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Abstract
Ocean extreme events, such as marine heatwaves, can have harmful impacts on ma-
rine ecosystems. Understanding the risks posed by such extreme events is key to de-
velop strategies to predict and mitigate their effects. However, the underlying ocean 
conditions driving severe impacts on marine ecosystems are complex and often un-
known as risks to marine ecosystems arise not only from hazards but also from the 
interactions between hazards, exposure and vulnerability. Marine ecosystems may 
not be impacted by extreme events in single drivers but rather by the compounding 
effects of moderate ocean anomalies. Here, we employ an ensemble climate- impact 
modeling approach that combines a global marine fish model with output from a large 
ensemble simulation of an Earth system model, to identify the key ocean ecosystem 
drivers associated with the most severe impacts on the total biomass of 326 pelagic 
fish species. We show that low net primary productivity is the most influential driver 
of extremely low fish biomass over 68% of the ocean area considered by the model, 
especially in the subtropics and the mid- latitudes, followed by high temperature and 
low oxygen in the eastern equatorial Pacific and the high latitudes. Severe biomass 
loss is generally driven by extreme anomalies in at least one ocean ecosystem driver, 
except in the tropics, where a combination of moderate ocean anomalies is sufficient 
to drive extreme impacts. Single moderate anomalies never drive extremely low fish 
biomass. Compound events with either moderate or extreme ocean conditions are a 
necessary condition for extremely low fish biomass over 78% of the global ocean, and 
compound events with at least one extreme variable are a necessary condition over 
61% of the global ocean. Overall, our model results highlight the crucial role of ex-
treme and compound events in driving severe impacts on pelagic marine ecosystems.
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1  |  INTRODUC TION

Extreme events, such as marine heatwaves (Hobday et al., 2016) 
or low net primary production (NPP) events (Le Grix et al., 2021, 
2022), have been linked to a range of negative impacts on ma-
rine organisms and ecosystems (Cavole et al., 2016; Smale 
et al., 2019; Smith et al., 2023; Wernberg et al., 2013, 2016), in-
cluding the collapse of entire ecosystems (e.g., Wernberg, 2021). 
Of particular concern are compound events, which occur when 
conditions are anomalous for multiple ocean ecosystem driv-
ers (Burger et al., 2022; Gruber et al., 2021; Le Grix et al., 2021, 
2022; Zscheischler et al., 2018). The “Blob,” a prolonged and ex-
tensive marine heatwave that occurred from 2013 to 2015 in the 
Northeast Pacific, illustrates the potential threat posed by marine 
compound events on ecosystems. This marine heatwave coincided 
with anomalously low oxygen, low pH, and large negative anoma-
lies in phytoplankton NPP (Gruber et al., 2021; Le Grix et al., 2021; 
Mogen et al., 2022; Whitney, 2015; Wyatt et al., 2022), leading 
to severe impacts on marine life (Cavole et al., 2016), including 
mortality and reproductive failure of sea birds (Jones et al., 2018; 
Piatt et al., 2020), mass strandings of sea lions in California and 
of whales in the western Gulf of Alaska (Cavole et al., 2016), as 
well as shifts in species distribution toward warm- water species, 
with repercussions on fisheries (Cavole et al., 2016; Cheung & 
Frölicher, 2020). Previous research has shown that marine heat-
waves and compound extreme events have become more frequent 
over the past century (Gruber et al., 2021; Oliver et al., 2018) and 
that this trend is projected to continue as global warming persists 
(e.g., Burger et al., 2022; Frölicher et al., 2018). If extreme events 
and compound events regularly induce collapses in animal biomass 
and community reorganization, the consequences of an increase 
in their frequency could be catastrophic for ecosystems, fisheries, 
and human coastal communities. However, the extent to which 
ocean extreme events and compound events have negative im-
pacts on marine ecosystems remains unclear.

