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Abstract 

Background  Even for an experienced neurophysiologist, it is challenging to look at a single graph of an unlabeled 
motor evoked potential (MEP) and identify the corresponding muscle. We demonstrate that supervised machine 
learning (ML) can successfully perform this task.

Methods  Intraoperative MEP data from supratentorial surgery on 36 patients was included for the classification task 
with 4 muscles: Extensor digitorum (EXT), abductor pollicis brevis (APB), tibialis anterior (TA) and abductor hallucis 
(AH). Three different supervised ML classifiers (random forest (RF), k-nearest neighbors (kNN) and logistic regression 
(LogReg)) were trained and tested on either raw or compressed data. Patient data was classified considering either all 
4 muscles simultaneously, 2 muscles within the same extremity (EXT versus APB), or 2 muscles from different extremi-
ties (EXT versus TA).

Results  In all cases, RF classifiers performed best and kNN second best. The highest performances were achieved 
on raw data (4 muscles 83%, EXT versus APB 89%, EXT versus TA 97% accuracy).

Conclusions  Standard ML methods show surprisingly high performance on a classification task with intraoperative 
MEP signals. This study illustrates the power and challenges of standard ML algorithms when handling intraoperative 
signals and may lead to intraoperative safety improvements.
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Background
Intraoperative neurophysiological monitoring (IOM) has 
become an integral part of high-risk neurosurgical and 
orthopedic procedures [1]. Monitoring motor evoked 
potentials (MEP) is a key tool for assessing the func-
tional integrity of motor pathways during supratentorial, 
infratentorial and spinal surgeries and predicting motor 
outcome [2–11]. The parameters that we traditionally 
extract from MEPs, such as amplitude, motor threshold 
and morphology, vary considerably even in healthy sub-
jects and therefore make interpretation of the signals 
challenging [9]. For instance, this lack of clear features 
to uniquely identify muscle groups can lead to labelling 
errors resulting in false positive or false negative alarms 
[12]. In addition, the quality of IOM data is often poor 
due to the noisy operating-room setting and the influ-
ence of numerous environmental factors [10].

The use of machine learning (ML) in medical research 
and clinical practice has rapidly expanded over recent 
years. ML been applied in diagnosis and prognosis as well 
as in classification of diseases [13–15]. Recently, there has 
been an increased interest in applying ML to IOM data 
[16]. Among other examples, Holze et al. applied super-
vised ML to facial surface electromyography (EMG) data 
to assess facial function [17], Jamaludin et al. used algo-
rithms to predict functional outcomes based on tran-
scranial MEPs [18] and Zha et al. used neural networks 
to investigate automated classification of free-running 
EMG waveforms [19]. Presently, Mirallave Pescador et al. 
propose to use  Bayesian Networks to assess evidence in 
IOM [20].

ML can handle a large amount of data and can support 
the decision-making process [21]. ML models are gener-
ally expected to generate improved results by continuing 
their learning on additional data. However, the perfor-
mance of ML algorithms depends critically on the choice 
of data, its quality (which may be improved by adequate 
preprocessing) and methods used to prevent bias and 
overfitting [21, 22].

In this proof-of-concept study, we focused on the clas-
sification of MEPs according to the muscles they were 
recorded from. We opted for this setting instead of a 
more complex task, such as prediction of postoperative 
outcome, primarily because the ground truth is not sub-
ject to observer bias. This simple task serves as a model 
to assess opportunities and limitations of different ML 
paradigms in handling MEP data. In this context, we 
were interested in how well these ML algorithms perform 
on completely unprocessed data compared to minimally 
preprocessed and feature engineered data. This is a first 
step toward the implementation of ML algorithms for 
more complex tasks that may help improve safety, for 

example via automatic alarms in case of mislabeling. Fur-
thermore, using ML to understand MEPs and their fea-
tures in the muscle identification task could lead to the 
refinement of MEP warning criteria in the future.

Materials and methods
This study was approved by the local ethics committee 
according to Swiss guidelines. All included patients gave 
their informed written consent for further use and publi-
cation of their anonymized data.

