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Müller matrix polarimetry 
for pancreatic tissue 
characterization
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Polarimetry is an optical characterization technique capable of analyzing the polarization state of 
light reflected by materials and biological samples. In this study, we investigate the potential of Müller 
matrix polarimetry (MMP) to analyze fresh pancreatic tissue samples. Due to its highly heterogeneous 
appearance, pancreatic tissue type differentiation is a complex task. Furthermore, its challenging 
location in the body makes creating direct imaging difficult. However, accurate and reliable methods 
for diagnosing pancreatic diseases are critical for improving patient outcomes. To this end, we 
measured the Müller matrices of ex‑vivo unfixed human pancreatic tissue and leverage the feature‑
learning capabilities of a machine‑learning model to derive an optimized data representation that 
minimizes normal‑abnormal classification error. We show experimentally that our approach accurately 
differentiates between normal and abnormal pancreatic tissue. This is, to our knowledge, the first 
study to use ex‑vivo unfixed human pancreatic tissue combined with feature‑learning from raw Müller 
matrix readings for this purpose.

Polarimetry is a powerful technique for analyzing the optical properties of materials and  tissues1. It involves 
measuring the polarization state of light, defined by the spatial orientation of the electric field vector with respect 
to a reference plane. By analyzing the polarization state of a wave of light transmitted through or reflected by a 
sample, it is possible to gain insight into the underlying structural and functional properties of the  sample2, 3. 
Polarimetry has been used in various fields, including biology, material science, and engineering, to study the 
optical properties of a wide range of materials and  tissues4, 5.

The use of Müller matrix polarimetry (MMP) for the diagnosis of different types of tissue has been the 
subject of other studies in recent  years6, 7. MMP has been shown to be an informative tool for breast tissue 
 characterization8, 9, as well as for the differentiation of skin lesions, such as melanoma and non-melanoma 
skin  cancers10–12. It has also highlighted differences between normal and diseased ocular tissues, including the 
cornea and  conjunctiva13, 14. In addition, MMP has been employed to diagnose gastrointestinal disorders, such 
as inflammatory bowel disease and colorectal  cancer10, 15–19 as well as cervical  cancer20–22, prostate  cancer23, 24 
and giant cell tumor of  bone25. Commonly, these studies use features derived from the decompositions of the 
Müller matrix (e.g., diattenuation, retardance, depolarisation, fast axis orientation) since they provide a more 
physically interpretable  reading26, 27. Nevertheless, new studies use machine learning algorithms to generate new 
features tailored to the data and task at  hand28. These studies demonstrate the versatility and potential of MMP 
for clinical diagnosis.

However, investigating pancreatic tissue using polarimetry has been limited, particularly for fresh speci-
mens. This is partially due to pancreatic tissue being highly heterogeneous and exhibiting complex optical 
properties challenging to  characterize29, 30, combined with the challenging location of the pancreas within the 
body. Although there are developments in the indirect measurements of polarimetric features via Jones matrix 
 tomography31, direct imaging and sample collection are only achievable by complex  surgeries32. Finally, the 
technique generates large amounts of data and can be challenging to process and interpret efficiently. However, 
pancreatic diseases, such as pancreatitis and pancreatic cancer, are major health problems with high morbidity 
and mortality rates if not diagnosed and treated  early33. Accurate and reliable methods for diagnosing these 
diseases are critical for improving patient outcomes.
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Driven by the need and despite these challenges, we investigate the capability of MMP to be a valuable tool for 
diagnosing pancreatic diseases. In this study, we demonstrate the potential of multi-spectral MMP to character-
ize pancreatic tissue by analyzing fresh specimens with a custom-built device. To overcome the large amounts of 
data generated, we employ machine learning to process this data and reliably infer corresponding tissue types. 
Particularly, we measured the Müller matrices of ex-vivo unfixed human pancreatic tissue and used its raw values, 
leveraging the feature-learning capabilities of the machine-learning model, to derive optimized data representa-
tions that minimize normal-abnormal classification error. We show experimentally that our approach accurately 
differentiates between normal and abnormal pancreatic tissue. To the best of our knowledge, this is the first study 
to use ex-vivo unfixed human pancreatic tissue combined with a feature-learning algorithm for this purpose.