Risks to marine ecosystems arise not only from hazards, such 
as marine heatwaves or compound events, but also from the in-
teractions between hazards, exposure, and vulnerability (e.g., 
Bindoff et al., 2019; Magnan et al., 2021). Marine ecosystems 
may not be exposed nor vulnerable to certain extreme or com-
pound extreme events. For example, Fredston et al. (2023) use 
a collection of bottom trawl data from Atlantic and Pacific ma-
rine ecosystems to show that historical marine heatwaves did not 
substantially impact the community composition and biomass of 
these ecosystems. Certain marine species may even benefit from 
extreme events. Cavole et al. (2016) reported increased recruit-
ment of rockfish in California and northward expansion of trop-
ical and subtropical copepods during the “Blob.” These findings 
highlight the complexity in the relationship between hazards and 
impacts on marine ecosystems and suggest that compound events 
with moderate anomalous ocean conditions may also drive or 
contribute to severe impacts (Zscheischler et al., 2018). To effec-
tively predict and mitigate future impacts on marine ecosystems, 

a better understanding of the ocean conditions leading to extreme 
impacts on marine ecosystems is needed.

The limited understanding of the drivers of extreme impacts on 
marine ecosystems is partly a result of a lack of sufficient observa-
tions (Gruber et al., 2021). One approach that circumvents this lack 
of observations is the use of ensemble climate- impact modeling sim-
ulations (Tschumi et al., 2022; van der Wiel et al., 2020). These sim-
ulations couple a climate model with an impact model, in our case a 
global marine fish model. Ensemble climate simulations are produced 
with the same single climate model under identical external forc-
ing but starting from different initial conditions (Deser et al., 2020; 
Frölicher et al., 2009). These simulations are then used to force the 
marine fish model, resulting in a large dataset from which to analyze 
rare events (e.g., Bevacqua et al., 2023; Cheung et al., 2021; Le Grix 
et al., 2021; Maher et al., 2021; Poschlod et al., 2020). The ensem-
ble climate- impact modeling simulations are used for two different 
purposes. The first and most common purpose is forward model-
ing, which samples oceanic events, such as marine heatwaves, and 
quantifies their associated impacts on marine ecosystems (Cheung 
et al., 2021; Cheung & Frölicher, 2020). However, this approach re-
quires prior knowledge of potentially harmful hazards and typically 
only considers extreme events and ignores other moderate drivers 
of extreme impacts. Here, we employ a backward approach (e.g., 
Ben- Ari et al., 2018; van der Wiel et al., 2020; Vogel et al., 2021; 
Zscheischler, Michalak, et al., 2014; Zscheischler, Reichstein, 
et al., 2014), which starts by sampling events of extreme impacts and 
then looks back at the ocean conditions potentially causing these 
events. This “impact- driven” approach allows for the discovery of 
unexpected drivers (van der Wiel et al., 2020) of extreme impacts 
on fish biomass.

The goal of this study is to identify the ocean conditions associ-
ated with the most severe impacts on pelagic fish species, especially 
those associated with extremely low fish biomass. To achieve this, 
we employ the global marine fish model DBEM, driven by output 
of a large ensemble simulation of the comprehensive Earth sys-
tem model GFDL ESM2M. By considering the total biomass of 326 
pelagic fish species, we aim to gain a deeper understanding of the 
drivers of extreme impacts on the entire pelagic community, rather 
than focusing on positive and negative changes in the biomass of 
individual species. While this study focuses on a specific climate- fish 
impact model that is associated with particular assumptions and un-
certainties, we aim to obtain generalizable insights that would form 
the foundation for future studies.

2  |  METHODS

2.1  |  Ensemble climate- impact modeling

We apply an ensemble climate- impact modeling (van der Wiel 
et al., 2020; Vogel et al., 2021) approach to identify the envi-
ronmental drivers that lead to projected low pelagic fish bio-
mass events. The approach consists of three steps: (1) forward 
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modeling; (2) identification of low biomass events; (3) backward 
assessment of the drivers of low fish biomass events. These three 
steps are illustrated in Figure 1 and described in detail in the fol-
lowing paragraphs.