Signal recordings and MEP data
MEPs are bioelectrical signals recorded from muscles 
in response to stimulation of the motor cortex or corti-
cospinal tract [6]. In IOM, MEPs are usually elicited via 
electric stimulation through corkscrew electrodes at the 
scalp and recorded via needle electrodes in the muscle 
belly (Fig. 1). The MEP data used in this study was retro-
spectively analyzed and stems from IOM recordings dur-
ing neurosurgical procedures on 36 patients. There were 
16 females, 20 males, the mean age at surgery was 59, 35 
patients were operated for a brain tumor, one patient for 
a vascular pathology, 19 patients had no pre-operative 
motor deficits, 8 had mild and 9 had moderate or severe 
motor deficits before the surgery. IOM was performed 
according to a standardized protocol, as previously 
described [8, 23], at a single center (Inselspital, Univer-
sity Hospital Bern, Switzerland), from 2018 to 2022. 
The MEPs were recorded with ISIS Systems (Inomed, 
Emmendingen, Germany). The sampling frequency was 
20  kHz and hardware high- and low-pass filters with a 
cutoff of 30 Hz and 5 kHz, respectively, were used on the 
machine. We first restricted the recordings to 2000 data 
points, corresponding to 100 ms windows for each signal. 
We focused on MEP signals from 4 muscles which are 
routinely monitored during supratentorial surgeries and 
were available in all included patients (Fig.  1): Extensor 
digitorum (EXT), abductor pollucis brevis (APB), tibialis 
anterior (TA), and abductor hallucis (AH).

The raw data was exported as EDF files from the IOM 
device and further processed using custom-made Python 
3 scripts.

Exploratory data analysis
To assess the variability of our recorded data, we per-
formed peak detection and explored both amplitude 
and latency distribution in all patients. The peaks were 
detected after a cutoff of 17.5 ms to exclude stimulation 
artifacts and amplitude was measured as the absolute dif-
ference of the minimum to the maximum of the signal.

The onset latency was also detected starting at a cutoff 
of 17.5  ms and was defined as the time point when the 
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Fig. 1  MEP data collection. A Timeline of MEP data collection during a surgical operation illustrating that MEPs get recorded irregularly 
and not continuously. B Location of the 4 recorded muscles and sample MEP traces for each muscle. © Inselspital, Bern University Hospital, Dept. 
of Neurosurgery
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signal crosses the mean of the last 20 ms of the window 
(for which it was expected that there was no signal) plus 
or minus 2 times the standard deviation of the signal 
trace.

Machine learning pipeline
We used a standard approach to implement a ML pipe-
line (Fig. 2A). Python 3 [24] scripts were written to carry 
out each of the steps, making extensive use of the scikt-
learn package [25]. When algorithms or methods are 
mentioned this refers to ML algorithms or methods. We 
implemented 3 standard supervised learning algorithms 
for this study (see Fig. 2B) [21]:

•	 Random forest (RF) [26]: an ensemble learning 
method making use of multiple decision trees for 
supervised classification

•	 K-nearest neighbor (kNN) [27]: a supervised learning 
classifier, which uses proximity to make classifica-
tions or predictions about the grouping of an indi-
vidual data point

•	 Logistic regression (LogReg) [28]: a statistical method 
that estimates the parameters of a logistic model to 
classify data.

Preselection
A Python function was written to detect peaks with a 
prominence of more than 2 standard deviations, start-
ing after 17.5  ms. If at least one and no more than 10 
peaks were detected, the signal was assumed to contain 
an MEP. During preselection, the first 350 data points (or 
17.5 ms) of the signal were removed, in order to get rid 
of the train of five stimulation artifacts. Therefore, the 
final dimension of each MEP used for the ML application 
was 1650. Furthermore, all the MEPs were normalized 
by dividing each trace by the absolute maximum value of 
each individual patient’s highest peak MEP value.

Splitting and data augmentation
The data from 28 patients was used for the training data-
set, while the data of the remaining 8 patients was used 
for the test dataset (all randomly selected). After prese-
lection, this corresponded to approximately an 80:20 split 
[21]. In order to cope with the imbalance in the training 
dataset (more arm MEPs than leg MEPs), we used the 
synthetic minority oversampling technique (SMOTE) 
[29]).

Fig. 2  Machine learning pipeline. A The raw data is preprocessed (preselected and augmented) and then either directly used to train and test 
the 3 supervised ML algorithms, or compressed via dimensionality reduction methods (PCA or feature extraction). B Illustrations of the 3 algorithms 
applied to classify the data. Random forests use a majority vote of decision trees, k-nearest neighbors classify the data according to some distance 
metric, and logistic regression is a statistical method estimating the probability of a data point belonging to a certain class



Page 5 of 14Wermelinger et al. BMC Medical Informatics and Decision Making          (2023) 23:198 	

Tuning the hyperparameters
All of the ML algorithms used depend on parameters 
that must be chosen and optimized in order to obtain 
the best results. In our case, this was carried out using 
the built-in GridSearchCV function of the model_selec-
tion module of scikit-learn [21, 25]. We tuned these 
parameters on all the different types of training data 
and for all the different algorithms (see Supplementary 
material - Additional file 1).