Methods
Data collection
We collected 15 MMP images of pancreatic biopsy specimens from 11 patients undergoing surgery at the Depart-
ment of visceral surgery and medicine, Bern University Hospital, Inselspital (see Table 1) and handled by the 
Institute of Tissue Medicine and Pathology, University of Bern. Specimen tissue ranged between 13.3mm

2 
and 192.7mm

2 in size. Informed consent was obtained from all the patients, and all personal data was fully 
anonymized. This study was approved by the cantonal ethics committee of Bern (KEK BE 2020-00498) and is 
in line with the declaration of Helsinki.

Acquisition pipeline and gold standard
Biopsies of pancreatic specimens were processed to produce the MMP images with associated annotations to 
yield a complete dataset. Specifically, we image all tissue specimens using our custom-built MMP device before 
formalin fixation, paraffin embedding, and sectioning. From HE scanned slides, manual annotations of tissue 
types were generated and overlayed onto the MMP image. Figure 1 illustrates this pipeline and the following 
sections describe each stage in detail.

MMP imaging
Specimens were first imaged using a custom-built dual-rotating retarder  polarimeter34 (Fig. 2). The polarimeter 
consists of a light source, a filter wheel, a polarization state generator, and a polarization state analyzer. We used 
broadband color filters to restrict the light source to specific wavelengths when passing through the polariza-
tion state generator. This generator comprises a fixed linear polarizer and a rotating quarter-wave plate, which 
generates the polarization state of the wave of light before interacting with the sample. Following interaction 
with the sample, the outgoing light wave passes through the polarization state analyzer, which comprises a rotat-
ing quarter-wave plate followed by a linear polarizer, before being imaged on a CMOS detector. By rotating the 
wave plates at harmonic frequencies and taking a series of measurements with a fixed color filter, the polarimeter 

Table 1.  Summary of collected data: 11 unique patients, 5 with both normal and abnormal tissue zones, from 
which 15 samples were extracted, 2 with regions of both normal and abnormal tissues. Saturated pixels were 
removed from the study.

Label Patients Samples Region area ( mm
2) Total pixels Used pixels∗

Normal 9 9 310 401,784 339,631

Abnormal 7 8 151 195,611 177,073

Total 11 15 461 597,395 516,704

Figure 1.  Data acquisition process. Notice that the sample shape in the scanned and annotated slides can 
be significantly different from the one captured by our MMP device due to the sample passing through the 
histopathology laboratory pipeline. Following a slide annotation, our data contains both MMP images, and 
corresponding tissue type classifications at pixel-wise levels.
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constructs pixel-wise Müller matrices that encode the tissue’s response to any polarization state for the selected 
wavelength range. This process was repeated for each filter to reconstruct a low-resolution polarisation spectrum.

We imaged specimens using our device at a resolution of 36 pixels/mm, with pixel-wise 4× 4 Müller matri-
ces calculated at the filters’ five central wavelengths (450 nm, 470 nm, 500 nm, 540 nm, and 625 nm) for a total 
of 80 features per pixel. Müller matrices were scaled by the inverse of their first element, effectively reducing 
each matrix to 15 degrees of freedom. After normalization, the first elements of the matrices were omitted, thus 
reducing the number of features per pixel to  75 dimensions. The complete imaging of a sample took roughly 15 
minutes on average. To assess the stability of the optical characteristics during these 15 minutes, we took sequen-
tial measurements every two minutes from three samples from brain and lung tissue under the same wavelength 
and exposure time. The results do not show significant changes, indicating measurements in our experimental 
setup should not be significantly affected by measurement times.

Histology and annotation
Following MMP imaging, samples were sent for standard processing in the histopathology laboratory. Among 
others, formalin fixation, paraffin embedding, cutting, and hematoxylin and eosin (HE) staining were performed, 
and slides were digitized to high-resolution color images.

