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Abstract: Background: Currently, assessing the diagnostic performance of new laboratory tests
assumes a perfect reference standard, which is rarely the case. Wrong classifications of the true
disease status will inevitably lead to biased estimates of sensitivity and specificity. Objectives: Using
Bayesian’ latent class models (BLCMs), an approach that does not assume a perfect reference standard,
we re-analyzed data of a large prospective observational study assessing the diagnostic accuracy
of an antigen test for the diagnosis of SARS-CoV-2 infection in clinical practice. Methods: A cohort
of consecutive patients presenting to a COVID-19 testing facility affiliated with a Swiss University
Hospital were recruited (n = 1465). Two real-time PCR tests were conducted in parallel with the
Roche/SD Biosensor rapid antigen test on nasopharyngeal swabs. A two-test (PCR and antigen
test), three-population BLCM was fitted to the frequencies of paired test results. Results: Based
on the BLCM, the sensitivities of the RT-PCR and the Roche/SD Biosensor rapid antigen test were
98.5% [95% CRI 94.8;100] and 82.7% [95% CRI 66.8;100]. The specificities were 97.7% [96.1;99.7] and
99.9% [95% CRI 99.6;100]. Conclusions: Applying the BLCM, the diagnostic accuracy of RT-PCR was
high but not perfect. In contrast to previous results, the sensitivity of the antigen test was higher.
Our results suggest that BLCMs are valuable tools for investigating the diagnostic performance of
laboratory tests in the absence of perfect reference standard.

Keywords: BLCM; diagnostic accuracy; no gold standard models

1. Introduction

During the COVID-19 pandemic, numerous diagnostic tests for the detection of SARS-
CoV-2 in patient samples have been developed. RT-PCR assays were among the first
diagnostic tests to be developed [1,2]. Soon, it became evident that false-negative results
could occur [3]. Rapid antigen tests were developed to improve the limited laboratory
capacities, accessibility, and affordability. The diagnostic accuracy of these newly developed
rapid antigen tests has been evaluated numerous times by considering RT-PCR as the gold
standard. If the RT-PCR is not 100% sensitive (not classifying all truly infected patients
as such) or not 100% specific (not classifying all truly negative patients as such), then
evaluating a rapid antigen test by comparing its test results with RT-PCR results inevitably
leads to a biased evaluation of the new test [4]. Different RT-PCR sensitivities were also
found for in- and outpatients [5]. The classical understanding of diagnostic sensitivities
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and specificities as “intrinsic” test characteristics has become obsolete as sensitivities and
specificities are assumed to vary with external factors [6].

Since the pioneering work from [7]—after whom is named the Hui-Walter paradigm—on
estimating diagnostic test accuracies in the absence of a (perfect) gold standard, further
developments took place, including Bayesian latent class models (BLCMs) [8] and user-
friendly software for MCMC (Markov Chain Monte Carlo) simulation [9]. Specific STARD
reporting guidelines for BLCMs have been developed [10]. Although, from a public
health perspective, it would be highly relevant to have robust estimates of diagnostic test
accuracies in a given population, very few attempts to use BLCMs to assess the diagnostic
performance of COVID-19 tests exist, i.e., [11–14].

This study aimed to re-analyze data from a prospective cohort study evaluating a
rapid antigen test in a real-life clinical setting, thus exploring the utility of BLCMs in such a
setting [15].

2. Materials and Methods
2.1. Study Design, Patients, and Population

Using a Bayesian latent class approach, we re-analyzed the data [15] of a recent prospec-
tive cohort study. This dataset consists of dichotomized test results from two diagnostic
tests of 1462 consecutive patients enrolled in a prospective cross-sectional study conducted
from January to March 2021. The following inclusion criteria were applied: (1) suspicion of
SARS-CoV-2 infection, (2) age 18 years or older, and (3) signed informed consent. The flow
of the patients is given in Figure 1. The COVID-19 testing facility, affiliated with Inselspital
University Hospital, and a specialized hospital employing high-throughput RT-PCR [16],
was one of Switzerland’s largest facilities [17]. Following the instructions of the authorities,
patients appeared for three different reasons: (a) symptoms consistent with SARS-CoV-2
infection, (b) contact with infected patients, and (c) other reasons such as travel certificates
or intended shortening of quarantine. From the 1465 patients presenting to the testing
facility three patients had to be excluded from this analysis as they had insufficient material
to perform the antigen test. The local ethics committee reviewed and approved the protocol
(Bern Cantonal Ethics Committee #2020-02729). All individuals have signed an informed
consent form, and the study was conducted in accordance with the Declaration of Helsinki.
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2.2. Study Processes and Determination of Laboratory Test

