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ABSTRACT: Identifying innovative fragments for drug design can help
medicinal chemistry address new targets and overcome the limitations of
the classical molecular series. By deconstructing molecules into ring
fragments (RFs, consisting of ring atoms plus ring-adjacent atoms) and
acyclic fragments (AFs, consisting of only acyclic atoms), we find that
public databases of molecules (i.e., ZINC and PubChem) and natural
products (i.e., COCONUT) contain mostly RFs and AFs of up to 13
atoms. We also find that many RFs and AFs are enriched in bioactive vs
inactive compounds from ChEMBL. We then analyze the generated
database GDB-13s, which enumerates 99 million possible molecules of
up to 13 atoms, for RFs and AFs resembling ChEMBL bioactive RFs and AFs. This analysis reveals a large number of novel RFs and
AFs that are structurally simple, have favorable synthetic accessibility scores, and represent opportunities for synthetic chemistry to
contribute to drug innovation in the context of fragment-based drug discovery.

■ INTRODUCTION
Medicinal chemistry becomes an increasingly retrospective
activity as public databases such as PubChem1 and ChEMBL2

list increasing numbers of known drug-like molecules and their
biological activity, from which new analogues can be derived.
Nevertheless, introducing chemical novelty in new drugs is
important because it can help to address new target types and
overcome the limitations of classical molecular series in terms of
physicochemical properties, selectivity, toxicity, and metabo-
lism, as well as to secure intellectual property and the possibility
of commercial development.3−6 Currently, innovation focuses
on exploiting very large libraries of screening compounds
obtained by combining known building blocks using known
chemistry.7,8 These libraries contain billions of molecules, as in
ZINC9 or the Enamine REAL database,10,11 up to hundreds of
billions of molecules in DNA encoded libraries,12−15 or even
much larger numbers of peptides and cyclic peptides in phage or
ribosome display libraries.16,17 Such molecules often break
Lipinski’s rule of five but can nevertheless be developed as
drugs.18,19

Despite the impressive numbers of molecules in the above-
mentioned databases, these molecules are obtained by
combining a limited set of building blocks, typically up to
thousands (only 20 for genetically encoded peptides), which
severely limits fragment diversity. With respect to fragments, an
additional, potentially more important, but mostly unexploited
reservoir of novelty exists in the generated databases (GDBs),
which systematically enumerate molecules of up to 11, 13, or 17
non-hydrogen atoms (heavy atom count (HAC) = 11, 13, or 17)
from mathematical graphs using simple rules of chemical
stability and synthetic feasibility.20−23 For instance, the GDBs

feature molecules with many unprecedented molecular frame-
works (graphs including rings and linker bonds).24,25

Here, we propose an approach to identify novel fragments
from the GDBs that could be useful for drug design by taking the
accumulated knowledge of bioactive compounds into account
through an analysis of fragments. First, we assess the known
chemical space by deconstructing molecules in the public
databases ZINC (screening compounds),9 PubChem (pub-
lished molecules),1 and COCONUT (natural products and NP-
like molecules)26 into ring fragments (RFs, obtained by
removing all atoms not directly connected to a ring) and acyclic
fragments (AFs, obtained by removing all ring atoms) (Figure
1). This fragmentation is inspired by computational retro-
synthetic analyses such as RECAP,27 rdScaffoldNetwork,28

DAIM,29 BRICS,30 CCQ,31 eMolFrag,32 molBLOCKS,33 or
Fragmenter.34 In the present context, our deconstruction into
RFs and AFs is designed to simplify molecules and focus on
structural types. Interestingly, most molecules in ZINC,
PubChem, and COCONUT break down into RFs and AFs of
13 atoms or less.
In the second part of our approach, we identify RFs and AFs