A resident pathologist then analyzed all HE images to generate pixel-wise tissue annotations. Specifically, 
each pixel in the HE images was labeled with a corresponding tissue type of “Normal” (i.e., fat tissue, exocrine 
pancreas, endocrine pancreas, and stroma) or “Abnormal” (i.e., tumor, desmoplasia, inflammation, fibrosis, and 
pancreatitis). Annotations were performed using  QuPath36.

Registration to MMP images
To generate the corresponding tissue annotations for the MMP images, the HE annotations are registered to the 
corresponding MMP images. However, due to histology process causing moderate deformations in the speci-
men, a registration step is necessary to put pixels between the HE and the MMP images in correspondence. To 
do this, correspondences were established manually through visual inspection, comparing the geometry, length, 
and appearance of the structures in the HE image, HE annotations, and the MMP image. Due to this manual 
and approximate registration process, only pixels in areas with uniform annotations were labeled with high 
confidence, leaving the remaining pixels unlabeled. By using this registration, HE annotations were then super-
imposed onto respective MMP images. Table 1 summarizes the complete dataset in terms of pixels annotated.

Classification of abnormal tissue
We propose to automate the identification of abnormal tissue by establishing a machine learning classification 
task. Specifically, a multi-layer  perceptron37 (MLP) was used to classify each pixel of an MMP image as either 
normal or abnormal. The MLP architecture consisted of a single hidden layer of 64 units and utilized the rectified 
linear unit (ReLU) activation function.

Using this MLP architecture, we trained two versions of this classifier. The first classifier, MLP-pol, was 
trained using complete multispectral MMP information, with input vectors consisting of 75 measurements of 
normalized Müller matrices at five different wavelengths for each pixel. The second classifier, MLP-no-pol, did 
not include polarization information in the input, resulting in only 5-dimensional input vectors of multispectral 
data acquired at each of the five wavelengths. Comparing the performance of the classifiers served to evaluate 
the importance of polarization information in identifying abnormal tissue.

Both classifiers were trained to predict the abnormal tissue’s probability at the given pixel. Training minimized 
the standard cross-entropy loss between the predicted probability and the ground truth over the annotated pixels 
of the training set. This minimization was performed for ten epochs. The training of each model was performed 
using the Adam optimizer with a learning rate of 10−5.

Evaluation
Classifiers were evaluated using k-fold cross-validation, with the data split into k = 4 folds on a patient-by-patient 
basis to avoid specimens from the same patient appearing simultaneously in both the training and test splits. For 

Figure 2.  (Left) Schematic representation of our custom-built dual-rotating retarder polarimeter and (Right) 
visual depiction of our instrument with a phantom  sample35.
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each fold, the models were trained using the training split and evaluated using the test split. The receiver operat-
ing characteristic (ROC) curve and the area under the ROC curve (AUC) were reported as metrics to assess the 
performance of the models. Similarly, we compute model performances when evaluating the entire sample (i.e., 
specimen classification) whereby considering the specimen abnormal if any pixel in the annotation is abnormal 
and normal otherwise. A percentile of the prediction score represents the prediction of that sample. We tested 
percentiles ranging from the 50th up to the 99th. We also report type I and II errors by setting a threshold for 
the predicted probabilities and identifying the false positives and false negatives.

Results
The MLP-pol showed excellent performance in detecting abnormal tissue. Considering abnormal as our positive 
class, MLP-pol reached an AUC above 90% and sensitivity (true positive rate) and specificity (true negative rate) 
above 80% (Fig. 3a). Conversely, the performance was significantly worse using MLP-no-pol, with a decrease 
of more than 15 percentage points in AUC. The use of polarimetry information also increased the classifier’s 
confidence and reduced the predicted probabilities’ entropy, leading to improved class separability, as shown 
in Fig. 3b and c. This improved separability was further observed when the input features were visualized in a 
2-dimensional space using t-SNE38 (see Fig. 4). The use of polarimetry data resulted in distinct clusters of normal 
and abnormal pixels that were apparent in the input feature space without needing a classifier. On the other hand, 
no clusters were observed when using multispectral features without polarimetry information. Furthermore, 
the prediction models, when applied to classify an entire specimen, yielded an AUC of 0.96 and 0.73 MLP-pol 
and MLP-no-pol, respectively.

