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Abstract 

Current clinical methods of bone health assessment depend to a great extent on bone 

mineral density (BMD) measurements. However, these methods only act as a proxy for bone 

strength and are often only carried out after the fracture occurs. Besides BMD, composition 

and tissue-level mechanical properties are expected to affect the whole bone’s strength and 

toughness. While the elastic properties of the bone extracellular matrix (ECM) have been 

extensively investigated over the past two decades, there is still limited knowledge of the 

yield properties and their relationship to composition and architecture. In the present study, 

morphological, compositional and micropillar compression bone data was collected from 

patients who underwent hip arthroplasty. Femoral neck samples from 42 patients were 
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collected together with anonymous clinical information about age, sex and primary diagnosis 

(coxarthrosis or hip fracture). The femoral neck cortex from the inferomedial region was 

analyzed in a site-matched manner using a combination of micromechanical testing 

(nanoindentation, micropillar compression) together with micro-CT and quantitative 

polarized Raman spectroscopy for both morphological and compositional characterization. 

Mechanical properties, as well as the sample-level mineral density, were constant over age. 

Only compositional properties demonstrate weak dependence on patient age: decreasing 

mineral to matrix ratio (p=0.02, R2=0.13, 2.6% per decade) and increasing amide I sub-peak 

ratio I~1660/ I~1683 (p=0.04, R2=0.11, 1.5% per decade). The patient’s sex and diagnosis did not 

seem to influence investigated bone properties. A clear zonal dependence between 

interstitial and osteonal cortical zones was observed for compositional and elastic bone 

properties (p<0.0001). Site-matched microscale analysis confirmed that all investigated 

mechanical properties except yield strain demonstrate a positive correlation with the mineral 

fraction of bone. The output database is the first to integrate the experimentally assessed 

microscale yield properties, local tissue composition and morphology with the available 

patient clinical information. The final dataset was used for bone fracture risk prediction in-

silico through the principal component analysis and the Naïve Bayes classification algorithm. 

The analysis showed that the mineral to matrix ratio, indentation hardness and micropillar 

yield stress are the most relevant parameters for bone fracture risk prediction at 70% model 

accuracy (0.71 AUC). Due to the low sample number, further studies to build a universal 

fracture prediction algorithm are anticipated with the higher number of patients (N>200). 

The proposed classification algorithm together with the output database of bone tissue 

properties can be used for the future comparison of existing methods to evaluate bone 

quality as well as to form a better understanding of the mechanisms through which bone 

tissue is affected by aging or disease. 

 

1. Introduction 

Bone fragility poses a significant socioeconomic burden on modern societies worldwide. 

With increased longevity, bone fractures are bound to increase in number. According to the 

International Osteoporosis Foundation, fragility fractures in Europe are projected to increase 

by 23%: from 2.7 million in 2017 to 3.3 million in 2030 [1]. Accordingly, the resulting annual 

fracture-related costs are expected to increase by 27%. Accounting for much of the health 
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care expenditures and mortality, hip and vertebral fractures are the two most serious types 

[1,2]. 

Fragility fractures result from low-energy trauma arising from the reduced load-bearing 

capacity of bone. Such fractures are the main consequence of osteoporosis [3,4] – a skeletal 

disorder characterized by low bone density and structural deterioration of the bone tissue 

[1,5–8]. Osteoporosis is referred to as a "silent disease" since it is often left undertreated and 

undetected until it manifests in the form of fracture [9,10].  

Bone strength depends on both bone quantity and quality. The former is also known as 

bone mass or bone mineral density (BMD) and is the most common predictor for clinical 

fracture risk assessment [11]. Current clinical methods to assess bone health status fully or 

greatly depend on BMD measurements. However, these methods bear considerable errors in 

bone fracture prediction and are often only carried out after the bone fracture occurs [12]. On 

the other hand, emerging evidence suggests a significant influence of tissue quality on the 

whole bone strength [13–16]. Bone quality is a cumulative term that includes various 

parameters like metabolism, composition and microarchitecture, excluding BMD, that 

contribute to the overall fracture resistance [17–20]. There are several methods for evaluating 

bone quality, mostly laboratory-based [15]. Bone composition is commonly assessed through 

gravimetric analysis and/or spectroscopic methods (FTIR, Raman) [21], while bone 

microarchitecture and ultrastructure are often measured through different high-resolution 

imaging modalities (micro-CT, high-resolution peripheral QCT, NMR and MRI) [22]. Bone 

mechanical properties are being measured at the different length scales from the whole-

bone and bulk tissue mechanical testing down to the lamellae levels. Direct measurements of 

bone fracture resistance include experiments on crack-initiation and crack-growth toughness 

[23]. Bone characteristics are co-dependent and it is important to assess bone structure-

composition-properties relationship when investigating the influence of disease and/or aging 

on bone performance. 

Bone is a fascinating biological material, combining strength and toughness with a low 

weight. At the lowest level, bone comprises organic and mineral phases (mainly collagen type 

I and hydroxyapatite crystals) with water inclusions. Both mineral and organic bone 

constituents contribute to the mechanical properties of bone tissue [24,25]. The mineral part 

of bone largely determines its stiffness [26], while the collagen part, together with bound 

water and non-collagenous proteins, is primarily responsible for bone toughness, i.e. the 

ability of bone to dissipate energy during overloading [27,28]. Besides the influence of the 
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individual bone components, bone possesses a unique hierarchical arrangement, which 

contributes drastically to its outstanding mechanical and morphological properties [22,29,30]. 

Although more and more parameters linked to bone quality are investigated, to date, 

there is no universally accepted bone quality characteristic that can be used to assess bone 

health status. The main goal of this study was to (i) assess multimodal ECM bone properties 

at the femoral neck sites of patients who underwent a hip arthroplasty due to coxarthrosis or 

hip fracture and (ii) to examine any possible correlation between measured bone properties 

and patient clinical information (age, sex, hip fracture status). The novelty of the current study 

includes the multimodal characterization of the bone ECM, enhanced with micropillar 

compression and thus providing the first data on the microscale yield properties of the 

compact bone matrix for a large number of patients.  

2. Materials and Methods 

2.1. Sample preparation 

Human femoral neck slices were collected during total hip arthroplasty at the University 

Hospital of Bern (Switzerland) and Tiefenau Hospital (Switzerland), carried in the course from 

September 2018 – February 2022. A double osteotomy was done to extract a femoral neck 

slice of varying thickness of 3-10 mm. After extraction, samples were rinsed with Ringer's 

solution, dab dried, and stored in the freezer at -20°C. The collection of samples and the 

corresponding patient information was done following the Ethical approval 2018-01815 of 

the Kantonale Ethikkommission Bern (Switzerland). Patient information in pseudonymized 

form was securely stored in the SharePoint server of the University Hospital of Bern. In total, 

59 femoral necks were collected, of which 42 had intact inferomedial regions and were used 

for the current study. Ultimately, the patients’ age varied from 45 to 89 y.o., with 19 females 

and 23 males. 

A schematic of the sample preparation is shown in Figure 1. Bone cortices from the 

inferomedial part of the frozen femoral necks were manually cut out with a hand saw. The 

extracted bone pieces of about 3-10 mm in height and 5x5 mm width x depth were 

mechanically cleaned with a scalpel and ultrasonic cleaner. Samples were then embedded in 

10% phosphate-buffered formalin solution at room temperature for at least two days, 

dehydrated with increasing ethanol concentrations (70-100%), followed up by xylol and 

methylmethacrylate+dibutylphtalate (80%+20%) solutions in the course of 7-10 days. Finally, 
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samples were embedded in MMA (80% methylmethacrylate + 20% dibutylphtalate + 1% 

perkadox) and left for polymerization at room temperature for at least two days. 