which are strongly enriched in bioactivity compared to inactive
molecules in ChEMBL (target annotated compounds)2 and
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search for analogues of these fragments in RFs and AFs derived
from the generated database GDB-13s.25 This database is a 10%
subset of the database GDB-13,20 which lists 970 million small
molecules of up to 13 atoms exhaustively enumerated from
mathematical graphs following the simple rules of chemical
stability and synthetic feasibility. While GDB-13 excludes
strained rings (e.g., cubane and prismane) and hydrolytically
labile and reactive functional groups (e.g., hemiacetals, aminals,
enols, acyl chlorides, isocyanides, peroxides, azides, and thiols)
and only considers C, N, O, S, and Cl as elements, GDB-13s
additionally excludes non-aromatic olefins, acetals, enol ethers,
aziridines, and aldehydes, which only rarely occur in drug
molecules. Nevertheless, GDB-13s contains many unprece-
dented molecular frameworks (graphs including rings and linker
bonds).24,25 In the present analysis, we find that many of the
bioactive-like RFs and AFs identified in GDB-13s are
structurally relatively simple and have favorable synthetic
accessibility scores (SAscores)35 and therefore represent
opportunities for synthetic chemistry to contribute to drug
innovation in the context of fragment-based drug discovery.36,37

■ RESULTS AND DISCUSSION
Fragment Analysis of KnownMolecules and GDB-13s.

To assess the known chemical space, we extracted RFs and AFs
from 885 905 524 molecules in the ZINC database,9

100 852 694 molecules of up to 50 non-hydrogen atoms in
PubChem,1 and 401 624 natural products (NPs) and NP-like
molecules in COCONUT.26 We also extracted RFs and AFs
from the 99 394 177 molecules in GDB-13s,25 to be used as a
source of novelty later in the study. In all these databases, the
number of molecules per RF and AF followed a typical power
law distribution, with few RFs and AFs occurring in many
molecules and a relatively large number of RFs and AFs
occurring only once, referred to as singletons (Figures 2a and 2b
and Table 1). The most frequent RFs and AFs in each database
were rather small, featuring mono- and disubstituted benzene
rings and azacycles for RFs in known molecules, cyclopropanes
for RFs in GDB-13s, and single-atom groups for AFs in all
databases (Figures S1 and S2). In fact, although the size
distribution of the compounds, RFs, and AFs in known
molecules extended far beyond 13 atoms (Figures 2c−2f), the
RFs and AFs up to 13 atoms were sufficient to cover most

molecules except for the natural products in COCONUT, which
feature many molecules with RFs larger than 13 atoms (Table 1,
entry numbers 2−4). While fragments shared by the four
databases were often structurally simple, those occurring in only
one of the four databases analyzed (exclusive fragments, eRF
and eAF) were generally more complex, as exemplified by the
most frequent cases (Figures S3 and S4).
Within the space covered by RFs and AFs of up to 13 atoms,

GDB-13s largely outnumbered the known molecules in terms of
RFs, resulting in a high percentage of exclusive RFs (99.2% eRFs
≤ 13 atoms, Table 1, entry number 9). Most AFs ≤ 13 atoms in
GDB-13s were also exclusive (92.7% eAFs ≤ 13 atoms, Table 1,
entry number 15), although the absolute number of AFs in
GDB-13s was comparable to the number of AFs in ZINC and
smaller than the number of AFs in PubChem. In fact, PubChem,
ZINC, and COCONUT also contained many exclusive eRFs ≤
13 atoms and eAFs ≤ 13 atoms, reflecting that the enumeration
of GDB-13s excluded strained rings and certain functional
groups and only considered C, N, O, S, and Cl as elements.
Nevertheless, the above analysis showed that GDB-13s
contained a very large number of both eRFs and eAFs and
could therefore serve as a source of novel RFs and AFs to expand
the space of known molecules.
Comparative Analysis of RFs and AFs in ChEMBL