2.1.1  |  Step: Forward modeling

We use annual mean fish biomass data of 326 pelagic fish spe-
cies simulated by the species- based Dynamic Bioclimatic Envelope 
Model (DBEM; Cheung et al., 2008, 2016) (Figure 1). Pelagic fish 
represent a large proportion of the marine fish biomass relevant 
to fisheries (Pauly & Palomares, 2020). The DBEM uses a species 
distribution modeling algorithm (Close et al., 2006) to estimate the 
initial distribution of exploited species based on their maximum 
and minimum depth limits, northern and southern latitudinal range 
limits, habitat type, and known occurrence boundaries (Cheung 
et al., 2008). These input parameters are mainly provided by two 
online databases: FishBase (www.fishb ase.org) and SeaLifeBase 
(www.seali febase.org) and limited to the United Nations Food and 
Agriculture Organization (FAO) areas. Both the range of FAO areas 
and the algorithm by Close et al. (2006) constrain pelagic fish distri-
bution in the DBEM, such that pelagic fish species are absent from 
all regions in white in Figure 2, that is, in the Arctic Ocean and parts 
of the Southern Ocean. Once the DBEM has determined the species 
distribution, it then simulates their growth, population dynamics, 
and net migrations, depending on ocean temperature, oxygen, and 

advection, as well as a set of species- specific growth parameters. 
Movement and dispersal of adults and larvae are modeled through 
advection– diffusion reaction equations. Environmental prefer-
ences are identified for each species by overlaying environmental 
data from the Earth system model GFDL ESM2M (see below) with 
maps of the species relative abundance. When environmental con-
ditions deviate from a species environmental preferences, habitat 
suitability decreases, resulting in a decrease in the species abun-
dance. Biomass is calculated from the population mean body weight 
and abundance.

The DBEM projects shifts in marine species biomass and 
distribution under changes in ocean conditions (e.g., Cheung 
et al., 2013, 2016) including changes in ocean extreme conditions, 
such as marine heatwaves, that are consistent with alternative 
species distribution models and empirical evidence, where data 
exist (e.g., Cheung et al., 2021). The horizontal resolution of the 
DBEM is 0.5° longitude × 0.5° latitude. The model was spun up for  
a hundred years using ocean conditions from 1971 to 2000, allow-
ing the population to reach an equilibrium before it was perturbed 
with environmental changes from 1951 to 2000.

The DBEM was driven by environmental data from a 10- member 
large ensemble simulation (LES) of an Earth system model, the 
GFDL ESM2M, covering the time period 1951– 2000 (Figure 1). The 
GFDL ESM2M, developed at NOAA's Geophysical Fluid Dynamics 
Laboratory (GFDL), is a fully coupled carbon cycle– climate Earth 
system model (Dunne et al., 2012, 2013), which participated in 
the Coupled Model Intercomparison Project Phase 5 (CMIP5). It 

F I G U R E  1  Schematic of the ensemble climate- impact modeling approach used in this study. In a first step (“forward modeling”), changes in 
fish biomass for 326 pelagic species were simulated over the period 1951– 2000 by the Dynamic Bioclimatic Envelope Model (DBEM) forced 
with environmental data from a 10- member large ensemble simulation of the Earth System Model GFDL ESM2M on a 0.5° longitude × 0.5° 
latitude grid. In a second step (“Identification of low fish biomass events”), low fish biomass events were identified using the 10th 
percentile threshold (red areas in the bottom figure). In a third and final step (“backward assessment of the drivers of low fish biomass”), the 
environmental conditions driving low fish biomass events are assessed. The upper right panel illustrates low fish biomass events sampled 
at a grid cell in the northern Pacific (at 71° N; 167° W) for one ensemble member, when the pelagic fish biomass is lower than its local 10th 
percentile computed from 1951 to 2000 over the entire 10- member simulation.
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couples an atmospheric circulation model to an oceanic circula-
tion model and includes representations of land, sea ice, and ice-
berg dynamics, as well as interactive biogeochemistry. The ocean 
biogeochemical module, TOPAZv2 (Dunne et al., 2013), simulates 
30 tracers, including three phytoplankton groups (small and large 
phytoplankton, diazotrophs) and implicit zooplankton activity. The 
horizontal resolution of the ocean model MOM4p1 (Griffies, 2012) 
is nominally 1° with increasing meridional resolution of up to 1/3° 
toward the equator. The 10- member large ensemble simulation is 
forced with prescribed historical concentrations of atmospheric 
CO2 and non- CO2 radiative forcing agents over the historical period 
(Burger et al., 2020, 2022). The GFDL ESM2M data were regridded 
to a horizontal resolution of 0.5° for use in the DBEM. Input GFDL 
ESM2M data into the DBEM include annual mean horizontal ve-
locities, temperature, dissolved O2, and salinity at the surface of 
the ocean, vertically integrated NPP (sum of small and large phy-
toplankton and diazotrophs), and sea ice coverage. These DBEM 
simulations do not take into account changes in acidity (e.g., Tai 
et al., 2021) or fishing pressure (e.g., Cheung et al., 2018). We force 
the DBEM with annual mean environmental data for computational 
efficiency because prolonged anomalies in ocean conditions, like 
extended high temperatures lasting at least a year, potentially exert 
the most substantial influence on fisheries (Cheung et al., 2021, 
Materials and Methods).