 

Figure 1. Bone sample extraction and orientation schematic. 

 

The upper part of the embedded bone piece, closer to the femoral shaft, was further 

sectioned with a diamond-coated saw under constant water irrigation. The resulting bone 

pieces of about 2 mm in height and 5x5 mm2 area were then fixed onto an aluminum stub 

with a 2-component epoxy resin adhesive (Schnellfest, UHU, Germany). Finally, the exposed 

specimen surfaces were ultra-milled (Polycut E, Reichert-Jung, Germany) and consequently 

polished with 1000 grid silicon carbide and paper cloth with 0.3 μm Al2O3 slurry. The resultant 

surface roughness was below 50 nm, as assessed via an optical profilometer (S Neox, 

Sensofar Metrology, Spain). 

2.2. Micromechanical characterization 

2.2.1. Nanoindentation 

Indentation maps were performed using a Zwick Roell nanoindenter system (ZHN 

Nanoindenter, ZwickRoell GmbH & Co. KG, Ulm, Germany) equipped with a Berkovich 

diamond tip. Indentation maps were distributed across the sample surface, each map was 

done within a bone structural unit (BSU) – single osteon or older interstitial tissue. In total, 20 

bone BSU per patient were measured (Figure 2), of which 10 were within osteonal and 10 in 

the neighboring interstitial regions. A 2x3 indentation map with 20 µm spacing was carried 

out in each BSU, resulting in 120 single indentations per patient. For each indent, a 

trapezoidal load control protocol was used [31] consisting of a loading segment at a rate of 

1.5 mN/s, reaching up to 15 mN maximum force with about 1-1.2 μm penetration depth, 

holding for 5 s, and unloading at 3.75 mN/s. The penetration depth was estimated from the 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



6 

maximum force based on the setup calibration on the model materials (sapphire and fused 

silica) prior to the measurements. Bone tissue hardness and elastic modulus were calculated 

following the Oliver-Pharr method [32] with an assumed Poisson ratio of 0.3. Measurements 

were performed at room temperature and ambient pressure and humidity. Indentation maps 

were distributed across the sample surface, providing information on average elastic modulus 

and hardness at the whole sample level.  

 

Figure 2. Microscale analysis methods and their schematic location on the sample surface. The whole sample volume 

was scanned with micro-CT. Structural unit analysis on interstitial (Int) and osteonal (Ost) zones included 

nanoindentation maps and quantitative polarized Raman spectroscopy (qPRS) measurements on the mapping area. 

A typical indentation curve and polarized Raman spectra are shown at the top right. A schematic of the bone 

micropillar compression is shown at the bottom. Compression tests were site-matched with qPRS measurements on 

each pillar. A typical stress-strain curve from the micropillar compression experiment is shown at the bottom right. 

 

2.2.2. Micropillar compression 

Regular arrays of bone micropillars were prepared on the sample surfaces following a 

previously developed femtosecond (fs) laser ablation protocol [33]. Micropillar fabrication 

was done using a 515 nm laser (SATSUMA HPII, Amplitudes Systemes) with 320-350 fs pulse 

duration, 3 kHz repetition frequency and 12 mW average laser power. This ablation protocol 

enables bone micropillar fabrication with low heat exposure (below the denaturation point of 

dry MCFs [33,34]), therefore minimizing any influence on the bone ECM. Since each sample 

presented a unique cortex morphology (varying cortical thickness and porosity), different 

combinations of micropillar arrays were fabricated across the sample surface: 5x9, 5x5, 4x5, 

3x5, 3x10, 5x6 and 3x3. A scanning electron microscope image of the 4x5 micropillar array 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



7 

with a zoomed image of the single bone micropillar are shown in Figure 3. As a result, each 

sample contained 45 to 65 bone micropillars, of which less than 8% were a priori defective 

(fabricated fully or partially on Haversian canals or other pores). Micropillar geometry was 

assessed from each array on each sample via an optical profilometer (S Neox, Sensofar 

Metrology, Spain). On average, micropillars were 62 ± 2 μm high with a 26 ± 1 μm top 

diameter and 14 ± 2° taper (N=1441). 

Micropillar compression experiments were performed using an ex situ indenter setup 

developed in-house based on commercial hardware for actuation, sensing, and electronics 

(Alemnis AG, Switzerland) [35,36]. Experiments were performed at ambient temperature and 

humidity with a flat punch indenter tip (60 µm diameter). Samples were compressed 

uniaxially using a quasi-static displacement-controlled loading protocol at a strain rate of 10-3 

s-1 and up to 13% of engineering strain. As output, yield stress and strain values were 

extracted at 0.2% plastic deformation. A schematic stress-strain curve of the bone micropillar 

is shown in Figure 2. Per each sample, 30 to 50 micropillars were tested. 

Data analysis was done in Python v3.8 [37] using an in-house script [33,38] following the 

methodology of Schwiedrzik et al. [31] with the modified Sneddon approach of Zhang et al. 

[39] for substrate compliance corrections. The influence of the taper angle on the output 

mechanical properties was corrected using finite element simulations in Abaqus/CAE 

(Dassault Systemes Simulia Corp., Johnston, Rhode Island, USA) [40] following our previous 

work [33]. 
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Figure 3. Scanning Electron Microscope images of the bone micropillar array. A – array of 4x5 bone micropillars 

fabricated via femtosecond laser ablation, note the ablated regions of neighboring micropillar arrays on both sides. B 

– zoomed image of the central pillars marked in Figure A, note the bone surface cracks due to the high vacuum 

exposure. C – zoomed image of the single bone micropillar next to the Haversian canal. Note that the Haversian 

canals seem empty because the surface ablation with the laser eroded MMA at a higher rate than bone. All images 

were taken after the experimental campaign to avoid sample exposure to a vacuum.  

 

2.3. Morphological and compositional analysis 

2.3.1. Micro-CT 

Hydroxyapatite-calibrated micro-computed tomography (micro-CT) scans of the whole 

sample volume was collected for each sample prior to mechanical measurements. Scanning 

was done at 55 kVp energy, 200 µA tube current, and 300 ms integration time, with a 

resulting voxel size of 17.2 µm (microCT 100, SCANCO Medical AG, Switzerland). Following 

the reconstruction, image processing was done using in-house Matlab code (Matlab R2019a). 

A schematic of the image processing steps is shown in Appendix A, Figure A 1. For each 

sample, cortical bone mineral density (BMD, computed as the average of the hydroxyapatite-
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calibrated grey values of the scanned bone volume), tissue mineral density (TMD, computed 

as the average of the masked grey values of the scanned bone volume) and bone volume 

ratio (BV/TV, bone volume vs. the total volume) were extracted.  

2.3.2. Quantitative polarized Raman spectroscopy (qPRS) 

Raman spectra were acquired in ambient conditions via an upright Raman microscope 

(Nova Spectra, ND-MDT, Russia) with a 633 nm laser. The linear polarization of the exciting 

laser was adjusted with a motorized λ/2 plate. No analyzer plate was included in the light 

path after the sample. Spectra were collected using a 600 g/mm grating and 50× objective 

with a numerical aperture of 0.55. The resultant focal range of the laser was ~0.7 µm in the 

lateral and 4.2 µm in the axial direction [41]. The laser power at the sample surface was ~7 

mW. 