Active and Inactive Molecules. Aiming to select novel
fragments in GDB-13s by exploiting knowledge on bioactive
compounds, we analyzedmolecules from the ChEMBL database
to test if different RFs and AFs were associated with active or
inactive compounds.2 We selected the 2 136 218 ChEMBL
molecules with an HAC ≤ 50, separated them into 560 230
actives (IC50 or EC50 ≤ 10 μM, ChEMBL_actives) and
1 575 988 inactives (all others, ChEMBL_inactives), and
extracted the corresponding RFs and AFs. For each RF and
AF, we computed its total occurrence as the number of
ChEMBL molecules containing this RF or AF, its relative
occurrence in active molecules (% active) and inactive
molecules (% inactive), and its activity ratio Rbioactive = (%
active)/(% inactive).
A volcano scatter plot of the total occurrence of each RF or AF

as a function of Rbioactive showed that RFs and AFs spanned a
broad range of Rbioactive values and total occurrences (Figures 3a
and 3b). The situation was similar when only fragments of up to

Figure 1. Fragmentation of molecules into ring fragments (RFs) and acyclic fragments (AFs). The general principle is given in the example of the drug
gefitinib. For RFs, acyclic atoms are labeled in red.
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13 atoms were analyzed (Figures 3c and 3d). From this analysis,
we partitioned ChEMBL fragments according to their Rbioactive
values into active (Rbioactive ≥ 4), inactive (Rbioactive ≤ 0.25), or
nonpreferential fragments (intermediate values, Rbioactive ≈ 1).
While the most frequent fragments were small and non-
preferential, many fragments, including all singletons, occurred
exclusively in either the ChEMBL_actives or ChEMBL_inac-
tives subset and were accordingly assigned to either the active
(Rbioactive ≥ 4) or inactive (Rbioactive ≤ 0.25) subset, respectively

(Table 2). The top 10 most frequent active (Rbioactive ≥ 4) and
inactive (Rbioactive ≤ 0.25) RFs and AFs in ChEMBL were all in
the size range of GDB-13s. Four of these top 10 active RFs
featured halogenated benzene rings, while four of the top 10
inactive RFs were saturated heterocycles (Figure S5). For AFs,
fluorine prevailed in four of the top 10 active AFs, while sulfur
occurred in four of the top 10 inactive AFs (Figure S6).
While many RFs and AFs occurred preferentially in either the

ChEMBL_active or ChEMBL_inactive molecules, these frag-

Figure 2. Frequency distribution of (a) ring fragments (RFs) and (b) acyclic fragments (AFs) in ZINC, PubChem, COCONUT, andGDB-13s. Count
of compounds (Cpds), RFs, exclusive ring fragments (eRFs), AFs, and exclusive acyclic fragments (eAFs) in (c) ZINC, (d) PubChem, (e)
COCONUT, and (f) GDB-13s as a function of the heavy atom count (HAC). The curves of RF and AF are depicted thicker than the other curves to
help visualize the distribution in the regions with a high overlap.
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Table 1. Molecule and Fragment Counts in Different Databases

no.a ZINC PubChem COCONUT GDB-13s

1 cpdsb 885 905 524 100 852 694 401 624 99 394 177
2 cpds from RF ≤ 13c 743 430 899 83.9% 68 876 892 68.3% 132 432 33.0% 99 394 177 100%
3 cpds from AF ≤ 13d 818 548 834 92.4% 94 526 506 93.7% 357 976 89.1% 99 394 177 100%
4 cpds from ARF ≤ 13e 678 518 591 76.6% 62 998 179 62.5% 98 990 24.6% 99 394 177 100%
5 RF 2 838 201 9 037 484 115 381 28 246 012
6 eRFf 2 165 176 76.3% 8 139 719 90.1% 45 448 39.4% 28 011 035 99.2%
7 RF, singletong 1 115 630 39.3% 6 111 177 67.6% 78 920 68.4% 23 842 697 84.4%
8 RF ≤ 13h 158 576 5.6% 1 746 923 19.3% 17 211 14.9% 28 246 012 100%
9 eRF ≤ 13i 17 578 0.6% 1 333 179 14.8% 1863 1.6% 28 011 035 99.2%
10 RF ≤ 13, singletonj 58 749 2.1% 1 048 461 11.6% 10 244 8.9% 23 842 697 84.4%
11 AF 2 756 691 5 466 187 45 816 2 640 023
12 eAFf 2 319 553 84.1% 4 722 488 86.4% 18 608 40.6% 2 447 627 92.7%
13 AF, singletong 688 408 25.0% 4 256 810 77.9% 34 243 74.7% 2 576 927 97.6%
14 AF ≤ 13h 338 990 12.3% 2 225 960 40.7% 17 216 37.6% 2 640 023 100%
15 eAF ≤ 13i 145 340 5.3% 1 805 294 33.0% 2131 4.7% 2 447 627 92.7%
16 AF ≤ 13, singletonj 52 606 1.9% 1 535 039 28.1% 9950 21.7% 2 576 927 97.6%