2.1.2  |  Step: Identification of low fish 
biomass events

Next, we identify low fish biomass (LFB) events over the period 
1951– 2000 (Figure 1). We chose that time period as it represents 
the historical oceanic state and is short enough to not contain too 
large long- term trends in ocean variables. At each grid cell, we define 
LFB events as years when the annual mean total biomass of pelagic 
fish is lower than its local 10th percentile (Figure S1) computed from 
all ensemble members over 1951– 2000. Therefore, these events 
correspond to 1- in- 10- year events. From the 10 realizations of the 
50- year period, we thus identify 10 × 5 = 50 LFB events per grid cell. 
Defining LFB events with a lower percentile threshold, like the 5th 
percentile, does not qualitatively change our results.

2.1.3  |  Step: Backward assessment of the drivers of 
low fish biomass events

In a third step, we investigate the drivers of extreme reductions in 
simulated pelagic fish biomass over the 1951– 2000 historical period. 
To do this, we perform a backward assessment of the environmental 
drivers of LFB events (e.g., Ben- Ari et al., 2018; Gagné et al., 2020; 
van der Wiel et al., 2020; Vogel et al., 2021; Zscheischler, Michalak, 
et al., 2014; Zscheischler, Reichstein, et al., 2014). Changes in pe-
lagic fish biomass in the DBEM can be driven by changes in depth- 
integrated net primary production (NPP), surface temperature (T), 
surface dissolved oxygen levels (O2), surface salinity (S), and sea ice 
coverage (Ice), that is, the percentage of the grid cell area covered by 
sea ice. We standardize these ocean variables so as to best compare 
their contributions to driving LFB events, by removing the mean and 
dividing by the standard deviation computed over 1951– 2000.

To identify drivers of LFB events, we employ a LASSO (least 
absolute shrinkage and selection operator) logistic regression (Tib-
shirani, 1996; Vogel et al., 2021). This statistical model allows for 
classifying years into LFB events and non- LFB events depending on 
ocean conditions. We consider ocean conditions up to 2 years before 
the event, to account for possible lagged effects. The probability of 
an LFB event to occur is given as:

with

where Xi � [NPP, T, O2, S, and Ice] at the year of the event, 1 year prior to 
the event (indicated with −1y), and 2 years prior to the event (indicated 
with −2y). An LFB event is predicted when P(LFB) > 0.5.

The regression coefficient � i accounts for the link between an 
ocean variable Xi and the probability of LFB. A positive � i signi-
fies that an increase in Xi raises the probability of LFB, and vice 
versa. However, high correlation between NPP, T, O2, S, and Ice 
implies a high variability of the coefficients � i (Vogel et al., 2021). 
For example, T and O2 are often negatively correlated in the sur-
face ocean, where the main driver of oxygen changes is oxygen 
solubility, which decreases with increasing temperature (Garcia & 

(1)P(LFB) =
1

1 + e−y

(2)y = �0 + � iXi

F I G U R E  2  Area under the precision- 
recall curve (AUC PR) of the LASSO 
logistic regression. Model performance 
is satisfactory over areas where AUC 
PR > 0.1. White areas correspond to 
regions without fish biomass data.

 13652486, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16968 by U

niversität B
ern, W

iley O
nline L

ibrary on [11/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  5LE GRIX et al.

