Across pairs of 
markers, genotypes coded as 0, 1, or 2 have a correla-
tion r, which describes linkage disequilibrium (Hill and 
Robertson, 1968). The consistency of phase was mea-
sured as the correlation rho of these correlations r for 
2 countries, across pairs of markers at similar distances 
(de Roos et al., 2008). Negative values imply that the 
most frequent haplotypes have recombined, whereas 
values close to 1 imply that ancestral haplotypes are 
conserved. Both metrics were calculated for the geno-
typed animals using the –r2 and –dprime-signed flags 
available in the PLINK 1.9 software (Purcell et al., 
2007).

Phenotypic Quality Control and Test of Homogeneity

Phenotypic quality control was performed indepen-
dently for each trait within each country. Additional 
quality control on the RDGP database was performed 
to assess homogeneity of the traits. Phenotypes were 
discarded if they were lower or higher than the mean 
± 3.5 standard deviations (SD) within contemporary 
group, or if they were out of a biologically reasonable 
range (e.g., less than 4 or more than 60 kg DMI/day). 
Contemporary groups were defined by the combination 
of herd, year, and season. In addition, it was required 
that each contemporary group contained at least 3 ani-
mals, and that all animals with phenotypic data had 
both birth date and calving date information. Animals 
with age at calving greater than 160 mo were removed 
from the data set.

To assure the homogeneity of the traits (i.e., to con-
firm that similar traits were measured in the differ-
ent countries), possible differences in both means and 
variances among countries were tested using the Alex-
ander-Govern test and the Levene's test, respectively. 
Residuals were estimated after adjusting DMI and CH4 
records for the fixed effects that were significant (P 
< 0.05; i.e., herd-year of calving, year-season of calv-
ing, age at calving nested in lactation, and DIM) and 
used in the tests. Specifically, for DMI, the fixed effect 
of number of milkings per day nested within milking 
program (i.e., 24 h, AM/PM, automated milking ma-
chines, and robots) was also significant and therefore, 
it was included in the statistical model. Residuals were 
assumed independent, and normality was verified using 
the Kolmogorov-Smirnov test.

RESULTS AND DISCUSSION

Pedigree and Genotypes

The majority of sires with daughters with DMI re-
cords had US herd book registration numbers, followed 
by DEU and CAN herd book registrations (Table 2). 
The number of sires shared between countries was 
relatively low (275 shared sires). The pairs of coun-
tries which shared the most sires included DEU-USA, 
CAN-USA, and CAN-DEU which is in line with find-
ings from Weigel et al. (2000). As shown in Table 2, a 
greater exchange of genetic material across countries 
is recommended to increase the genetic connectedness 
between the populations. In this context, the system-
atic use of shared sires could increase relatedness in 
populations, especially between countries with direct 
international trade (Zenger et al., 2007; Mrode et al., 
2009). A better-linked pedigree between countries is 
helpful in accurately estimating genetic parameters 
(Manzanilla-Pech et al., 2021).

The concordance among SNP panels provided by dif-
ferent countries was assessed to determine if genotypes 
included in the data set were coded similarly. This is 
especially important when merging genomic data from 
multiple sources. One of the countries used the oppo-
site reference allele compared with the other countries, 
and this was subsequently corrected. The correlations 
between allele frequencies estimated between countries 
after this correction are shown in Table 3. Among all, 
CHE seems to have the lowest correlation of allele 
frequencies compared with all other pair of countries, 
suggesting that there is simply lower sampling, slightly 
different emphasis on specific traits, or that some al-
leles might not be fixed in the CHE population as they 
are in the Holstein populations from other countries. 
This difference can be due to a variety of factors such 
as differences in selection goals and pressures, and/or 
gene flow. Regardless, correlations were overall high, 
showing that genomic data from different countries can 
be combined once corrected.