ano. = entry number. bcpds = compounds/molecules. ccpds from RF ≤ 13 = molecules covered by ring fragments (RFs) with a heavy atom count
(HAC) of up to 13. dcpds from AF ≤ 13 = molecules covered by acyclic fragments (AFs) with an HAC of up to 13. ecpds from ARF ≤ 13 =
molecules covered by both RFs and AFs with an HAC of up to 13. feRF/eAF = exclusive RF/AF, absent from the other three databases. gRF/AF,
singleton = RF/AF with only a single molecule example. hRF ≤ 13/AF ≤ 13 = RFs/AFs with an HAC of up to 13. ieRF ≤ 13/eAR ≤ 13 =
exclusive RFs/AFs with an HAC of up to 13, absent from the other three databases. jRF ≤ 13, singleton/AR ≤ 13, singleton = RF ≤ 13/AF ≤ 13
with only a single molecule example. RF and AF subcategories are calculated relative to total RFs and AFs, respectively.

Figure 3. Volcano plots visualizing all active and inactive fragments extracted from ChEMBL. The logarithm value (base 2) of the ratio of the
proportion of fragments in all active molecules to the proportions of fragments in all inactive molecules, namely, log2(% active/% inactive), was plotted
on the x-axis, and the total frequency (the sum of the occurrences of the fragments in active molecules and in inactive molecules) was plotted on the y-
axis. The colors of the data points indicate the heavy atom count (HAC) range of the fragments. Occurrences of fragments that only appeared in
inactive compounds (% active = 0) were displayed vertically in a straight line at the left end of the plot, while occurrences of fragments that only
appeared in active compounds (% inactive = 0) were displayed vertically in a straight line at the right end of the plot.
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ments did not differ strongly from each other or from RFs and
AFs in known molecules (PubChem, ZINC, and COCONUT)
in terms of overall structural features. Indeed, the different data
sets of known molecules had quite similar property profiles for
RFs of up to 13 atoms in terms of the number of rings, the largest
ring size, and the number of acyclic atoms and heteroatoms
(Figures 4a−4d). Similarly, AFs of up to 13 atoms in these data
sets had comparable property profiles concerning the number of
quaternary centers, triple bonds, heteroatoms, and terminal
atoms (Figures S7a−S7d).
On the other hand, the property profiles of GDB-13s RFs and

AFs were clearly different from those of known molecules. For
instance, RFs fromGDB-13s had a broader distribution in terms
of the number of rings and the largest ring size and fewer
heteroatoms than the different RF data sets of knownmolecules.
Furthermore, the GDB-13s AFs stood out with a larger number
of triple bonds and terminal atoms compared to the AF data sets
of known molecules. These differences probably explained the
less favorable synthetic accessibility score (SAscore) of the
GDB-13s RFs and AFs (Figures 4e and S7e).35 Indeed, the
SAscore is based on the presence of substructures frequently
found in knownmolecules. Note that the GDB-13s RFs and AFs
had relatively high natural product likeness scores (NPscores),38

comparable to those of the COCONUT molecules (Figures 4f
and S7f). The high NPscores of the GDB-13s RFs and AFs
probably reflect the high percentage of non-aromatic, stereo-
chemically complex structures in GDB-13s since the NPscore
assigns higher values for the presence of such structural features.
Bioactivity-Guided Selection of RFs and AFs in GDB-