Before the consultation, the individuals were informed by trained medical staff. Pa-
tients completed a questionnaire that was prepared in accordance with the official require-
ments in Switzerland. A specially trained physician checked the questionnaire’s answers
and followed up in case of doubt. A specially trained nurse performed the nasopharyngeal
swabs according to a protocol that follows official guidelines. Liofilchem Viral Transport
Medium (Roseto degli Abruzzi, Italy) and iClean Specimen Collection Flocked Swabs
(Cleanmo Technology Co., Shenzhen, China) were used. The sample material was at 4 ◦C
and performed within 6 h (antigen test) or 12 h (RT-PCR). The coded clinical data and
laboratory test results were kept in different databases and merged only after analysis. All
details have been described in detail previously [15].

Both the Roche/SD Biosensor SARS-CoV-2 antigen test (Roche Diagnostics, Mannheim,
Germany) and RT-PCR were performed from the same sample material by a trained
medical laboratory technician. The manufacturer’s specifications were strictly followed,
and internal quality controls were performed daily (package leaflet). Details have been
given elsewhere [15]. Two real-time PCRs were performed (Roche cobas® SARS-CoV-2;
Seegene Allplex 2019-nCoV), following the manufacturers’ instructions, on a STARlet IVD
System or a cobas 8800 system, as has been previously described [16,18]. RT-PCR was
performed as part of the daily routine without the laboratory technicians knowing the
antigen test result. Commercial internal quality controls were carried out with each run. A
cycle threshold of 40 was considered positive. The frequencies of the dichotomized test
results of the antigen test and the PCR are displayed in Table 1.

Table 1. Frequencies of the respective dichotomized test results (Roche/SD Biosensor antigen test,
RT-PCR) cross-classified in patients with symptoms with exposition to COVID-19 cases and patients
being tested for other reasons. − negative test results; + positive test results.

Tests Populations

Antigen Test RT-PCR Symptoms Exposition Other

− − 993 52 247
+ − 1 0 1
− + 35 4 10
+ + 81 3 8

Total: 1110 Total: 59 Total: 293

2.3. Bayesian Latent Class Modeling

In the absence of a gold standard test, a Bayesian latent class model (BLCM) was
fitted to the data to obtain estimates of sensitivity and specificity for each of the tests and
prevalence in the population.

For the BLCM, we followed the classical Hui Walter approach [7] with two diagnostic
tests and three populations (symptoms, exposure, and other). With dichotomized test
results from two tests in three populations, the independence model without any con-
ditional dependency is fully identifiable because there are nine degrees of freedom (i.e.,
three from each population) and seven parameters to be estimated: sensitivities and speci-
ficities of both tests and prevalences of each population. The four possible combinations
dichotomized test results (−−,+−, −+, ++) in the three populations (i) are assumed to
follow an independent multinomial distribution:

yi ∼ Multinomial
(
ni,

(
pi−− , pi+− , pi−+ , pi++

))
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with the following four multinomial cell probabilities:

pi−− = pri ∗ ((1 − SeAT) ∗ (1 − SePCR) + cse12) + (1 − pri) ∗ ((SpAT) ∗ (SpPCR) + csp12)
pi+− = pri ∗ ((SeAT) ∗ (1 − SePCR)− cse12) + (1 − pri) ∗ ((1 − SpAT) ∗ (SpPCR)− csp12)
pi−+ = pri ∗ ((1 − SeAT) ∗ (SePCR)− cse12) + (1 − pri) ∗ ((SpAT) ∗ (1 − SpPCR)− csp12)
pi++ = pri ∗ ((SeAT) ∗ (SePCR) + cse12) + (1 − pri) ∗ ((1 − SpAT) ∗ (1 − SpPCR) + csp12)

Here, pr is the prevalence and i indicates one of the three populations. Se and Sp are
the sensitivities and specificities of the two tests, and cse12 and csp12 are the conditional
dependencies between either the two sensitivities or the two specificities.

We used a Bayesian estimation framework with beta distributions Be(a,b) for the
parameters of interest, i.e., sensitivities, specificities, and prevalences. We chose an in-
formative prior for the specificity of the PCR, assuming that we are 95% sure that this
specificity is higher than 90%, with a mode at 99%. Using betabuster, this assumption
leads to dbeta(34.166327738, 1.335013089). For the other parameters of interest, we chose
minimally informative priors dbeta(1,1). To assess the potential effect of these priors on
the posterior estimates, we performed a sensitivity analysis with different combinations of
alternative priors, mainly weakly informative priors with dbeta(2,1), but also informative
priors designating a high sensitivity of PCR and a low prevalence in those which had no
symptoms or contact with an infected person (population other) (Table 2).