Gordon, 1992). The information brought by a high absolute value 
of T and a low absolute value of O2 could alternatively be conveyed 
by a low absolute value of T and a high absolute value of O2. To 
address the high correlation between variables, we specifically em-
ploy a LASSO logistic regression (Tibshirani, 1996), which prevents 
high variability in the coefficients by applying a penalty term on 
the norm of the coefficients ‖� ‖. The regression coefficients are 
determined by minimizing a cost function Cost (�) with regulariza-
tion on ‖� ‖:

The parameter � controls the strength of the regularization. 
Through fivefold cross- validation, we obtained �optimal, the value of 
� associated with the highest mean cross- validated performance 
of the model. We then selected � = �SE, the value of � that gives 
the most regularized model (i.e., the highest λ) such that its cross- 
validated performance is within one standard deviation of that of 
�optimal (Friedman et al., 2010; Krstajic et al., 2014). The penalty term 
�‖� ‖ tends to produce some regression coefficients � i that are ex-
actly 0. The LASSO logistic regression therefore performs an auto-
matic selection of the variables that are statistically linked to LFB. 
As a result, certain grid cells might have just one predictor, like NPP, 
while others might have up to 15 predictors.

Model performance is assessed by the area under the precision- 
recall curve (AUC PR), a metric commonly used to summarize the 
performance of a binary classification model when the sets are un-
balanced (here, 10% of years are LFB events, 90% are not; Cook & 
Ramadas, 2020; Saito & Rehmsmeier, 2015). More than 99.99% of 
the ocean surface area considered by the model, excluding regions 
without modeled fish biomass (white areas in Figure 2) has an AUC 
PR value greater than 0.1 (Figure 2), the rate of LFB events in the 
time series (Saito & Rehmsmeier, 2015), which indicates that the lo-
gistic regression performs well at predicting LFB events. Note that 
we allowed for the inclusion of lagged effects. Namely, variables 
1 year (−1 year NPP, −1 year T, −1 year O2, −1 year S, −1 year Ice) and 
2 years (−2 years NPP, −2 years T, −2 years O2, −2 years S, −2 years Ice) 
before the event can also be selected as predictors. The LASSO lo-
gistic regression only selects as predictors the variables that are sta-
tistically linked to LFB. It may therefore select, for example, −1 year 
NPP and/or −2 years NPP but exclude −1 year O2 and/or −2 years O2. 
Allowing for lagged effects increases model performance by 35% 
compared with a model based on concurrent predictors only.

2.2  |  Categorizing the drivers of low fish 
biomass events

We use the coefficients from the LASSO logistic regression to as-
sess whether extreme, compound, or compound and extreme drivers 
are necessary conditions for LFB events. An LFB is predicted when 
P(LFB) > 0.5, which is equivalent to y > 0 in Equation (2). For a given 
location and given the regression coefficients � i, we test whether 

y can be positive with all predictors between their 10th and 90th 
percentile. If not, moderate events cannot drive LFB events, and 
extreme events are necessary to drive LFB events. Similarly, we test 
whether drivers can be univariate by testing whether y can be posi-
tive with only one predictor being nonzero (and the rest are zero). If 
not, compounding drivers are a necessary condition for LFB events.

3  |  RESULTS

Low fish biomass events are associated with shifts in ocean condi-
tions, as demonstrated by the red and blue distributions presented 
in Figure 3. On a global scale and on average, NPP is decreased by 
0.8 standard deviation (SD) during LFB events compared with normal 
conditions. Temperature is increased by 0.5 SD, dissolved oxygen de-
creased by 0.5 SD, and salinity is 0.1 SD lower than usual. Furthermore, 
sea ice coverage variability is also enhanced during LFB events. In the 
following subsections, we further discuss these changes in ocean con-
ditions and show how they can be used to predict LFB events.

3.1  |  Drivers of low fish biomass events

Using LASSO logistic regression, the probability of an LFB event to 
occur is modeled as a function of NPP, T, O2, S, and Ice conditions 
up to 2 years prior to the event. Figure 4a presents the global mean 
regression coefficients associated with each predictor. A positive 
coefficient indicates that any increase in the associated predictor in-
creases the probability of an LFB event, while a negative coefficient 
indicates that any decrease in the associated predictor increases the 
probability. We first describe the regression coefficients associated 
with NPP, T, O2, S, and Ice conditions in the year of the event.