13s. The analysis presented above suggested two possible
approaches to select RFs and AFs from GDB-13s for drug
design. First, the narrower structural parameter ranges covered
by RFs and AFs from knownmolecules, active or inactive, which
correlated with their more favorable SAscores compared to the
GDB-13s RFs and AFs, indicated to select GDB-13s fragments
with limited structural complexity, which would certainly help
with a possible synthesis. Following up on this idea, we selected a

subset of GDB-13s RFs and AFs by constraining the structural
parameters closer to known molecules but considering only
those exclusive to GDB-13s to ensure novelty. To our delight,
this selection resulted in a sizable number of GDB-13s
fragments. Indeed, we obtained 960 587 GDB-13s eRFs with
up to two rings, a ring size up to seven, up to three heteroatoms,
and three acyclic atoms, named RFset1. For the selection of AFs
from GDB-13s, we obtained 462 439 GDB-13s eAFs without
any quaternary center and up to one triple bond, up to four
heteroatoms, and up to four terminal atoms, named AFset1.
In a second, narrower selection, we assumed that ChEMBL-

derived RFs and AFs in the Rbioactive ≥ 4 value range (defined as
active fragments) reflected privileged structural types, while
those in the Rbioactive ≤ 0.25 value range (defined as inactive
fragments) marked undesirable structural types in terms of
possible bioactivities. To expand the scope of the ChEMBL
active fragments, we retrieved all GDB-13s RFs and AFs within a
Jaccard distance dJ ≤ 0.6 of any of the ChEMBL active
fragments, using the MAP4 fingerprint as a similarity measure.39

In this manner, we obtained 97 664 RFs and 43 704 AFs, from
which we removed the 25 162 RFs and 15 484 AFs found within
dJ ≤ 0.6 of any inactive fragments, leaving 72 502 RFs, named
RFset2, and 28 220 AFs, named AFset2, as bioactive-like
fragments from GDB-13s. In these sets, many fragments were
also exclusive to GDB-13s, ensuring novelty (51 303 eRFs,
70.8%; 17 620 eAFs, 62.4%).
The property profiles of RFset1 and AFset1, which both

resulted from constraining structural parameters, remained
substantially different from those of known molecules because
the frequency peaked at the highest parameter value selected.
This distribution reflects the combinatorial enumeration used to
generate GDB-13s, which provides many more possible
molecules at the largest values of structural parameters.
Therefore, the SAscore remained less favorable and the NPscore
relatively high in both sets. On the other hand, the property
profiles of RFset2 and AFset2, selected by substructure similarity
to ChEMBL bioactive fragments, were like those of known

Table 2. RF/AF Analysis of the ChEMBL_actives and ChEMBL_inactives Subsets

no.a ChEMBL_actives ChEMBL_inactives Rbioactive ≥ 4 Rbioactive ≈ 1 Rbioactive ≤ 0.25

1 cpdsb 543 971 1 575 988
2 cpds from RF ≤ 13c 215 243 39.6% 870 442 55.2%
3 cpds from AF ≤ 13d 523 674 96.3% 1 509 677 95.8%
4 cpds from ARF ≤ 13e 198 367 36.5% 813 618 51.6%
5 RF 145 174 300 613 116 023 25 197 266 255
6 eRFf 106 862 73.6% 262 301 87.3% 106 862 92.1% 0 0% 262 301 98.5%
7 RF, singletong 93 023 64.1% 193 248 64.3% 78 758 67.9% 0 0% 182 620 68.6%
8 RF ≤ 13h 28 309 19.5% 55 143 18.3% 15 211 13.1% 10 883 43.2% 40 930 15.4%
9 eRF ≤ 13i 11 881 8.2% 38 715 12.9% 11 881 10.2% 0 0% 38 715 14.5%
10 RF ≤ 13, singletonj 12 260 8.5% 23 463 7.8% 7642 6.6% 0 0% 20 699 7.8%
11 AF 26 482 4.7% 81 690 5.2% 16 567 8605 71 125
12 eAFf 14 613 55.2% 69 817 85.5% 14 613 88.2% 0 0% 69 817 98.2%
13 AF, singletong 15 773 59.6% 49 745 60.9% 11 252 67.9% 0 0% 46 974 66.0%
14 AF ≤ 13h 16 137 60.9% 45 091 55.2% 7875 47.5% 7063 82.1% 36 498 51.3%
15 eAF ≤ 13i 6347 24.0% 35 301 43.2% 6347 38.3% 0 0% 35 301 49.6%
16 AF ≤ 13, singletonj 8008 30.2% 22 540 27.6% 4638 28.0% 0 0% 20 689 29.1%