Dimensionality reduction
Dimensionality reduction methods were used to reduce 
the time needed for the training of the algorithms on 
the raw data [30] and to compare the performances. In 
this study, the following standard methods were used:

•	 Principal component analysis (PCA): a technique 
which linearly transforms the data into a new coor-
dinate system that captures (most of ) the variation 
of the data with fewer dimensions [31].

•	 A simple feature extraction (FE) was carried out 
using a custom-made Python function to extract 
onset latency (see Sect.  "Exploratory data analy-
sis".), peak latency (i.e. latency of the first peak), 
end of signal (defined as the onset latency of the 
inverse of the signal), maximum, minimum, area 
under the curve (AUC), and number of peaks.

Training the classifiers
To train and test the 3 supervised ML algorithms the 
data was separated in the following ways.

First, we grouped the data according to muscle com-
parison paradigms:

•	 Four muscles simultaneously (APB versus EXT ver-
sus TA versus AH)

•	 Within upper extremity comparison (EXT versus 
APB)

•	 Across extremities comparison (EXT versus TA).

We explained in Sect.  "Splitting and data augmenta-
tion". how we obtained the training and test data sets 
for the 4-muscle comparison. To obtain the data sets 
for the within upper and across extremity comparison, 
we simply dropped the appropriate rows in Xtrain and 
Xtest with the corresponding labels from ytrain and ytest.

Then, for each of the input data matrices, the data 
was again separated after applying one of the following 
strategies for compressing data:

•	 Raw, unprocessed data (dimensions per signal: 1650)

•	 Data reduced by PCA (reduced to capture 95% vari-
ability of data, dimensions per signal: 20–40)

•	 Feature extracted data (dimensions per signal: 7, 
see Sect. "Dimensionality reduction".)

The 3 different algorithms, with the parameters speci-
fied in the previous section, were then trained on all of 
these different training datasets ( 3× 3 = 9 in total) and 
their performance evaluated first through a cross vali-
dation (CV) with 10 folds and finally on the test dataset.

Assessing performance
We assessed the performance of each algorithm in each 
scenario based on the following 3 scores [21]:

•	 Accuracy: The percentage given by the number of 
correct classifications divided by the total number 
of samples in the test dataset.

•	 ROC AUC​: Receiver operating characteristic area 
under the curve plotting the true positive rate 
against the false positive rate.

•	 F1: A performance metric that combines the preci-
sion (positive predictive value) and recall (sensitiv-
ity) scores of a model. The formula is:

where TP stands for true positive, FP for false posi-
tive and FN for false negative. In the case of the 
4-muscle comparison, which is a multiclass prob-
lem, we used the so-called ‘macro’ weighting, which 
determines the F1 score for each label and computes 
their unweighted mean.

For each algorithm in each paradigm, the final scores 
are the performance on the test dataset.

Neurophysiologist task sheets
A questionnaire (see Supplementary material: Addi-
tional file 2) with 20 labeled MEPs (5 MEPs for each of 
the 4 muscles, from a single patient) on the front and 
19 unlabeled MEPs (5 EXT, 5 APB, 5 TA and 4 AH) on 
the back was handed to 30 experienced neurophysiolo-
gists. They were instructed to look at the front of the 
sheet to “train” and learn the MEP properties, and then 
to turn the paper over and classify the MEPs presented 
into one of the 4 muscle groups (EXT, APB, TA, AH). 
The results were collected and the overall accuracy, as 
well as the confusion matrix, were determined.

F1 =
2

1

Recall
+

1

Precision

=
2TP

2TP + FP + FN
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Results
MEP data
The data from 36 surgeries yielded a total of 4038 EXT, 
4911 APB, 4821 TA and 4038 AH MEP recordings. The 
preselection function identified 3016 EXT, 3496 APB, 
1451 TA and 835 AH traces containing an MEP. After the 
splitting (see Sect. "Splitting and data augmentation"), the 
training dataset contained 2274 EXT, 2665 APB, 1221 TA 
and 710 AH MEPs, while the test dataset contained 742 
EXT, 831 APB, 230 TA and 125 AH MEPs. Average nor-
malized peak amplitudes ranged between 0.09 and 0.34, 
average latencies of muscles were between 17.5  ms and 
31.0 ms, and median number of peaks was either 1 or 2, 
with variability in the standard deviations (see Table 1). 
During a single surgery, the signal traces can vary signifi-
cantly as illustrated for 2 patients with different muscle 
recordings (Fig. 3A) and MEP feature distributions over 
all patients (Fig. 3B).