Two sets of measurements were collected for each sample. First, polarized spectra were 

acquired from bone structural units within interstitial and osteonal regions after the 

nanoindentation tests. Two sets of spectra were collected from the central region of the 

indentation map, ~10 µm away from the neighboring indents, to avoid measuring indented 

bone volume (Figure 2). The second set of measurements was done within each bone 

micropillar before compression tests, approximately 5 μm underneath the pillar top surface. 

Each set of polarized Raman measurements consisted of 10 spectra, collected at increasing 

polarizer angles from 0 to 180° with a 20° angular step. The local orientation of the 

mineralized collagen fibrils (MCF) was estimated following a previously reported qPRS 

method [35]. Local in- and out-of-plane MCF angles were calculated and used for the 

subsequent correlation analysis. Moreover, traditional information on the bone microscale 

composition was quantified through the peak band ratios.  

The peaks of interest were chosen based on the principal component analysis [42]. For 

this, all spectra were background subtracted and averaged spectra from all samples were 

analyzed. The peaks with the highest intensities variation were detected as elements from the 

first eigenvector (principal component) after the dimensionality reduction. The peaks with the 

highest variation included primary and secondary phosphate (v1PO4, v2PO4), proteoglycans, 

and collagen bands (amide I and amide III). Accordingly, the compositional parameters 

presented in Table 1 were extracted from the Raman spectra. The corresponding peaks were 

background subtracted and fit with a linear combination of Lorentzian functions [33,35]. The 

results from each measured ROI were averaged over the laser polarizations to exclude the 

polarization dependence from the analyzed parameters (1-4, Table 1).  
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Table 1. Bone compositional and structural parameters assessed via Polarized Raman spectroscopy. 

Parameters Quantification of the parameters Interpretation 

1 Mineral to matrix ratio Integrated area of v2PO4 (410-460 cm
−1

) 

over amide III (1215-1300 cm
−1

) 

Relative mineralization level. 

Correlates with Ca content [43] 

2 Mineral crystallinity index Inverse value of v1PO4 full width at half 

maximum  

Mineral crystallite chemistry, size 

and shape [44,45] 

3 Amide I sub-peak ratio 

I~1670/ I~1640, collagen 

disorder/order ratio 

Intensity ratio of amide I sub-bands: 

I~1670/ I~1640 

Collagen helical structure 

disorderliness [46,47] 

4 Amide I sub-peak ratio 

I~1660/ I~1683, matrix 

maturity ratio 

Integrated area ratio of amide I sub-

bands: I~1660/ I~1683 

Nonquantitative measure of 

cross-link maturity [47–49] 

5 MCF in- and out-of-plane 

orientation 

Integrated area ratio of amide I  

(1215-1300 cm
−1

) over amide III  

(1600-1700 cm
−1

) 

MCF spatial orientation [35] 

 

2.4. Statistical analysis 

Descriptive statistics and correlation analysis were performed in R v.4.2 [50] with the 

rstatix [51], lme4 [52], lmerTest and lmtest packages. The Shapiro-Wilk test and QQ plots 

were used to verify the normality of variables. A mixed-effect model was used to account for 

the repeated tests per sample and within the bone structural units (BSU) of each sample. For 

this, groups (sex, diagnoses, zones) and patient's age were treated as fixed effects, while 

samples and bone structural units (within interstitial or osteonal zones) within the samples 

were taken as random effects (equation 1). The influence of the group, age and their 

interaction on the measured variables was accounted for in the model: 

                     ( |      )   ( |          )  (1) 

The likelihood ratio test confirmed that the random effects significantly influence the 

model for all of the measured variables. Differences in the mean between the groups were 

tested using the one-way ANOVA test with the mixed model (1), F-statistic was computed 

with Satterthwaite's method, the significance threshold was chosen as p < 0.05. Mean and 

standard deviation (SD) are reported. Linear correlation of the measured variables from the 

patient’s age was combined with the mixed effect model, similar to the group analysis: 

                ( |      )  (2) 
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A multiple regression analysis was used to check the correlation between measured 

bone properties (Python's NumPy module [53]) using Pearson correlation coefficients as a 

correlation matrix. 

Principal component analysis (PCA) was carried out on the final dataset combining the 

mean of the measured bone parameters per each sample with the clinical information for 

each patient. PCA was done in Python v.3.9 [37] via the Scikit-learn machine learning library 

[54]. Gaussian Naïve Bayes analysis (Scikit-learn) was applied to predict fractured and non-

fractured patients [55]. The final dataset was transformed to avoid categorical inputs and split 

into training and test sets with a 0.75 to 0.25 ratio, respectively. The model accuracy was 

calculated as the fraction of the correct predictions, defined as the ratio of true positives and 

true negatives to all observations. Area Under the Curve (AUC) of the Receiver Operating 

Characteristic (ROC) was additionally used to assess the classifier performance. 

3. Results 

3.1. Sample cohort description 

In total, 42 patients participated in this study, with age varying from 45 to 89 y.o. (Figure 

4). A fair distribution of patients' age and sex was observed, with a close number of female 

and male patients: 19 and 23, respectively (Figure 4 A). Following the clinical information 

about the patient's primary diagnosis, samples were assigned to one of the two groups: 

coxarthrosis (N=31), where patients suffered from hip osteoarthritis but had no clinical record 

of the metabolic bone disease, and fracture patients (N=11), who had to be operated due to 

hip fractures (Figure 4 B). Such fractures in the context of low-energy trauma are considered 

the most severe complication of osteoporosis. While the fracture patients were not formally 

diagnosed with osteoporosis, we consider them patients at high risk of osteoporosis. Hip 

fractures were only observed in patients aged 60 years and above. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



12 

 

Figure 4. Histogram of patients' sex (A) and primary diagnosis (B) distributions across the age. In total, 42 patients 

participated in this study. Female: N=19, mean age 67 years. Male: N=23, mean age 66 years. Patients with 

coxarthrosis: N=31, mean age 62 years. Patients with hip fracture: N=11, mean age 79 years.  

3.2. Bone properties in relation to patient sex, diagnosis and age 

A summary of measured bone properties depending on the patients' cohorts is collected 

in Table 2.  

Neither elastic nor yield properties of bone tissue demonstrate any dependence on the 

patients' age (Figure 5). The same is true for the bone mineral densities and the volumetric 

ratio. Only local bone composition demonstrates a marginal correlation with the patient's 

age. Notably, the mineral to matrix ratio declines with age (p=0.02, R2=0.13, 2.6% per 

decade), while the amide I sub-peak ratio I~1660/ I~1683, also referred to as matrix maturity 

ratio, increases (p=0.04, R2=0.11, 1.5% per decade). 

Hip fracture occurrence did not seem to affect any of the investigated bone properties. 

The same is true for the patient sex – no significant difference in bone material properties 

was observed between the female and male patients. Patients with hip fractures were, on 

average, 18 years older than the patients with coxarthrosis (Figure 4). To exclude the bias 

related to the age difference from the grouped comparison (sex, diagnosis, zone), the 

influence of age was corrected for all of the measured bone properties (eq. 1). 
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Table 2. Summary of measured bone properties depending on the patients' sex, diagnosis or zone. P-values from the one-way ANOVA test with the nested mixed effect model of the 

bone characteristics compared within mentioned cohorts of patients. P-values for the group (sex, diagnosis or zone), age and their interaction are reported. 