The qualitative results of both models are shown in Fig. 5. The MLP-no-pol (column 3) appears unable to 
distinguish between normal and abnormal regions. This is particularly pronounced in samples A and B, where 
regions of both tissue types were classified with similar prediction scores, confirming the overlap observed in 
Fig. 3c. While the performance was slightly better in sample C, we still observed low confidence in the separation 
of both types of tissues, and the prediction seems to follow the visual differences in pixel intensities. In contrast, 
the MLP-pol classifier does not exhibit these inconsistencies and correctly identifies different tissue types with 
high confidence. Its predictions also appear accurate outside of the MMP annotated regions, as evidenced by the 
similarity between the probability maps and the binarized annotated HE slides from the pathologist (column 2).

A probability threshold of 0.43 resulted in an average sensitivity of 80% in the MLP-pol method, with an aver-
age of 26% false positives per sample. This large false positive rate was primarily caused by a single specimen in 
which 90% of its normal pixels were wrongly predicted as abnormal. The majority of pixels of this specimen were 
located in the unhealthy region of the t-SNE plot as illustrated in Fig. 6). On average, abnormal samples exhibited 
19% false negatives per sample, again primarily driven by a single sample with 51% false negatives (see Fig. 7).

Discussion
The results of our experimental study demonstrate the utility of polarimetry in identifying distinct tissue types 
within pancreatic samples. We evaluated the performance of a machine learning model utilizing polarimetric 
information acquired at five distinct wavelengths in differentiating normal and abnormal fresh pancreatic tissue 
biopsies. Our findings confirm that incorporating polarimetric information results in a significant improve-
ment in classification accuracy compared to the use of multi-wavelength information alone. These results fur-
ther highlight the challenges faced by surgeons in visually distinguishing between different tissue types in the 
surgical environment. In contrast, using polarimetry-based methods, such as the one employed in this study, 
demonstrates a powerful capability for characterizing and differentiating tissue types. Visual inspection of the 

(a) (b) (c)

Figure 3.  (a) ROC curves and AUCs attained on the test set by each evaluated model. Values are averaged over 
4 folds and error bars indicate 1 standard deviation. (b) Boxplot of prediction probabilities using MLP-pol and 
(c) MLP-no-pol. The prediction scores observed on the MLP-no-pol (c) depict a considerable overlap among 
classes, while a clear class separation is observed on MLP-pol (b).
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results supported the quantitative findings and enabled the direct projection of predictions at the pixel level on 
the polarimetric images.

t-SNE plots for all samples (see Fig. 4) depict embedding spaces generated by the MMP that formed two 
groups based on their tissue type, while using no-pol features did not generate a clear grouping. Evaluating the 
highlighted pixels from samples A and B revealed that the pixels from the same sample but with different tissue 
types are still located correctly within their tissue type group. This supports our claim that the MMP is sensitive 
enough to overcome some intra-sample correlation and yet be representative of tissue characteristics.

Two samples yielded important inconsistent results. One sample, which appeared normal, had many pixels 
classified as abnormal. As depicted in the t-SNE plot below (Fig. 6), this sample’s features were found to be closer 
to the abnormal group than the normal group. One possible explanation for this discrepancy is that it could result 
from the limited size of the data set, where the feature values presented by this patient fall outside the distribu-
tion of the normal patients currently represented in the data set. The second sample yielded a high level of false 
negatives. Comparing the gray-scale image with the binary ground truth (see Fig. 7) suggests the possibility of 
registration misalignment, mainly since a significant portion of the sample was accurately classified as abnormal.