Classification
The results of the hyperparameter tuning can be found in 
[Supplementary material: Additional file 1].
Four muscles
The MEPs were first classified in their raw form, then 
using PCA and a representation of their main features 
(FE). The RF and kNN classifiers performed best and sec-
ond best respectively (Fig. 4 and Table 2) and consistently 
above chance level. For these best performing algorithms, 
the raw data setting was optimal (accuracy: RF 83%, kNN 
71%). In both cases however, the F1 score (RF 72%, kNN 
64%) together with the confusion matrix (Fig.  5) reveal 
disparities in classification performances with certain 
muscles. Feature engineering (FE) yielded a considerable 

improvement in the LogReg classifier (raw 28%, feature 
engineering 73% accuracy). In the cases where accuracy 
was high, the ROC AUC values were high as well, corrobo-
rating the good class separability.

Two muscles
To further assess the classification abilities of the algo-
rithms, we compared their performances in 2 further set-
tings: one where 2 muscles within the upper extremity 
were classified (EXT versus APB), and the other was a clas-
sification task for separating a muscle from the upper and 
one from the lower extremities (EXT versus TA). In both 
settings, RF classifier again performed best with kNN being 
second best in the raw data setting (EXT versus APB: RF 
89%, kNN 79%; EXT versus TA: RF 97%, kNN 89%), sur-
passing the performance of the 4-muscle scenario over-
all but also showing a better performance in the opposing 
limb scenario. Remarkably, the performance of the LogReg 
classifier in combination with feature engineering achieved 
performances comparable to the best performing algo-
rithms (EXT versus APB 80% and EXT versus TA 88%), 
showing the importance of adequate data structuring for 
specific algorithms.

Benchmarking human performance
To compare misclassifications by the algorithm with those 
from the human assessment, we compared the best per-
forming algorithm (RF classifier on raw MEP traces across 
30 patients) with the performance of 30 neurophysiolo-
gists classifying a selection of 19 MEPs from one patient. 
Although this cannot be seen as a direct comparison of 
performance, it illustrates the decision-making process 
(Fig.  5A). The RF classifier shows very high values in the 
training set along the diagonal axis, illustrating the preci-
sion with which it can classify the muscles. However, the 
values are lower for the lower extremity muscles where 
there is a higher misclassification of the AH muscle, a sub-
stantial amount being predicted as TA. This is confirmed 
by the relatively low accuracy on the test data set (Fig. 5A). 
At first glance the human decision-making matrix seems 
more scattered; however, the same trend is visible along 
the diagonal axis. The experts achieved an accuracy above 
50%, which was highest in the AH (87%). However, a closer 
look at the human confusion matrix shows considerably 
more contextual information. As shown in Fig.  5B, the 
human experts catch up with ML performance, achieving 

Table 1  Summary statistics of the recorded MEP properties

Mean ± standard deviation over all preselected MEPs, except for the number of 
peaks, which indicates median ± standard deviation

Muscle Normalized 
Amplitude

Peak latency (ms) # Peaks Normalized AUC​

EXT 0.09 ± 0.12 17.53 ± 10.14 1 ± 1.5 0.4 ± 0.6

APB 0.34 ± 0.36 20.01 ± 6.38 2 ± 1.1 1.02 ± 1.29

TA 0.20 ± 0.25 24.69 ± 9.36 2 ± 1.5 0.84 ± 1.13

AH 0.11 ± 0.23 31.03 ± 15.94 2 ± 1.8 2.0 ± 1.83

(See figure on next page.)
Fig. 3  MEP properties to illustrate the high variability of intrinsic MEP signal features. A MEP traces recorded during an entire surgery plotted on top 
of each other for 2 different patients and muscles (left: all APB MEPs of one patient, right: all TA MEPs of a second patient). Different colors indicate 
different MEP recordings. B Distribution of onset latencies and amplitude distributions of the APB muscle for all patients. C Dimensionality reduction 
of test data via principal component analysis (left) and feature extraction (right). For the PCA plot, the data is displayed along the 2 components 
of highest data variability, whereas on the right, 2 intuitive features were selected for the x- and y-axis. Each dot represents an MEP signal
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Fig. 3  (See legend on previous page.)
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89% accuracy when it comes to identifying which limb the 
MEPs belong to.