Method 
Bone  

characteristics 

Sex Diagnosis Zone 

Female 

(N=19) 

Male 

(N=23) 

p- 

values 

Coxarthro-

sis (N=31) 

Fracture 

(N=11) 

p- 

values 

 Interstitial 

   (N=42) 

 Osteonal 

   (N=42) 
p-value 

Nanoin-

dentation 

E, GPa 
22.0±2.3 21.5±2.3 

0.95 (group) 

0.74 (Age) 

0.65 (interaction) 

21.77±2.3 21.6±2.3 

0.35 (group) 

0.54 (Age) 

0.31 (interaction) 

21.9±2.4 21.6±2.3 

<0.0001 (group) 

0.79 (Age) 

0.001 (interaction) 

H, MPa 
716.7±88.5 706.2±90.4 

0.99 (group) 

0.38 (Age) 

0.81 (interaction) 

710.7±89.7 711.3±90.0 

0.33 (group) 

0.87 (Age) 

0.28 (interaction) 

721.3±88.3 702.3±90.2 

0.001 (group) 

0.36 (Age) 

0.11 (interaction) 

Micro-

pillar 

compres-

sion 

Yield stress, MPa 
263.6±38.5 252.2±41.9 

0.41 (group) 

0.11 (Age) 

0.27 (interaction) 

259.3±41.8 251.1±36.8 

0.86 (group) 

0.46 (Age) 

0.89 (interaction) 

- - - 

Yield strain, - 
0.033±0.004 0.033±0.005 

0.11 (group) 

0.67 (Age) 

0.10 (interaction) 

0.033±0.004 0.033±0.005 

0.74 (group) 

0.73 (Age) 

0.70 (interaction) 

- - - 

Micro-CT BMD, mg/cm
3
 

1000.7±40.4 1007.0±41.0 

0.62 (group) 

0.42 (Age) 

0.58 (interaction) 

999.4±36.1 1019.4±51.0 

0.17 (group) 

0.96 (Age) 

0.16 (interaction) 

- - - 

TMD, mg/cm
3
 

1032.4±35.7 1035.9±33.7 

0.75 (group) 

0.17 (Age) 

0.89 (interaction) 

1029.3±29.6 1050.2±44.1 

0.09 (group) 

0.65 (Age) 

0.24 (interaction) 

- - - 

BV/TV, % 
95±2 96±2 

0.64 (group) 

0.42 (Age) 

0.25 (interaction) 

96±2 96±2 

0.99 (group) 

0.29 (Age) 

0.20 (interaction) 

- - - 

Raman 

Spectro-

scopy 

Mineral/Matrix  

ratio 
0.69±0.12 0.66±0.12 

0.54 (group) 

0.026 (Age) 

0.74 (interaction) 

0.69±0.12 0.63±0.11 

0.51 (group) 

0.58 (Age) 

0.62 (interaction) 

0.63±0.10 0.60±0.10 

<0.0001 (group) 

0.006 (Age) 

<0.0001 (interaction) 

Mineral 

crystallinity index 
0.0635± 

0.0012 

0.0631± 

0.0011 

0.57 (group) 

0.75 (Age) 

0.41 (interaction) 

0.0634± 

0.0011 

0.0630± 

0.0011 

0.34 (group) 

0.34 (Age) 

0.43 (interaction) 

0.0636± 

0.0011 

0.0628± 

0.0012 

0.0001 (group) 

0.92 (Age) 

0.009 (interaction) 

I~1670/ I~1640, 

collagen 

disorder/order 

ratio 

1.70±0.09 1.69±0.07 

0.66 (group) 

0.38 (Age) 

0.61 (interaction) 

1.70±0.08 1.68±0.08 

0.60 (group) 

0.12 (Age) 

0.78 (interaction) 

1.67±0.08 1.69±0.08 

<0.0001 (group) 

0.29 (Age) 

0.014 (interaction) 

I~1660/ I~1683, 

matrix maturity 

ratio 

1.42±0.10 1.42±0.10 

0.22 (group) 

0.06 (Age) 

0.20 (interaction) 

1.40±0.09 1.47±0.09 

0.42 (group) 

0.20 (Age) 

0.30 (interaction) 

1.45±0.11 1.43±0.11 

0.10 (group) 

0.03 (Age) 

0.019 (interaction) 
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Figure 5. Compact bone properties in relation to the patient sex, primary diagnosis, age and analyzed cortical bone 

zone (interstitial, osteonal). Measured bone propertied from top to bottom: elastic moduli (E), mineral to matrix ratio 

(mineral/matrix ratio), I~1660/ I~1683 (matrix maturity ratio), yield stress, tissue mineral density (TMD) and bone 

volume fraction (BV/TV). Statistical significance asterisks: * − p≤0.05, ** − p≤0.01, *** − p≤0.001, **** − p≤0.0001. 
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Zonal dependence between investigated bone structural units was observed for 

mechanical and a subset of compositional characteristics (Figure 5). Specifically, the mineral 

to matrix ratio was on average 5% higher in the interstitial zone than in the osteonal 

(p<0.0001). Meanwhile, the amide I sub-peak ratio I~1670/ I~1640 (collagen disorder/order 

ratio) was 1.2% higher in the osteonal bone region (p<0.0001). As for the micromechanical 

properties, both elastic moduli and hardness of interstitial zones were on average 1.4% and 

2.6% higher than those of osteonal zones (p<0.0001). 

3.3. Compact bone structure-properties relationship 

Investigated mechanical properties of compact bone exhibited positive correlation with 

the tissue mineralization levels (Figure 6). Average sample hardness and yield stress positively 

correlated with bone tissue mineral density (p<0.02). No dependence was observed for the 

averaged elastic moduli (p>0.6).  

The site-matched analysis of microscale mechanical, compositional and morphological 

properties allows for quantifying compact bone's local structure-properties relationships. 

Both elastic moduli and hardness positively correlated with the mineral to matrix ratio 

(p=2.9*10-9, R2=0.042 and p=8*10-5, R2=0.019, respectively). The statistical significance 

reduces for the patients with hip fractures: p=0.16 for E and p=0.026 for H versus p<0.0001 

for both E and H of coxarthrosis patients. Most likely, this is due to the smaller sample size: 

11 patients with hip fractures versus 31 coxarthrosis patients. The same positive correlation 

with the mineral to matrix ratio was observed for the local yield stress (p<2.2*10-16, R2=0.062). 

This correlation remains for both coxarthrosis (p=1.9*10-10, R2=0.037) and fracture patients 

(p=1.8*10-13, R2=0.15) (Figure 6). Besides local mineralization levels, out-of-plane MCF 

orientation was measured following the qPRS method. Neither elastic nor yield 

micromechanical properties significantly correlated with the MCF out-of-plane angle (p=0.45, 

p=0.82, respectively).  
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Figure 6. Local mineral-mechanical relationships of compact bone in relation to the patient's age and primary 

diagnosis. 

 

3.4. Overall correlation between measured bone properties 

A multiple regression analysis was carried out to assess the overall correlation between 

measured bone properties. Pearson correlation matrix, shown in Figure 7, summarizes the 

output correlation coefficients r, where r→0 for a dismal correlation and r→1/-1 suggests a 

distinct positive/negative correlation between the parameters. The significant correlations 

(p≤0.05) are additionally highlighted with the black frame. Note that the presented analysis 

was carried out on the averaged bone properties per patient, therefore, the correlation 

results are somewhat different from the site-matched analysis. 

Overall, the mineral to matrix ratio and, marginally, the yield stress values averaged per 

patient demonstrate a negative correlation with the patient’s age (r=-0.4 and p=0.02, r=-0.2 

and p=0.04, respectively). Elastic moduli correlate strongly with hardness (r=0.86, p<0.0001), 

as expected from the methodology [56], while a moderate correlation with the yield stresses 

is observed (r=0.47, p=0.03). 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



17 

 

Figure 7. Pearson's correlation coefficients (r) from the multiple regression analysis of the averaged bone properties 

for all patients. Significant correlations (p≤0.05) are marked with the black frame. 