ano. = entry number. bcpds = compounds/molecules. ccpds from RF ≤ 13 = molecules covered by ring fragments (RFs) with a heavy atom count
(HAC) of up to 13. dcpds from AF ≤ 13 = molecules covered by acyclic fragments (AFs) with an HAC of up to 13. ecpds from ARF ≤ 13 =
molecules covered by both RFs and AFs with an HAC of up to 13. feRF/eAF = exclusive RF/AF, absent from the other three databases. gRF/AF,
singleton = RF/AF with only a single molecule example. hRF ≤ 13/AF ≤ 13 = RF/AF with an HAC of up to 13. ieRF ≤ 13/eAR ≤ 13 = exclusive
RFs/AFs with an HAC of up to 13, absent from the other three databases. jRF ≤ 13, singleton/AR ≤ 13, singleton = RF ≤ 13/AF ≤ 13 with only a
single molecule example. The RF and AF subcategories are calculated relative to total RFs and AFs, respectively.
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molecules, reflecting the structural similarity selection used to
compose these sets (Figures 4a−4d and S7a−S7d). RFset2 and
AFset2 also displayed lower SAscore and NPscore values than
the full sets of GDB-13s RFs and AFs, indicating that they were
generally less complex and closer to the RFs and AFs from
known molecules (Figures 4e, 4f, S7e, and S7f).
To gain a detailed insight into the bioactivity-selected subset

of GDB-13s RFs and AFs, we computed interactive TMAPs
(tree maps)40 using the MinHashed fingerprint MAP4 as a
similarity measure (Figure 5).39 These interactive TMAPs allow
one to browse through the two databases and search for

interesting RFs and AFs using various color-coded properties as
guides. To illustrate the available options, we searched for novel
analogues of the three most frequent active (Rbioactive ≥ 4) RFs in
ChEMBL, one of which occurs in the kinase inhibitor drug
gefitinib, revealing potentially interesting analogues (Figure 6).
More interesting GDB-13s eRFs are exemplified as analogues of
triquinazine, an eRF fromGDB-13s previously used as a scaffold
for a Janus kinase inhibitor analogue of the known drug
tofacitinib.41 In principle, the same selection can also be made
with the GDB-13s analogues of AFs, as exemplified for the most
frequent active (Rbioactive ≥ 4) AFs from ChEMBL (Figure S8).

Figure 4. Frequency histograms of ring fragments (RFs) from the various databases and subsets for (a) the number of rings, (b) the largest ring size, (c)
the number of acyclic atoms, (d) the number of heteroatoms, (e) the synthetic accessibility score (SAscore), and (f) the natural product likeness score
(NPscore).
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In this case, however, the selection of interesting AFs is less
obvious since the chemistry of AFs highly depends on their
connection to RFs.

■ CONCLUSION
In summary, deconstructing known molecules from the ZINC
and PubChem databases and natural products from the
COCONUT database to form fragments (RFs and AFs)
showed that these molecules mostly consist of RFs and AFs of
13 atoms or less. A comparative analysis of the database GDB-
13s, which lists 99 million possible molecules of up to 13 atoms,
showed that over 99% of the 28 million RFs and 93% of the 2.6
million AFs in GDB-13s are absent from public databases and
are therefore exclusive and, in principle, novel. Furthermore, by
analyzing the ChEMBL database, we found that certain RFs and
AFs occur more frequently in known active vs inactive
molecules. Analyzing the properties of active RFs and AFs in
ChEMBL to define property and similarity ranges then allowed
us to extract one million RFs and half a million AFs from GDB-

13s with ChEMBL-active-like features. These ChEMBL-active-
like RFs and AFs fromGDB-13s are structurally relatively simple
and have favorable SAscores and therefore represent attractive
targets for synthesizing new fragments with favorable properties
for drug design.