Imputation

Genotype imputation is a computational technique 
used to predict missing genotypes in large-scale ge-
nomic data sets. This technique allows to increase the 
density of genetic markers and improve the accuracy of 
genomic prediction models without any economic cost 
(Klímová et al., 2020). As mentioned by VanRaden 
et al. (2023), imputation strategies must balance ac-
curacy with computational costs, while adapting to the 
properties of the input data such as array densities, 
error rates, and population structure. In this study, the 
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overall imputation accuracy estimated was 0.98 ± 0.02, 
which was found to be similar to other recent studies 
using Holstein cattle (e.g., Al-Khudhair et al., 2021). 
Moreover, as expected, imputation accuracy tended to 
increase with higher minor allele frequencies (MAF) 
(Figure 2). However, even with low values of MAF (i.e.: 
< 0.05), the mean imputation accuracy was generally 
high (0.92 ± 0.14).

Population Characterization

PCA. Figure 3 illustrates the results of the principal 
component analysis (PCA) performed on the genomic 
relationship matrix after imputation, with a focus on 
the first 2 principal components. The lack of discernible 
clustering among genotypes from different countries 
indicates that there is considerable genetic similarity 
between Holstein populations across countries. This 
finding suggests that genetic exchange and therefore 
migration has occurred, resulting in the mixing of geno-
types from diverse geographic locations. Furthermore, 
the first and second principal components explained 
20.3% and 6.4% of the total genomic variance, respec-
tively. The proportion of variance explained by the first 
10 principal components is shown in the Supplementary 
Material II.

Consistency of the gametic phase. When mark-
ers are not in the same phase across 2 populations, the 
ability to combine them in the same genomic evalu-
ation is hindered. The consistency of gametic phase 
between different countries is shown in Figure 4. All the 
21 country-pair combinations showed a similar trend 
with higher correlations at shorter distances compared 
with larger distances, as also reported in other studies 
(de Roos et al., 2008; Larmer et al., 2014; Brito et al., 
2017; Oliveira et al., 2020). The lowest consistency of 
gametic phase at the first distance bin (0 to 0.01 Mb) 
were between AUS and ESP (r = 0.68), DNK and ESP 
(r = 0.71) and CAN and ESP (r = 0.75), however, only 
the correlations between AUS – ESP and DNK – ESP 

remained the lowest over nearly all distances. On the 
other hand, the highest values were observed between 
CHE and USA (r = 0.91), DNK and USA (r = 0.89), 
and CHE and DNK (r = 0.87) at the first distance bin 
(0 to 0.01 Mb), with highest correlation being observed 
between DEU and USA across nearly all distances. 
Regardless, all correlations were moderate to high until 
a distance of 0.5 Mb. The correlations reported in the 
current study are in line with those reported by de Roos 
et al. (2008) when comparing Holstein dairy breeds 
from Australia, New Zealand, and the Netherlands.

The moderate-to-high consistency of the gametic 
phase and absence of stratification in the PCA suggests 
that Holstein populations from the countries participat-
ing in the RDGP (i.e., AUS, CAN, DNK, DEU, ESP, 
CHE, and USA) are overall genetically related, which is 
not unexpected due to the export of semen by different 
countries (Zenger et al., 2007). Moreover, our results 
also indicates that somewhat similar selection goals 
have been implemented in all analyzed populations, 
as no major distinction (and/or low consistency of the 
gametic phase) was observed. These results are promis-
ing for the RDGP, as they suggest that a joint genomic 
prediction can likely be successfully implemented for 
novel traits such as DMI and CH4.
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Table 2. Number of sires with daughters with dry matter intake (DMI) records. The number of sires from 
each country with daughters with DMI records are listed on the diagonal, sires shared between countries are 
listed above the diagonal and percentage of sires shared out of the total sires shared (n = 275) are listed below 
the diagonal

  AUS CAN CHE DEU DNK ESP USA

AUS 123 4 1 12 1 3 10
CAN 1.5% 426 8 30 0 15 46
CHE 0.4% 2.9% 152 13 0 3 12
DEU 4.4% 10.9% 4.7% 510 4 15 71
DNK 0.4% 0% 0% 1.5% 142 0 0
ESP 1.1% 5.5% 1.1% 5.5% 0% 311 27
USA 3.6% 16.7% 4.4% 25.8% 0% 9.8% 1,260

Countries: Australia (AUS), Canada (CAN), Switzerland (CHE), Germany (DEU), Denmark (DNK), Spain 
(ESP), and United States of America (USA).