 

As shown in Figure 7, local crystallinity increases with the local mineral to matrix ratio 

(r=0.7, p=0.001) and marginally decreases with the sample-level TMD (r=-0.1, p=0.01) and 

BMD (r=-0.2, p=0.01). Interestingly, local crystallinity correlates positively with the amide I 

sub-peak ratio I~1670/ I~1640 (collagen dis./order ratio, r=0.7, p<0.001), suggesting a 

hidden interplay of mineral and organic bone fractions. Mineralized collagen fibrils' out-of-

plane orientation correlates with the mineral to matrix ratio (r=-0.4, p=0.02). However, this is 

likely due to the Raman ratio’s quantification similarities since both of these Raman 

parameters depend on the amide III integral area. 

3.5. Prospective bone fracture biomarkers 

Principal component analysis (PCA) was employed to define a combination of bone 

parameters measured in this study, which would explain the observed variations in bone 
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properties. It allowed us to reduce the data’s dimensionality by defining linear combinations 

of bone properties, acting as new eigenvectors (principal components) for our 

multidimensional dataset. Eight variables were included in the PCA: patients' age, bone 

hardness, yield stress and strain, mineral to matrix ratio, amide I sub-peak ratios, and TMD. 

According to the PCA, the first two principal components could explain ~45% of observed 

variations between the patients (Appendix B, Figure B 1).  

Four classification algorithms were tested on the PCA-processed final data with reduced 

collinearity: logistic regression, support vector machines, Gaussian Naïve Bayes and k-nearest 

neighbor. The classifiers were chosen based on their applicability to the medical diagnosis 

[57–59], especially osteoporosis prediction [60]. With the training-to-test dataset ratio of 

0.75:0.25, the dataset from 32 patients was used to train the model, while the remaining 10 

were used to evaluate the models’ performances. The model accuracy was calculated as the 

fraction of the correct predictions, defined as the ratio of true positives and true negatives to 

all observations. The first three classification algorithms showed matching accuracy scores of 

0.7, while KNN was only able to reach a 0.5 score (Appendix B, Figure B 2). The receiver 

operating characteristic (ROC) curve with the area under the curve (AUC) measure allowed us 

to assess the classifier performance further. The Gaussian Naïve Bayes algorithm reached the 

highest AUC score of 0.71, while logistic regression and support vector machines only 

reached a 0.52 AUC score. Accordingly, the Naïve Bayes algorithm was chosen for the final 

data classification. As a result, the variables that contributed the most to the fracture 

predictions were the mineral to matrix ratio, micropillar yield stress and indentation hardness. 

Exact scores as well as the model confusion matrix can be found in Appendix B, Figure B 3.  

4. Discussion 

In this study, microscale elastic and yield mechanical properties, as well as bone 

composition and morphology, were assessed in 42 aging patients. All measurements were 

done ex vivo using laboratory-based methods for morphological, compositional, and 

micromechanical compact bone properties assessment. The collected experimental data 

included compact bone tissue mineral density and volumetric fraction, measured via micro-

CT. Compositional properties related to mineral and organic content were assessed via 

polarized Raman spectroscopy, and microscale elasto-plastic mechanical properties were 

measured via nanoindentation and micropillar compression techniques. The output collection 

of bone properties was combined with the clinical information about the patient's age, sex 
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and primary diagnosis, including the incidence of the hip fracture. Statistical analyses within 

the collected data frame as well as between the site-matched bone properties were 

performed with the aim of better understanding the structure-mechanical property 

relationships in a human compact bone at the microscale and identifying prospective bone 

parameters related to bone fracture. The measured database of bone tissue properties 

together with the patient information allowed us to run the in-silico fracture prediction 

algorithm based on Naïve Bayers classification of the PCA-processed data. To our knowledge, 

this is the first study where supervised machine learning algorithms are applied to the 

multimodal dataset of bone ECM properties with an attempt to define perspective markers of 

bone quality. The described approach can be used in future multimodal studies on bone 

quality assessment and correlation to the clinical methods of fracture risk prediction. 

4.1. Microscale bone mechanical properties 

The elastic moduli of the cortical bone regions of the femoral necks investigated in this 

study varied from 15 to 28 GPa between the patients. Similarly, hardness values from 530 to 

880 MPa were observed. This agrees with independently reported nanoindentation data on 

the human femur with elastic moduli of approximately 16 to 28 GPa [56,61–64] and about 

300 to 760 MPa hardness values [61,65,66]. High variation within the inferomedial region may 

be due to inherited bone tissue heterogeneity. For the future studies taking into account the 

periosteum-endosteum localization, besides osteonal-interstitial zonal variations, would help 

to reduce the macroscopically induced variations of the tissue level properties. 

Patients with hip fractures exhibited comparable microscale bone hardness and elastic 

moduli as that of coxarthrosis patients. Moreover, neither patient’s age nor sex had a 

significant influence on the microscale mechanical properties. A similar absence of correlation 

between the elastic properties and the fracture status of the femoral necks was shown by 

Fratzl-Zelman et al. [62] for the femoral neck samples from elderly female patients. In another 

study by Mirzaali and Schwiedrzik et al. [67], indentation measurements were done on 

proximal femurs from donors of age 46-99, and microindentation properties were shown to 

be constant over age and not sex-dependent. Jenkins et al. found a 7% reduction in fracture 

toughness per decade for the cortical bone at the inferomedial femoral neck but no influence 

of osteoporosis or osteoarthritis [68]. In a more recent study by Bonicelli et al., lamellar bone 

hardness of the femoral head was found to be lower for donors with hip fractures [69].  
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While nanoindentation is a commonly used laboratory-based method of bone 

mechanical properties analysis [56], micropillar compression studies are scarce. Indeed, the 

micropillar compression technique requires the time-consuming preparation of bone 

micropillars [31,36,70–73], in contrast to the plain polished surface that is required for the 

nanoindentation measurements. On the other hand, micropillar compression can provide 

information not only on bone elastic properties but also on yielding and post-yielding 

behavior. In the current study, we employed a recently developed laser ablation protocol for 

fast and repeatable micropillar fabrication [33]. A similar approach was developed for in situ 

micromechanical testing at synchrotrons, but the authors used an additional ion-beam-based 

preparation step to create the final micropillars [72]. From our estimations, bone surface 

temperature during ablation should not exceed 80°C [33], which is below the denaturation 

point of dry collagen [34], but may still affect the collected Raman spectra [74]. The laser 

ablation procedure presented here allowed us to carry out a high-throughput micropillar 

compression study, approaching the measurement rate of the nanoindentation method.  