Table 2. Sensitivity analysis with different combinations of alternative priors.

a b c d e f g

Antigen Test
Sensitivity 84.4

[67.1;1]
82.8

[66.6;1]
84.2

[67.7;1]
85.3

[68.0;1]
82.7

[66.8;1]
83.7

[67.7;1]
83.4

[67.1;1]

Specificity 99.9
[99.6;1]

99.9
[99.6;1]

99.9
[99.6;1]

99.9
[99.6;1]

99.9
[99.6;1]

99.9
[99.6;1]

99.8
[99.6;1]

RT-PCR
Sensitivity 98.5

[94.9;1]
98.5

[95.0;1]
98.5

[94.8;1]
98.7

[95.9;1]
98.6

[95.9;1]
98.7

[95.9;1
98.0

[92.7;1]

Specificity 97.6
[96.0;99.8]

97.7
[96.1;99.7]

97.6
[96.0;99.6]

97.5
[95.9;99.6]

97.8
[96.1;99.7]

97.7
[96.0;99.6]

97.6
[96.0;99.5]

Prevalence 1
8.6

[6.5;11.1]
8.7

[6.6;11.1]
8.7

[6.5;11.1]
8.5

[6.4;10.9]
8.8

[6.6;11.2]
8.7

[6.6;11.0]
8.7

[6.6;11.2]

Prevalence 2
8.7

[1.9;17.7]
8.8

[1.8;17.9]
8.7

[1.9;17.6]
8.4

[1.6;6.3]
8.9

[1.8;17.9]
8.7

[1.8;17.7]
8.7

[1.9;17.7]

Prevalence 3
3.9

[1.5;7.1]
4.0

[1.6;7.2]
3.9

[1.5;7.1]
3.7

[1.6;6.3]
4.0

[1.6;7.2]
3.8

[1.7;6.5]
3.7

[1.6;6.4]
a Minimally informative priors for all parameter (dbeta(1,1)). b Informative prior for specificity PCR (“95%
sure that sp PCR is greater than 90% with a mode at 99%” with a beta(a = 34.166327738, b = 1.335013089),
weakly informative prior for se PCR (dbeta(2,1), minimally informative prior for all other parameters (dbeta(1,1)).
c Informative prior for specificity PCR (“95% sure that sp PCR is greater than 90% with a mode at 99%” with a
beta(a = 34.166327738, b = 1.335013089), weakly informative prior for se and sp Antigen test (dbeta(2,1), minimally
informative prior for all other parameters (dbeta(1,1)). d Informative prior for sensitivity PCR (“95% sure that
se PCR is greater than 90% with a mode at 99%” with a beta(a = 34.166327738, b = 1.335013089), minimally
informative prior for all other parameters (dbeta(1,1)). e Informative prior for se and sp PCR (“95% sure that
se PCR and sp PCR are greater than 90% with a mode at 99%” with a beta(a = 34.166327738, b = 1.335013089,
minimally informative prior for all other parameters (dbeta(1,1)). f Informative priors for se and sp PCR (“95% sure
that se PCR and sp PCR are greater than 90% with a mode at 99%” with a beta(a = 34.166327738, b = 1.335013089),
informative prior for prevalence in patients with other reasons than symptoms or exposition (I am 95% sure
that the prevalence in the group “other” is below 10% with a mode at 3% (dbeta(2.6262,53.5809)), minimally
informative prior for all other parameters (dbeta(1,1)). g Covariance term between the sensitivities of both tests
included. Informative priors for se and sp PCR (“95% sure that se PCR and sp PCR are greater than 90% with a
mode at 99%” with a beta(a = 34.166327738, b = 1.335013089), informative prior for prevalence in patients with
other reasons than symptoms or exposition (I am 95% sure that the prevalence in the group “other” is below 10%
with a mode at 3% (dbeta(2.6262,53.5809)), minimally informative prior for all other parameters (dbeta(1,1)).
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We used Markov Chain Monte Carlo simulations with Gibbs sampling with JAGS
version 4.3.0 (Plummer, 2003). The package runjags [19] was used to access JAGS and
to prepare the model code. The model and the data are available in the Supplementary
Materials (S1.model.code.data.bug).

3. Results

The latent class model converged based on the visual inspection of the trace plots
and the Gelman–Rubin statistic. The estimates for the sensitivities and specificities of both
tests and the three prevalences are given in Figure 2 and Table 3. Both the sensitivity and
specificity of the RT-PCR assay are close to 100%. There was no evidence for a conditional
dependency between sensitivities nor specificities, as evidenced by 95% credibility intervals,
which included 0. Whilst the specificity of the rapid antigen test is close to 100%, the
sensitivity is considerably lower and—compared to the other parameters of interest—the
95% credibility intervals are wider.
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Figure 2. Compared to the original analysis, the sensitivity of the Roche/SD Biosensor SARS-CoV-2
rapid antigen test increased from 65.3% to 82.7% when accounting for an imperfect gold standard.
Also, the prevalence of SARS-CoV2 was reduced in all three groups.