Table 3. Correlations of allele frequencies estimated between the 
different countries after correction to the same reference allele for all 
countries

  AUS CAN CHE DEU DNK ESP USA

AUS 1            
CAN 0.82 1          
CHE 0.70 0.71 1        
DEU 0.83 0.92 0.71 1      
DNK 0.84 0.78 0.65 0.81 1    
ESP 0.85 0.91 0.70 0.89 0.81 1  
USA 0.88 0.94 0.70 0.91 0.86 0.92 1

Countries: Australia (AUS), Canada (CAN), Switzerland (CHE), 
Germany (DEU), Denmark (DNK), Spain (ESP), and United States 
of America (USA).
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Test of Homogeneity

Tests of homogeneity were performed for the main 
traits of interest in the RDGP, namely DMI and CH4. 
Averages of DMI and CH4 (Table 4) were in line with 
previous reported values for the respective countries 
(López-Paredes et al., 2020; Manzanilla-Pech et al., 
2021; Negussie et al., 2022). The variances of DMI and 
CH4 were not homogenous between countries as shown 
by the Levene’s test (DMI: test statistic = 1,236.70, p-
value < 2.2e-16; CH4: test statistic = 296.44, p-value < 
2.2e-16). Consequently, the Alexander-Govern test was 
used to assess differences of means when variances are 
not homogeneous. This showed that DMI (test statistic 
= 18,003.86, p-value = 0) and CH4 emission (test sta-
tistic = 13,223.42, p-value = 0) were different between 
the countries. Similar variability has been reported 
for CH4 emission between different countries (de Haas 
et al., 2012; Tempelman et al., 2015; Negussie et al., 
2022). Our finding is therefore perhaps not surprising 
considering e.g., the different data collection protocols 
(Supplementary Material I), but it does highlight the 
importance of ensuring homogeneity of any trait be-
fore further analyses. If traits are determined to not 
be homogenous, standardization of traits is required 
(de Haas et al., 2012) or heterogeneity accounted for 
through different modeling approaches (Tempelman et 
al., 2015).

It is important to highlight, however, that estimating 
the genetic correlations across countries is the preferred 
method to accurately discern the extent of genetic simi-
larity among traits recorded in different countries. Nev-
ertheless, in this study, the restricted number of cows 
assessed for specific traits makes accurate estimations 
of genetic correlations for some pairs of countries and 

traits difficult. Consequently, combining all countries in 
a single training population may provide benefits. This 
is a question that requires further research.

Practical Implications

International collaboration has increased the size and 
quality of the available reference population for traits 
related to feed efficiency and methane emissions. Sev-
eral countries participant in the RDGP either already 
include foreign data in their genetic evaluations for feed 
efficiency (e.g., CAN and USA) or are in the process 
of evaluating the inclusion of foreign data (e.g., CHE 
and DEU). The international exchange has improved 
the actual progress toward the launch of feed efficiency 
across many project partners, while the increase in data 
on methane emissions is paving the way for the de-
velopment of new evaluations for this important trait. 
Through this process, genetic solutions can contribute 
to the selection of dairy cows that are more resource 
efficient and have a lower environmental burden.

CONCLUSIONS

In this study, a complete overview of the data col-
lection protocols used in each partner country and the 
current state of the RDGP database was provided. 
Strategies used for managing the shared data were de-
scribed, and some descriptive genomic and phenotypic 
analyses were presented. In this context, our results 
suggested that there is no strong genomic differentia-
tion between the Holstein populations involved, which 
may be beneficial for potential across-country genomic 
predictions. Moreover, our results reinforce the need for 
accounting for the heterogeneity in the DMI and CH4 
phenotypes in genomic analysis.
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