This is the first study where high-throughput micropillar compression experiments 

(N=1441) were carried out on a large number (N=42) of human cortices. Consequently, we 

cannot directly compare measured microscale yielding bone properties at the femoral neck 

site with other studies. Observed yield stress values varied from 206 to 295 MPa between the 

patients. That is above previously reported values for the macroscopic compressions of the 

femur diaphysis cortical bone (148±16 MPa) [67], highlighting the “smaller is stronger” effect 

in bone [31]. On the other hand, yield stress values assessed in the present work are 

somewhat lower than available data on micropillar compression of femoral condyle 

trabecular bone (313-327 MPa, 3 μm pillar diameter [71]) or iliac crest cortex (~350 MPa, 5 

μm pillar diameter [70]). However, as was nicely demonstrated by Tertuliano and Greer [71], 

micropillar size drastically affects the output properties since different levels of hierarchy are 

being tested. As a tradeoff for the high-throughput measurements, laser-ablated micropillars 

had a bigger size (almost five times larger diameter than in previously reported studies 

[31,35,36,70,71,73]) and a taper, which influence was accounted for through the use of finite 

element simulations [33]. Consequently, a larger number of material defects like lacunae or 

lamellae interfaces are present within the micropillar. An even more drastic decrease in 

strength values with the specimen size was observed by Casari et al.  [75] during microscale 

tensile testing. 
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Microscale yield stress values were consistent between female and male patients across 

investigated ages (45-89 y.o.). The occurrence of the hip fracture also seems to not affect the 

compressive yield stress and strain at this scale, although the tensile failure strain is reported 

to be lower for the fractured donors at the femoral head trabeculae [69]. 

Mechanical tests were carried out at ambient temperature and humidity. This, together 

with the tissue fixation procedure might have diminished age-related differences in 

mechanical properties. Microsamples in fully wet conditions swell and deviate from the in situ 

boundary conditions desired for homogeneous stress/strain distributions during relevant 

mechanical tests [73]. Micropillar compression in wet conditions may introduce a new bias in 

the detection of age-related differences and computational methods to overcome this 

conundrum are endorsed. 

4.2. Bone composition and morphology 

Tissue mineral density values assessed in the current work were in line with available 

studies (868-1020 mgHA/cm3 [76,77]). Bone volume fraction levels are similar to reported 

measurements, reaching up to 99% of BV/TV (1% porosity [77]). However, we are likely not 

able to segment the smaller pores like lacunae with the available resolution (17.2 µm voxel 

size). Bone density (BMD, TMD) as well as the bone volume fraction were consistent between 

the patients' cohorts (both sex, both diagnoses) and were seemingly constant across the 

investigated ages. On the contrary, Voumard et al. observed decreased aBMD as well as bone 

volume fraction with the donor's age [76]. Most probably, we do not observe any correlation 

with age because we only measured the inferomedial region of the femoral neck, in contrast 

to the whole neck slice [76]. Indeed, geometrical features at the femoral neck, especially 

cortical bone thickness, contribute drastically to hip fracture occurrence [78]. Thus, bone 

fractures might be a result of a complex interplay of tissue properties with geometrical 

features. 

Bone compositional parameters, as assessed via quantitative Polarized Raman 

spectroscopy, were in line with previously reported values on human femurs: 0.4-1.6 mineral 

to matrix ratio [43], 1.35-1.60 amide I sub-peak ratio I~1670/ I~1640 [46,47]. Available data on 

the Raman I~1660/ I~1683 ratio is only reported for the young mice models: 1.9-2.5 [48]. We 

observed marginally increased mineral crystallinity values (0.065 in comparison to 0.05-0.06 

in other works [67,79,80]), which may indicate changes in the strain environment of the lattice 

possibly caused by the sample fixation and embedding procedure [81]. As anticipated, clear 
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zonal dependence is present for investigated compositional parameters. More specifically, 

interstitial bone regions exhibit 5% higher mineral to matrix ratios, similar to other studies 

[27,80]. Mandair et al. used the ratio of v3PO4/v1PO4 (I1044/I956) as a metric for lamellar 

organization, which could additionally be used in the future to assess the differences in 

organization between interstitial and osteonal bone [82]. Averaged mineral to matrix ratios 

did not correlate with sample level TMD, most likely due to the small range of both 

parameters and different physical meaning behind. 

Both hip fracture and coxarthrosis patients exhibited comparable bone tissue 

composition. That is in contrast to other studies that demonstrated significant variations in 

matrix maturity (amide I subpeak intensities ratio I1660/I1690) [83,84] or mineralized collagen 

fibril alignment (I1044/I956 and I1244/I1268)[82]. However, the measured sample volume in the 

present study was far (often in the opposite quadrant) from the fracture site. A stronger 

correlation between the tissue composition and the fracture occurrence is anticipated for the 

fractured regions. 

In the current work, only bone compositional characteristics were found to correlate 

with the patient's age, similar to other studies mentioned in Table 3. In particular, the bone 

mineral to matrix ratio decreased with age while amide I sub-peak ratio I~1660/ I~1683 is 

increasing. The former might be an unexpected finding because it is well-accepted that 

mineralization generally increases with age [85] or stays constant after reaching skeletal 

maturity [67]. The majority of previous studies on bone compositional assessment in humans 

did not find a significant correlation between various mineral to matrix ratios and the 

patient’s age (Table 3). In the present work, the mineral to matrix ratio was measured as an 

integrated area ratio of secondary phosphate over amide III. This ratio was not reported in 

earlier studies on aging human bones. However, it should be included in the future since it is 

independent of the incoming laser polarization and correlates with the Ca content [43]. The 

observed decrease in the mineral to matrix ratio in the current study is likely due to the 

organic contribution (amide III).  

Furthermore, we observe an increase with age amide I sub-peak ratio I~1660/ I~1683. 

Similarly, the amide I area [86] as well as the amide I I~1660/ I~1690 sub-peak ratio was shown 

to positively correlate with age [47] (Table 3), yet the physical origin of these sub-peaks is not 

well understood. Some studies claim that this sub-peak ratio corresponds to the one 

collected through FTIR, where it provides the ratio of non-reducible (mature trivalent) over 

reducible (immature divalent) enzymatic crosslinks [87]. However, it is debatable whether this 
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sub-peak ratio can represent mature to immature crosslink ratio in Raman spectroscopy 

measurements [49]. In FTIR studies, this crosslink ratio increased with osteoporosis [83] and 

fractures [84].  
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Table 3. Overview of other works where bone compositional properties in relation to patient age and/or fracture occurrence were assessed via vibrational spectroscopy (Raman, FTIR). 

Samples Method Mineral to matrix ratio 
Collagen dis./order 

ratio 
Collagen maturity ratio Crystallinity Ref 

Proximal femur cortical bone  

(N=39, 46-99 years) 

Raman,  

633 nm 

              ⁄   

NS with age 

       (     )⁄  

NS with age 
[67] 

Proximal femur cortical bone  

(N=58, 21-101 years) 

Raman,  

785 nm 

              ⁄   

NS with age 

                ⁄  ↑ with 

age for male donors 

          ⁄   
(                 ) 

↑ with age 

          ⁄   
(                 )  

↑ with age 

 [47] 

Mid-diaphyseal femur, cortical bone 

(N = 16, 52–85 years) 

Raman,  

633 nm 

         ⁄  (        ⁄ )  

↑ with age 
       (     )⁄  

NS with age 
[88] 

Femur cortical bone  

(N=62, 21-101 years) 

Raman,  

785 nm 

                ⁄  NS with 

age 

       (     )⁄  

NS with age 
[89] 

Femoral neck cortical bone  

(N=42, 45-89 years);  

fracture (N=11) and coxarthrosis 

(N=31) 

Raman, 

633 nm 

                ⁄   

↓ with age, NS between 

fract./coxarth. 

          ⁄   
(                 ) 

NS with age, NS 

between fract./coxart. 

          ⁄   
(                 )  

↑ with age, NS between 

fract./coxarth 

     (     )⁄  

NS with age, NS 

between fract./coxart. 

Pres. 

work 

Femoral head  

(N=26, 50-72 years, women); fracture 

(N=15) and controls (N=11) 

Raman,  

785 nm 

              ⁄   

NS between fract./non-

fract. 