Discussion
With our proof-of-concept study, we demonstrate that 
classical ML algorithms are able to classify MEPs accord-
ing to muscle groups with high accuracy. This could 
improve IOM safety by signaling mislabeling of muscles, 
which can have detrimental consequences by harm-
ing the patient. Furthermore, it is a first step toward the 
implementation of ML algorithms for more complex 
tasks that may help improve MEP warning criteria. Thus, 
ML could help to overcome some of the intrinsic dif-
ficulties of intraoperative neurophysiological data. The 
opportunities and limitations are discussed below based 
on our exemplary model of MEP classification.

Data quality and class imbalance
Crucial aspects that determine the performance of ML 
are the quality of the data and the adequacy of labeling 
[32]. In our case of MEP classification, the labeling is not 

subject to observer bias, unlike, for instance, the clini-
cal assessment of motor performance. Nevertheless, the 
training data needs to be thoroughly checked for outli-
ers, noise and, ultimately, for a balanced representation 
of each class. After removing noisy data from our data-
set, we were faced with a class imbalance (see Sect. "MEP 
data"). There were fewer lower extremity MEPs than 
upper extremity MEPs, which is likely due to the way 
stimulation for MEPs is commonly carried out during 
supratentorial surgery. Unless lower extremity muscles 
are at risk, a threshold current is applied to elicit a cru-
cial number of upper extremity muscles [9], which leads 
to many more ‘blanks’ in the lower extremity data. These 
blanks were subsequently removed in data preprocessing. 
Furthermore, due to the placement of cortical strip elec-
trodes on the hand motor cortex [8], direct cortical stim-
ulation generates a bias toward an increased collection of 
upper extremity MEPs. To compensate, we used SMOTE 
[29] for data augmentation (see Sect. "Splitting and data 
augmentation"). This, of course, is not the same as having 
additional MEP recordings, but constitutes a common 

Fig. 4  Performances of the classification methods. Depicted are accuracy (bars) and ROC AUC (dots) values for the color-coded algorithms for all 
three paradigms. The scores are the result of evaluating the methods on the single test dataset (MEP data of 8 patients). The RF classifier performed 
best overall and on the raw data in particular. The kNN classifier performed second best overall. Note that the LogReg performed poorly on raw 
and PCA data, but well on feature extracted data (in all paradigms)

Table 2  Test performance scores

Bold: best performance for each paradigm. Accuracy (Acc) reflects the percentage of correctly assigned labels. ROC AUC is the area under the curve plotting the true 
positive against the false positive rate. A high ROC AUC means that the model is good at distinguishing between the positive and negative classes. The F-score (F1), 
macro weighted in case of multiclass classification, is the harmonic average of precision (also known as positive predictive value) and recall (also known as sensitivity). 
A good F1 can only be achieved if both precision and recall are high

Raw PCA FE

Acc F1 ROC AUC​ Acc F1 ROC AUC​ Acc F1 ROC AUC​

Four muscles RF 0.83 0.72 0.9 0.75 0.67 0.88 0.77 0.71 0.9

kNN 0.71 0.64 0.75 0.69 0.6 0.74 0.7 0.66 0.86

LogReg 0.28 0.24 0.45 0.3 0.26 0.47 0.73 0.67 0.87

EXT vs. APB RF 0.89 0.88 0.94 0.84 0.84 0.91 0.83 0.83 0.9

kNN 0.79 0.79 0.79 0.76 0.76 0.76 0.79 0.79 0.85

LogReg 0.48 0.47 0.85 0.53 0.5 0.44 0.8 0.8 0.85

EXT vs. TA RF 0.97 0.95 0.98 0.92 0.9 0.96 0.88 0.84 0.94

kNN 0.89 0.85 0.85 0.89 0.84 0.84 0.87 0.82 0.87

LogReg 0.43 0.4 0.41 0.46 0.42 0.43 0.88 0.85 0.91
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approach to balance the different classes, which has been 
successfully used in the past. However, as demonstrated 
in the confusion matrix (Fig. 5), the imbalance is visible 
as a lower accuracy in the classification of lower extrem-
ity classes. This effect has to be taken into account when 
interpreting ML results. Ignoring data quality problems 
could lead to the assumption that the classification of 
lower extremity signals is more difficult based on intrin-
sic properties, which in the case of poor, noisy or imbal-
anced data might be premature [33].

Importance of model and parameter choices
We implemented 3 ML algorithms with the same task of 
classifying MEPs (Fig.  2). These algorithms have differ-
ent mechanisms for learning class representations. While 
certain algorithms may be chosen because they perform 
better on certain types of data, at least the same empha-
sis should be put on the choice of model parameters to 
achieve these performances. It is important to under-
stand the source of prediction errors as well as the dis-
tinction between bias, variance and noise [34].