■ METHODS
Extracting RFs and AFs from Molecules. The RFs and

AFs were obtained from molecules by processing their
SMILES42 using RDkit43 as follows (Figure 1). RFs: break all
bonds between any two acyclic atoms and remove all acyclic
atoms not directly attached to the rings. Acyclic atoms directly
connected to more than one ring system are disconnected and
reattached to each ring system separately. AFs: break all bonds
between the cyclic and acyclic atoms and remove all cyclic
atoms.
TMAPs. Tree maps (TMAPs) were generated by specifying

standard parameters40 using the MAP4 fingerprint (MinHashed

Figure 5. Tree map (TMAP) visualization of (a) the 1 042 610 ring fragments (RFs) from RFset1, RFset2, and ChEMBL; (b) the top 10 000 RFs in
ZINC, PubChem, COCONUT, and GDB-13s; (c) the 533 153 acyclic fragments (AFs) from AFset1, AFset2, and ChEMBL; and (d) the top 10 000
AFs in ZINC, PubChem, COCONUT, and GDB-13s, color-coded by the source data sets, the synthetic accessibility score (SAscore), and different
properties. An interactive version of the TMAPs is accessible at https://tm.gdb.tools/map4 (MAP4_fused_GDB-13s_RFset1_RFset2_and_-
ChEMBL; MAP4_4databases_top10k_RF; MAP4_fused_GDB-13s_AFset1_AFset2_and_ChEMBL; MAP4_4databases_top10k_AF).
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atom-pair fingerprint up to a diameter of four bonds).39 MAP4
fingerprints were computed with dimensions of 256.

■ ASSOCIATED CONTENT

Data Availability Statement
GDB-13 (970 million molecules of up to 13 atoms enumerated
from graphs under ring strain and functional group restriction
criteria, as described earlier)20 and GDB-13s (a 99 million
molecule subset of GDB-13 with additional functional group
restrictions, as described earlier)25 are hosted on the open-
access repository Zenodo and can be downloaded free of charge
at 10.5281/zenodo.7041051. All the molecules are stored in a
dearomatized, canonized SMILES format and compressed as a
GNU zip archive. The ZINC data used in this study were the
February 2022 version (https://zinc.docking.org). TheOctober
2021 version of the PubChem data was first downloaded from
the NCBI (National Center for Biotechnology Information),
NIH (National Institutes of Health) via an FTP server (https://
ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full).
Then the compounds with HACs not greater than 50 were
extracted to build the PubChem database. The COCONUT
data adopted in this study were the February 2021 version
(https://github.com/reymond-group/Coconut-TMAP-SVM).

ChEMBL_active and ChEMBL_inactive data sets were
extracted from ChEMBL31 (https://ftp.ebi.ac.uk/pub/
databases/chembl/ChEMBLdb/latest). The Molecule Break-
down Model has been made freely available and is under the
MIT license. It was distributed in a GitHub repository upon
publication of this manuscript: https://github.com/Ye-
Buehler/Molecule_Breakdown_Model.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01096.

Top 10 most populated RFs/AFs in GDB-13s, ZINC,
PubChem, and COCONUT; top 20 most frequent RFs
shared by the different databases; top 10 eRFs in the
different databases; top 10 most frequent RFs and AFs in
the active and inactive ChEMBL subsets; frequency
histograms of the AFs from the various databases and
subsets for the number of quaternary centers, number of
triple bonds, number of heteroatoms, number of terminal
atoms, SAscore, and NPscore; and analogues of highly
active ChEMBL AFs found in GDB-13s AFset1/AFset2
(PDF)

Figure 6. Analogues of highly active ChEMBL ring fragments (RFs) and triquinazine found in the subsets of GDB-13s (RFset1/RFset2). The total
occurrences of the ChEMBL RFs, or the MAP4 fingerprint jaccard distances between the analogues from GDB-13s and the corresponding ChEMBL
Active RF, are indicated below the structures.
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