   [90] 

Mid-diaphyseal humerus cortical 

bone (N=9, 34–99 years) 

Raman,  

244 nm 

            ↑ with age  [86] 

Transiliac bone trabeculae 

(N=54, 1.5-23 years) 

Raman,  

785 nm 

                ⁄   

NS with age 

               (         )⁄  

NS with age 

     (     )⁄  

NS with age 
[91] 

Iliac cortical bone (N=21, 10-12 

years), juvenile osteoporosis (N=9) vs 

controls (N=12) 

FTIR               ⁄   

NS between groups 

           ⁄   

↑ in juvenile osteoporosis 

patients 

          ⁄    

NS between groups 
[83] 

Iliac bone from women with fracture 

(N=60) and without (N=60) 

FTIR               ⁄   

NS between groups 

           ⁄   

NS btw groups 

          ⁄    

NS between groups 

[92] 

Iliac bone from women with fracture 

(N=32) and without (N=22) 

FTIR               ⁄  

NS between groups 

 

 

          ⁄   

↑ in fractured patients 

          ⁄   

NS between groups 
[84] 

A = peak area, I = peak intensity, NS = non-significant 
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Although the observed dependence of the Raman ratios from age is significant 

(p≤0.04), the coefficient of determination is quite low for both mineral to matrix ratio and the 

amide I sub-peak ratio (R²≤0.13). The fact that there is a significant correlation might come 

from the high number of samples. 

We hypothesize that the observed interplay of the mineral-organic fractions may 

smoothen the observed variations in the mechanical properties versus the patients' age. As a 

potential pathway, extensive collagen cross-linking may increase the stiffness of the organic 

part, thus compensating for the reduced tissue mineralization and keeping the averaged 

microscale mechanical properties constant for patients at ages 45 to 89. Similar conclusions 

were drawn in the work of Fratzl-Zelman et al.[62].  

4.3. Site-matched analysis of the bone structure-property relationship 

Besides assessing averaged microscale properties of the compact bone, site-matched 

qPRS with nanoindentation, as well as micropillar compression, allowed assessing local 

structure-property relationship analysis. All investigated mechanical properties except yield 

strain demonstrate a weak (R2<0.15) but significant (p<0.05) positive correlation with the 

mineral fraction of bone, which is in line with previous studies [70,93,94]. On the averaged 

bone level, the correlation between the yield stress, elastic moduli and hardness versus TMD 

(Figure 7, Pearson’s coefficients 0.4, 0.3 and 0.4 accordingly) was comparable to the one at 

the local site-matched analyses. Interestingly, the highest correlations for the site-matched 

local analysis were observed between the yield stress vs. the mineral to matrix ratio and the 

elastic modulus vs. the mineral crystallinity (Figure 7, Pearson’s coefficients 0.4 for both). This 

suggests that the yield properties of bone lamellae depend on both mineral and organic 

bone portions, while elastic properties are more strongly influenced by changes in the 

mineral bone phase. However, as discussed in section 4.2, it is actually the interplay of 

organic and mineral phases that affects the mechanical properties [95,96].  

To our surprise, local micromechanical properties were independent of the out-of-plane 

MCF angle. The inclusion of the angle in a multilinear model for the local mechanical 

properties versus the mineral to matrix ratio did not improve the correlation. This is striking 

since a strong dependence on the out-of-plane MCF angle is expected for this anisotropic 

nanocomposite and was demonstrated in earlier studies [35]. A likely explanation for this 

discrepancy is the diverging volume of interest of the different measurements. For the 

nanoindentation maps, qPRS measurements were carried inside the map, yet not within exact 
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indentation spots but rather in between. Since the distance between the indents was 20 µm, 

different lamellae could have been measured. While the polarized Raman spectra from the 

bone micropillar were collected within the pillar dimensions, the analyzed volumes from qPRS 

(~8.6 µm3) and compressions (~90 µm3) were around an order of magnitude different. Thus, 

the MCF orientation within the larger portion of the micropillar volume was not analyzed. In 

future studies, care should be taken to strictly site-match measurements and to choose 

volumes of interest for the microstructural measurements as close as possible to those of the 

mechanical measurements. Yet the microscale mechanical properties demonstrate a 

prominent correlation with the mineral to matrix ratio, suggesting that the local composition 

is more continuous at measured volumes. 

4.4. Potential markers of bone quality 

This study provides a framework of laboratory-based methods for the bone composition, 

morphology, elastic and yield mechanical properties analysis. Consequently, wide spectra of 

bone parameters were measured and correlated with the patient's sex, primary diagnosis and 

age. Another motivation for this study was to find the most prospective bone characteristics 

which could be used for fracture risk prediction in the future. For this, we run a Gaussian 

Naïve Bayes classification algorithm on the final matrix of collected bone properties per 

patient. Naïve Bayes is a common method for building prediction models for a binary 

outcome and has been extended for disease classification [57–59], including osteoporosis 

[60]. Here, we apply this algorithm to multimodal characteristics of bone for fracture 

prediction.  

Naïve Bayes classification algorithm was trained on the dataset from 32 patients and 

reached the 0.7 prediction accuracy during the test phase on the remaining patients dataset, 

meaning that 7 out of ten patients were correctly classified (Figure B 3). Yet, from the 

confusion matrix, it seems that the algorithm will likely identify a true fracture patient as it 

would assign it to the coxarthrosis cohort. But because the number of tests is so low, an 

additional characteristic is involved for the model accuracy estimation – the Area Under the 

Curve (AUC) of the Receiver Operating Characteristic (ROC), which evaluates that classifier 

over all possible sensitivities thresholds. As a result, 0.71 AUC score was achieved, 

highlighting the perspective variables for bone fracture prediction: the mineral to matrix ratio, 

indentation hardness and micropillar yield stress. All of these are often overlooked and are 
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not included in general patient screening due to the lack of high-precision, low-cost 

instruments for their measurements.  

Nowadays, more and more studies emphasize the influence of micromechanical bone 

properties on macroscale bone strength and toughness [67]. We can only anticipate the 

future bone characterization techniques and their potential impact. Moreover, bone 

compositional properties, as assessed via Raman spectroscopy, were also shown to correlate 

with bone fracture toughness [46,47]. This is in line with the proposed classification model, 

where mineral to matrix ratio demonstrates a strong influence on fracture prediction. 

Surprisingly, patient age did not dominate the fracture prediction model. However, the 

influence of age might be indirectly included in the model through compositional variations 

(e.g. mineral to matrix ratio, matrix maturity ratio). From the patient cohort analysis, it is 

evident that older patients have an increased risk of bone fractures, in line with the clinical 

fracture risk questionnaire. 

It is important to highlight that the sample size in this analysis is too low to claim a 

universal classification model. With the small to moderate sample size and unbalanced 

dataset, the Naïve Bayes is prone to prediction bias. However, the proposed analysis strategy 

can be applied in further research on combining different bone quantity and quality 

parameters for fracture risk predictions. Although challenging to achieve in a laboratory 

setting, a larger number of patients (N>200) is required. 

4.5. General limitations 

In the present study, cortical bone properties of hip fracture patients were compared to 

the ones of coxarthrosis patients. Although coxarthrosis patients cannot be assigned to a 

control group, we do not expect an influence of the osteoarthritis on the femoral neck 

cortical bone properties. While a large influence is observed in the subchondral bone region 

due to the bone-to-bone contact, this is usually limited to the millimeter range from the 

subchondral bone surface and it is debatable whether coxarthrosis may affect cortical bone at 

the femoral neck [97,98]. However, severe coxarthrosis may alter the gait, consequently 

affecting the stress distribution in the femoral neck, bone remodeling and, thus, bone ECM 

properties [99]. In the current study, no patient information about the severity of coxarthrosis 

or gait alteration was available. 