The bias of a model is the deviation of the outcome 
from what we expect. For example, if we had an infinite 
amount of training data from all muscles, but we set the 

model to focus on the amplitude (through preprocessing 
or feature selection). In this way, we would systematically 
achieve better results for upper extremity classification, 
because they happen to have bigger amplitudes. This is 
an inherent problem of the model choice.

The contribution of variance to the prediction error is 
a measure of how much a classifier changes with a given 
training set (i.e., how much does it overspecialize on the 
data it has seen and how hard is it to generalize to new 
data). Learning this type of variance in the data is also 
known as overfitting [35]. Noise is limited to intrinsic 
noisiness of the data due to the measurement process 
(recording, amplification etc.), and cannot be reduced by 
algorithm parameter choices.

There are various approaches to address the bias–vari-
ance tradeoff and we chose to do cross-validations to 
select parameters (see Sect.  "Tuning the hyperparam-
eters"). Many classifiers have a parameter that directly 
handles this tradeoff. For example, the choice of num-
ber of neighbors in the kNN algorithm determines how 
much the classifier will generalize. If we choose a large 
number of neighbors to compare to, the kNN model will 
always get the general trend right (arm versus leg), but 
it will fail to give the precise muscle. However, if we set 

Fig. 5  Confusion matrix of the best machine learning algorithm compared to human classification. A Four-muscle classification performance 
(normalized by rows and rounded). Depicted is the confusion matrix of the RF on raw data for the cross validation during training (left) and the test 
(middle), compared to the results of the human classification (right). The RF can distinguish all 4 muscles extremely well during training, 
but has more difficulties classifying lower limb muscles in the test dataset. Due to the reliance on latency as the main distinguishing criterion, 
the neurophysiologists can confidently differentiate between upper and lower limbs, but have poorer performance on individual muscles. B Limb 
classification performance (normalized by rows and rounded). The scores from the matrices in (A) are summed across limbs. This shows the good 
differentiation of upper versus lower extremities by both the ML algorithm and the neurophysiologists
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the kNN to focus only on the next neighbor (k = 1), the 
algorithm would put more emphasis on the variance of 
the data and assume there is meaningful content hidden 
in that. This would likely throw the algorithm off course 
when presented with new data and lead to overfitting.

Another option for reducing the variance of the model 
is to choose simpler, lower dimensional representations 
of the data, which minimizes the focus on the variance 
and captures essential elements of the data instead. This 
is the goal of PCA compression and feature engineer-
ing (see Sect.  "Dimensionality reduction" and Fig.  3C, 
where in feature engineering we represent the data 
with latencies, amplitudes and other shape parameters 
of the MEPs). With adequate data representations that 
suit the algorithm’s learning method, performance can 
sometimes be dramatically improved, as exemplified in 
our case by the LogReg algorithm (Fig.  4). We assume 
that more extensive feature engineering, for instance by 
weighting different aspects of the data, might further 
improve performance.

Ensemble learning, where multiple learning algorithms 
are combined to obtain more robust and accurate pre-
dictions [36], is also used to reduce the impact of vari-
ance. The RF algorithm is one example of an ensemble 
learning method that uses a bagging (bootstrap aggre-
gating method) to avoid overfitting. It takes the average 
(a majority vote) of different decision-tree models and 
achieves best performances this way (as observed in our 
case).

Interpretation of machine learning results
Interpretation of ML results depends on an understand-
ing of the processing pipeline and the drawbacks of the 
different algorithms. Although the classification task we 
chose is relatively straightforward, it is perfect to exem-
plify the pitfalls of ML in general. In Sects.  "Data qual-
ity and class imbalance" and "Importance of model and 
parameter choices", we addressed problems of class 
imbalance and bias-variance tradeoff. Special attention is 
also needed in the choice of metrics (or scores) used for 
performance assessment. Whereas accuracy is an intui-
tive scoring method, useful for assessing how well the 
classification is working, it does not allow for an adequate 
evaluation of performance on imbalanced classes. Thus, 
if our dataset comprised mostly upper extremity muscles, 
a bad model will predict this majority class correctly and 
thus reach high accuracy, but might always be wrong in 
the lower extremity examples. Our setting is relatively 
balanced compared to clinical settings, where intraopera-
tive IOM alterations leading to permanent postoperative 
motor deficits in the patients are relatively rare but need 
to be diligently avoided [10].