Table 3. Posterior medians and 95% credibility intervals for the diagnostic sensitivities (Se) and
specificities (Sp) for the Roche/SD Biosensor rapid antigen test and the RT-PCR and the three
prevalences for patients with symptoms, patients being exposed to COVID-19 cases, and patients
being tested for other reasons.

Median 95% CI

Sensitivity antigen test 82.7 [66.8;100]
Specificity antigen test 99.9 [99.6;100]
Sensitivity RT-PCR 98.5 [94.8;100]
Specificity RT-PCR 97.7 [96.1;99.7]
Prevalence 1 (symptoms) 8.7 [6.6;11.2]
Prevalence 2 (exposition) 8.9 [1.8;17.7]
Prevalence 3 (other) 3.9 [1.6;7.2]
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When performing a sensitivity analysis by changing the prior information, the only
posterior estimate that changed substantially with nearly 3% (absolute values) was the
sensitivity of the rapid antigen test. As expected, the prevalence in patients with symp-
toms or exposure to COVID-19 cases was higher than in patients who came for other
testing reasons.

4. Discussion

We used data from a large prospective cohort study analyzing the accuracy of a rapid
antigen SARS-CoV-2 antigen test in clinical practice to apply a BLCM [15]. The resulting
sensitivity of the rapid antigen test was considerably higher (82.7; 95% CRI 66.8; 100%)
compared to the original analysis (65.3; 95% CRI 56.8; 73.1%). This finding might be
explained by the diagnostic accuracies of the reference standard RT-PCR being close, but
not equal, to 100%. In contrast, the specificity of the rapid antigen test is similarly high in
the gold standard and the BLCM analysis.

To our knowledge, this is the first study applying a BLCM to estimate the diagnostic
accuracy of the Roche/SD Biosensor rapid antigen test. The strength of our analysis is
that we have included a large number of consecutive patients in clinical practice. The
prospective design employing a strict protocol ensured complete and accurate data. Limita-
tions of this study include the unequal sample sizes of the three populations, so the largest
population, patients with symptoms, was possibly influenced the posteriors more than
the two other populations. Additionally, although the model is theoretically identifiable
with two diagnostic tests and three populations, the difference in the prevalence of the
three populations is less than 10%, which might affect the estimates’ precision [20]. Fur-
thermore, the assumption of constant diagnostic sensitivity in the three populations is also
questionable. This is possibly the reason for the wider credibility intervals of the rapid
antigen compared to the credibility intervals of the other parameters of interest. Possibly,
in the considered sample of patients, different subpopulations exist, e.g., depending on the
presence of clinical symptoms, more or fewer virus copies might be present, which might
have a more considerable impact on the sensitivity of the rapid antigen test compared to
RT-PCR.

The results of this study suggest that BLCMs are valuable tools when there is an
imperfect reference standard, including for diagnosing respiratory infections in a routine
clinical setting. The higher sensitivity of the antigen test could well be explained by the
fact that the reference standard (RT-PCR) is not entirely accurate. Unfortunately, the “true
value” cannot be determined empirically. Each method has its assumptions, which are
not strictly adhered to, and which requirements are more significant in the situation at
hand is difficult to say. BLCMs, similar to the classical gold standard approach, rely on the
assumption that a positive and a negative test result indicates the same infection status for
both tests.

This can be done already in the project’s protocol phase, thus supporting data analysis.
Either separate BLCMs are conducted for patients with and without symptoms, or the
symptoms (with/without) are included as a covariate in the evaluation of the diagnostic
test [21]. We agree with [22] that BLCMs are complex models, that conditional dependencies
are important, and that BLCMs are challenging to interpret by readers without a statistical
background. We also agree with the famous statement of George Box: “all models are
wrong, but some are useful” [23]. Still, in a pandemic situation, when new diagnostic tests
are urgently needed, inter- and transdisciplinary research should be conducted, and a lack
of statistical knowledge should not preclude the application of useful models.

5. Conclusions

In conclusion, BLCMs provide a valuable approach for determining diagnostic ac-
curacy measures in the presence of an imperfect reference standard. This applies also to
diagnosing respiratory infections in a routine clinical setting. Key limitations of this method
can already be addressed in the planning phase of diagnostic accuracy studies.
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