Collected clinical information from the patients involved in this study was fairly limited 

and did not include clinical information about BMD values for osteoporosis and/ or 
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osteopenia screening. However, previous bone fractures for the population >50 y.o. is 

considered one of the major risk factors for osteoporosis [100]. Therefore, in this study, we 

consider the cohort of patients with fractures as patients at a high risk of osteoporosis. In 

addition, no clinical record of long-term medication was available. Bisphosphonate drugs 

have a drastic influence on bone remodeling and mineralization levels [101] and would 

certainly have affected the observed variations in the measured bone properties. 

As anticipated, femoral neck height and morphologies were not always consistent 

between the patients. Nevertheless, the surgeon followed the double osteotomy protocol, 

aiming to extract approximately 10 mm femoral neck slices from all patients. Originally 59 

femoral necks were extracted during the surgeries and further screened using the laboratory-

based micro-CT. In the end, only 42 femoral necks had intact inferomedial regions and were 

used in this study. Inconsistent morphology between the samples restricted comparative 

morphological analysis. For future study planning, it is crucial to take into account the 

morphological variations between the human bone samples, leading to decreased number of 

suitable biopsies. 

As discussed above, all reported measurements in this study were carried out on the 

inferomedial part of the femoral neck slice. This region carries most of the compressive 

loading in the femoral neck site [102,103] and consequently has an abundant amount of 

cortical bone, sufficient for the micropillar fabrication. At the same time, hip fractures were 

mainly located in the supero-posterior and -anterior quadrants of the excised femoral neck 

sections, almost opposite to the measured inferomedial region. Thus, the sampling location 

might have diminished any potential differences between the fractured and non-fractured 

cohorts. While it would be challenging to perform the micropillar compression experiments, 

nanoindentation and polarized Raman spectroscopy could potentially be applied in the 

future studies in the fractured hip regions. However, several limitations have to be overcome 

first. For example, (1) scaling down the analysis to match the lower amount of cortex, and (2) 

increasing the number of patients since this neck region is often fragmented and poorly 

suitable for the analysis proposed in this study.  

We would like to highlight that all the samples used in the study were fixed and 

embedded due to biosafety regulations in the testing facilities. This procedure, in principle, 

affects the organic fraction of the bone matrix [81] and slightly modifies the mechanical 

properties of the bone: an increase in stiffness and compressive strength is reported 

[104,105]. While bone tissues with different mineralization may be altered to varying degrees 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



29 

by fixation with ethanol, we observe small variations in TMD between the samples and 

therefore do not account for possible discrepancies. Moreover, all specimens were fixed the 

same way, allowing a relative comparison between samples. For future studies involving 

compositional analysis, the use of fresh bone samples is endorsed. With this respect, the use 

of the outlined laser ablation protocol will be invaluable since it allows preparing the 

microscale samples avoiding any vacuum conditions. 

Finally, yet importantly, there is always room for more study participants and additional 

clinical information. A simplified statistical power analysis has been performed with respect to 

discrete and continuous variables [106]. For the available sample size (N=42), with an α error 

probability of 0.05, an allocation ratio of 3, and the effect of size d=0.80, differences in the 

mean of 10% can be detected with a power of 0.8 [106]. A further power analysis for multiple 

linear regressions with an α error probability of 0.05 and 2 predictor variables showed that 

relatively weak trends with partial R2 of 0.20 can be detected with a power of 0.8. [106]. To 

reach the detection power of 0.95 for both discrete and continuous variables, in future 

studies with a similar sample number and allocation ratio, a minimum of 70 patients is 

required. Moreover, having patients screened for osteoporosis or osteopenia would have as 

well improved the final analysis of the potential bone quality markers. Although we consider 

the hip fracture patient as being at high risk of osteoporosis, additional clinical screening is 

mandatory before assigning them to osteoporotic cases.  

5. Conclusion 

In this study, bone quality and quantity were assessed at the femoral neck sites of the 

patients who underwent hip arthroplasty. For the first time the microscale yield properties of 

the human cortical bone were assessed in a large number of patients (N=42). A combination 

of high-throughput micromechanical testing techniques (nanoindentation, micropillar 

compression) together with micro-CT and quantitative polarized Raman spectroscopy 

allowed us to create a comprehensive data frame of the bone properties for each patient. 

Microscale mechanical and morphological properties at the compact bone level were 

independent of patient age, sex or fracture occurrence. Only local bone composition 

(specifically mineral to matrix ratio and I~1660/ I~1683 ratio), as assessed via qPRS, showed weak 

but significant correlation with age. The site-matched analysis of microscale mechanical, 

compositional and morphological properties allowed for quantifying compact bone's local 

structure-properties relationships. Microscale yield stress, elastic modulus and hardness 
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demonstrate a positive correlation with the mineral fraction of bone, but no correlation with 

the out-of-plane angle of the mineralized collagen fibrils. With Naïve Bayes algorithms, a 

classification model was built for hip fracture prediction at a 0.7 accuracy. Accordingly, the 

mineral to matrix ratio, indentation hardness and micropillar yield stress are the most 

prospective parameters for fracture risk prediction in laboratory settings. The presented data 

and methodological framework can be used in the future studies on comparing laboratory 

and clinical methods for the prediction of fracture risk. However, such studies require a much 

larger number of patients (N>200).  
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Appendix 

A. Micro-CT data processing 

 

Figure A 1. Steps of the micro-CT image processing.  
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B. Principal Component Analysis (PCA) and hip fracture prediction (classification) on 

the final dataset 

  

Figure B 1. Principal component analysis outputs. Left: PCA analysis with first two principal components (PC) score 

distributions for all 42 patients, with the loading plots atop the PCA, showing how strongly each variable influences 

the first two PC; colors of the points correspond to the patients' primary diagnoses: coxarthrosis – grey, fracture – 

aquamarine. Right: Explained variance from each of the PC. Note that 95% of the variation is explained by the first 7 

PC. 

 

 

Classification 

algorithm 
Accuracy AUC 

Logistic 

Regression 
0.7 0.52 

SVM 0.7 0.52 

Naïve Bayes 0.7 0.71 

KNN 0.5 0.45 
 

Figure B 2. Assessing the classification algorithms performance. Left: Receiver Operating Characteristic (ROC) curve 

for four classification algorithms (logistic regression, support vector machines (SVM), Naïve Bayes and K nearest 

neighbor (KNN)). Right: Classification algorithms accuracy and area under the ROC curve (AUC) characteristics. 
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Feature Abs contribution 

to the model 

Mineral/Matrix ratio 0.16 

Yield stress 0.06 

H 0.06 

Amide I sub-peak 

ratio I~1670/ I~1640 
0.04 

Amide I sub-peak 

ratio I~1660/ I~1683 
0.04 

Age 0.02 

Yield strain 0.02 

TMD 0.01 
 

Figure B 3. Prediction of the bone fracture patients via Naïve Bayes algorithm. Left: Confusion matrix for the 

classification. Right: Dataset variables (features) sorted per importance. 
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Highlights 

 Multimodal framework for human compact bone characterization at the microscale. 

 First high-throughput micropillar compressions of human cortical bone. 

 Microscale yield and elastic bone properties are nearly constant for 45-89 y.o. patients.  

 Only compositional properties demonstrate weak dependence on patient age. 
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