Furthermore, we tried to remedy the class imbal-
ance of our data by augmenting the training dataset. 
If we only considered accuracy and not the confusion 
matrix, we would have missed the remaining influence 
of the imbalance. This is why it is important to take into 
account additional performance metrics and scores, such 
as the confusion matrix, ROC AUC and F1 scores (see 
Sect. "Assessing performance" and [33, 37]). In our case, 
the ROC AUC scores of the RF and kNN models were 
high, but F1 scores dropped at times (Table 2) due to the 
class imbalance, therefore highlighting the importance of 
referring to various scores to asses ML performance.

Similarly, it is misleading to compare performances of 
a 2-muscle paradigm with a 4-muscle paradigm, since 
binary classifications are generally much easier to solve. 
Many of the standard ML algorithms were designed 
to deal with a binary classification and were only later 
adapted to multiclass settings [38]. Thus, higher per-
formance scores in a 2-muscle compared to a 4-muscle 
setting are quite meaningless. Comparing the 2-muscle 
tasks with each other, we observed that they performed 
similarly well, with a better performance in the classifi-
cation of upper versus lower extremity. This might sim-
ply be due to the data imbalance. This can be seen in the 
confusion matrix (Fig. 5A), where across the diagonal the 
algorithm misclassifies leg muscles more often than arm 
muscles.

Neurophysiologists seemed to classify the extremi-
ties more consistently, which likely follows from their 
assumption that all classes were equally represented 
(which is true). It would be interesting to investigate 
whether the discrimination between extremities would 
be as robust if the neurophysiologists were presented 
with an imbalanced test. Further, due to their background 
training and education, it is very likely that neurophysi-
ologists put more emphasis on latency, which makes it 
easier to differentiate between upper and lower extremi-
ties than within the same extremity.

Caution is also needed when comparing the results 
from raw data with the reduced data representation 
(PCA and FE). The dataset is large enough to implement 
basic ML methods, but too small to avoid the effects of 
variance learning. Slightly higher accuracies and ROC 
AUC performances were achieved in the raw data setting 
compared to the compressed methods throughout the 3 
paradigms.

As mentioned above, feature engineering can cer-
tainly be optimized, which would improve performances 
and understanding of the classification algorithms [39]. 
Whether this would lead them to surpass the raw data 
setting is an open question. In any case, this means that 
the results of this study should not be considered the ulti-
mate benchmark for the compression methods. Another 
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reason for the better performance of the algorithms on 
raw data could be that we were missing one or more 
components when compressing the data.

In summary, interpretation of these supervised ML 
results should be strictly tied to what might be contrib-
uting to these results in terms of data properties, rather 
than trying to attribute results to some type of concept 
learning.

Comparing ML results to human decision making
The rise of ML has naturally raised the question of the 
extent to which human intervention is still necessary, 
where it can be complemented, and where it could poten-
tially be replaced. IOM operates in a very intricate setting 
in which many factors can affect the change in signals 
(anesthetic regimen, electrical noise, neurophysiologi-
cal stimulation paradigms, surgical intervention, tumor 
pathology, biological factors of the patient, staff involved, 
etc.). Moreover, quantification of postoperative clinical 
and surgical outcome is difficult, leading to unclear labe-
ling. This is a very different situation compared to our 
simple classification problem. Experienced neurophysi-
ologists show an exceptional ability to contextualize and 
interpret these difficult intraoperative scenarios to limit 
false alarms. Indications of this contextual learning can 
be found in the confusion matrix. Although precision 
in predicting the exact muscle is lacking (Fig.  5A), the 
neurophysiologists can confidently assign the correct 
extremity (Fig. 5B) due to the latency difference. ML has 
great potential to offer support on more precise ques-
tions. For example, it could help improve warning criteria 
by detecting more subtle changes in MEPs (instead of the 
current 50%-drop criterion) or certain time series pat-
terns that correlate with postoperative outcome.

Potential clinical applications
Even if it might not be evident at first glance, we would 
like to highlight that these preliminary results could 
have significant clinical impact. During the set-up of 
IOM, more than 20 needles have to be placed in the cor-
rect muscles of the patient, while the connected cables 
need to be labeled correctly and plugged in the corre-
sponding channel of the EMG system. In case of labe-
ling errors, MEP alterations during the surgery might 
either be misinterpreted or missed altogether, resulting 
in false positive or false negative alarms. Those events 
have been reported and even overlooked during publica-
tion in a case report [40]. According to Yingling [12], “the 
examination of the data indicates that the recording leads 
from the upper and lower extremities were inadvertently 
reversed during setup, and the MEP recordings from 
the lower extremities (mislabeled as upper) were in fact 
lost early in the procedure. This loss, which would have 

normally triggered an alert and corrective action, went 
unnoticed by the authors, with the tragic outcome of 
postoperative paralysis." This grave mistake might have 
been avoided if an automatic alarm had been provided by 
the IOM system.