From the t-SNE plot in Fig. 4, we could infer that using polarimetric features would yield better classification 
performances. Nevertheless, there were samples where the MLP-no-pol yielded results closer to the MLP-pol. In 
Fig. 8, we see that both models were able to identify important regions - the main difference is in the confidence of 
these predictions. The contrast in prediction scores produced by MLP-pol is clear and consistent with the results 
on other specimens and across test folds. On the other hand, the scores predicted by MLP-no-pol are in a narrow 
range that can be found in both normal and abnormal tissues and correlates strongly with differences visible on 
the grayscale image. This lack of separation among tissue types and consistency negatively impacts its AUC and 
increases the performance variance across folds, rendering the pixel intensities model unreliable for this task.

The results presented thus far are at a pixel level. However, a proxy for sample-level performance can be 
obtained by utilizing a percentile of the prediction score for a given sample as the prediction for the entire 
sample. On the same patient test folds evaluated for the pixel-level model, by starting at the 60th percentile and 
proceeding up to the 99th percentile, the MPL-pol exhibits an AUC of 96± 6 . In contrast, MLP-no-pol only 
yields an AUC of 73± 18 at best. The difference in the mean and standard deviation of this sample-level AUC 
further highlights the consistency of polarimetric information for tissue type differentiation.

Figure 4.  Visual representation of MMP pixels using t-SNE analysis. (First column) t-SNE plots generated 
using all acquired samples. (Second and third columns) Highlighted observations from two samples containing 
both tissue types. The pol data generated a t-SNE embedding space where even pixels coming from the same 
sample are grouped according to their tissue type. The no-pol data was unable to generate an embedding space 
with clear tissue type separation.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16417  | https://doi.org/10.1038/s41598-023-43195-7

www.nature.com/scientificreports/

There are, however, several limitations in the current study. One of them is that our current instrument 
design requires one measurement per color filter, and the pixel-wise Müller Matrix calculation algorithm is 
time-consuming. Each measurement takes approximately 3 minutes, resulting in a total acquisition time of 15 
minutes. This is compounded by an existing additional up to 20-minute transport time of samples between the 
operating room and the imaging system. Consequently, as the tissue samples are analyzed, dehydration occurs 
and implies that the properties of the samples change over time. While these changes only moderately altered the 
optical properties of tissue in which we tested the reading’s stability (brain and lung), the metabolic aspect may 
be more severely impacted. Given that the exact physical process of how tissue sample and polarimetry interact 

Figure 5.  Predictions results for three test samples: (A) entirely normal, (B) entirely abnormal, and (C) with 
both regions. The probability maps generated by MLP-pol correctly predicted the different tissue types with 
high confidence, including the two regions within the same sample. Predictions outside the annotated region 
matched the annotated slide. In contrast, the predictions of MLP-no-pol for samples A and B yielded scores 
with very low differentiation. On sample C, although it identified differences within the sample, it lacked the 
confidence presented by MLP-pol.

Figure 6.  Sample exhibiting a high rate of false positives. t-SNE plot highlighting normal pixels that are located 
within the abnormal region.
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remains unknown, it is likely that our assumption that Müller matrices of tissue are constant over time requires 
further investigation, in our case, specifically for pancreatic tissue.

Another important limitation of the present study is that after collection, the samples undergo standard 
histopathological processing, which can alter the geometry of the sample. This renders the registration between 
HE and our device’s images a challenging task. As a result, misalignment between some samples and their cor-
responding HE slides can lead to annotation errors. While we have mitigated this by only using annotations from 
continuous regions, some annotations may be incorrect. Similarly, while the dataset collected and presented here 
includes over 500’000 MMP data points, these stem from 11 unique patients. As such, the generalization of our 
results to a broader population should be cautioned.

In summary, however, our results show encouraging evidence that spectro-polarimetry can be an effective 
differentiation tool for pancreatic tissue subtypes. In the future, we will investigate the ability to differentiate 
within the abnormal tissues - mainly separating the malignant tumor and desmoplastic reaction from fibrosis or 
chronic pancreatitis. This could open the door to one more source of information to improve diagnostic accuracy.

Data availability
The datasets generated and/or analysed during the current study are not publicly available as they are undergoing 
intellectual property protection at present, but are available subject to terms and conditions from the correspond-
ing author on reasonable request.
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