In the end, the ultimate future goal is to provide a basis 
to improve warning criteria in MEP monitoring. Various 
alarm criteria, such as signal loss and amplitude reduc-
tion, have been reliably correlated to postoperative motor 
outcome of the patients [2, 5, 7–11]. However, to date 
only a limited number of warning criteria have been ana-
lyzed and implemented [10]. As indicated above, the tra-
ditional MEP parameters vary considerably within and 
across patients. This may affect MEP monitoring of indi-
vidual patients during surgery as well as limit generaliz-
ability for different patients and monitoring procedures 
[6]. A systematic and exhaustive feature engineering 
with and without the help of ML algorithms might lead 
to a better understanding of the important properties of 
MEPs. Indeed, our results raise the question of whether 
the ML algorithms detect neurophysiological markers 
which have not been considered until now in traditional 
clinical neurophysiology. There might be additional 
intrinsic features in MEP traces of different muscles, even 
within the same extremity (EXT vs APB, Figs. 4 and 5). 
Further analysis is needed to understand the classifica-
tion process.

What is needed to (try to) successfully implement ML 
in IOM
When faced with good and plentiful data, ML can lead 
to astonishing results, as exemplified by AlphaGo [41], 
AlphaZero [42] and many more. In most of these cases 
however, the “rules” and outcomes are well known, the 
data is thoroughly labeled, and the quantity of data avail-
able is enormous. The relative scarcity, complexity and 
variability of IOM data and the difficulty of quantifying 
outcomes of surgeries still renders the implementation 
of ML in IOM an ambitious enterprise. This is why we 
thought it important to break down this problem into 
smaller, more achievable steps. This is similar to how ML 
algorithms have traditionally been tested and compared 
on the MNIST dataset [43], made up of labeled pictures 
of numbers 0 through 9, before trying to implement them 
in more complex situations.

To tackle the abovementioned challenges, the following 
should be considered in future work:

•	 Data quality: high quality recordings, awareness of 
inherent variability

•	 Labeling: standardized protocols, clear labeling rules 
[44]. This should also include tracking sources of 
variance during the surgical procedure (e.g., expected 
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and unexpected noises, such as cautery, drill or anes-
thesia processes) and bias of data collection (only 
upper extremity MEPs for threshold reasons)

•	 Adequate quantification of the outcome: defined and 
standardized outcome scores at defined postopera-
tive time points [10] and outcome scores for the ML 
task, to limit an interpretation bias

•	 More data [45]: pooled data from multiple centers
•	 Understanding data: exploratory data analysis to find 

out how the data is distributed, analyzing imbalances 
of the features as well as the labels, and extraction of 
meaningful information to feed into ML, in particular 
to address to some extent the “black box” of ML [46].

Even beyond potential ML applications, meeting such 
requirements would constitute good practice for data sci-
entific purposes in IOM (compare with [47]).

Limitations
In this study, we kept the signal preprocessing to a mini-
mum. Cleaning the data (for example by applying filters), 
expanding the feature engineering, improving preselec-
tion, and applying other classification methods could 
lead to better performances. In particular, it would also 
be interesting to compare the performance of the ML 
algorithms on the raw data to the performance on the 
same data filtered with the standard filters used on IOM 
machines during surgery (i.e. with a low-pass filter of 
10—100  Hz and high-pass filter of 1.5—3  kHz), to see 
whether the filtering is removing some important prop-
erties of the signals. We only tried one method to deal 
with the data imbalance, but many others could be tested. 
Even though we had a reasonable amount of data, cur-
rent ML algorithms need a large amount of data to reach 
their full potential [45]. We only applied standard ML 
algorithms and did not try deep learning methods. Our 
next step will be to implement neural networks together 
with various sorts of preprocessing and feature engineer-
ing strategies to evaluate their performance and compare 
them to the standard ML algorithms used in this study.

Conclusion
This proof-of-concept study may serve as a model to 
assess opportunities and limitations of different ML 
paradigms in handling MEP data. We demonstrated that 
applying various classification methods to MEP data is 
feasible. Further, we have shown that different combina-
tions of data processing, algorithm training and para-
digms robustly classify MEP signals according to their 
muscle with very high accuracy. However, the robust-
ness of our results should be investigated with larger 
datasets to gain a more representative understanding of 

their performances. In addition, systematic and exhaus-
tive feature engineering with and without the help of ML 
algorithms might lead to a better understanding of the 
important properties of MEPs.
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