Globally, the LASSO logistic regression coefficients indicate 
that LFB events are more likely to occur when NPP, O2, and S 
are anomalously low, and when T and Ice are anomalously high 
(Figure 4a). This is consistent with the shift in these ocean vari-
ables' distribution during LFB events (Figure 3). NPP is selected 
over 88% of the global ocean (Figure 4b), due to its negative 
impacts on the biomass of fish species in the DBEM (Cheung 
et al., 2011). On the contrary, T, O2, and S are selected over 47%, 
42%, and 29% of the global ocean, respectively (Figure 4b). The 
effect of changes in T on fish biomass varies depending on the 
species' temperature preference, which may result in poor pre-
diction of LFB events when considering the total biomass of all 
pelagic fish species. Changes in salinity are usually too subtle in 
the open ocean to directly affect osmotic processes in fish and 
ultimately limit fish biomass. However, salinity changes may be 
correlated with changes in other ocean conditions that directly 
influence fish biomass and thus serve as a proxy for LFB events 
in certain regions. Ice is only selected as a predictor in and around 
sea- ice- covered regions (5% of the global ocean, Figure 4b).

There is a substantial degree of spatial variability, as indicated 
by the standard deviation of each regression coefficient over the 

(3)min
�

(Cost(�) + �‖� ‖ )
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6  |    LE GRIX et al.

F I G U R E  3  Global distribution of the annual mean standardized (a) net primary production (NPP), surface (b) temperature (T), (c) dissolved 
oxygen (O2), (d) salinity (S), and (e) sea ice coverage (Ice) over all years (in blue) and low fish biomass years (in red) over 1951– 2000. On the y- 
axis, density accounts for the probability density function, whose area under the curve is equal to 1. On the x- axis, a shift of the distribution 
toward −1 corresponds to a reduction in annual mean values of one standard deviation.

F I G U R E  4  (a) Global mean logistic regression coefficient associated with the net primary production (NPP), surface temperature (T), 
dissolved oxygen (O2), salinity (S), sea ice coverage (Ice), −1 year NPP (1 year prior to the event), −1 year T, −1 year O2, −1 year S, −1 year Ice, 
−2 years NPP, −2 years T, −2 years O2, −2 years S, and −2 years Ice. Error bars indicate the standard deviation of each regression coefficient 
across space. An error bar crossing the x- axis signifies that low fish biomass (LFB) events are associated with a positive or negative anomaly 
of a given predictor, depending on the region. (b) Fraction of the ocean area considered by the model (%) over which each variable is selected 
as a predictor of LFB events in the regression.
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    |  7LE GRIX et al.

area over which it is selected (Figure 4a). The regression coefficient 
for NPP (Figure 5a) is negative over most of the global ocean, which 
means that low NPP is related to LFB. The more negative the regres-
sion coefficient, the more a reduction in NPP increases the likelihood 
of LFB. For example, in the northeastern Pacific, where the regression 
coefficient for NPP is particularly negative, even a relatively weak re-
duction in NPP might be sufficient to drive LFB events. In contrast, in 
the center of the northern Pacific, a stronger reduction in NPP might 
be necessary, as indicated by the less negative regression coefficient. 
LFB events are associated with high temperatures over most of the 
area over which T is a predictor (positive coefficient in Figure 5b), yet 
they are also associated with low temperatures over a few regions 
in the northern high latitudes and in the northern part of the South-
ern Ocean. The regression coefficient for O2 varies in sign over the 
global ocean (Figure 5c). Over most of the low-  to mid- latitudes, LFB 
events are associated with low O2. Low oxygen levels limit metab-
olism, growth performance and body size, and therefore limit total 
population biomass (Cheung et al., 2011, 2013; Clarke et al., 2021; 
Pauly & Cheung, 2017), potentially driving LFB events. In isolated 
grid cells in the high northern latitudes and in the northern part of 
the Southern Ocean, LFB events are, however, associated with high 
O2. There, high O2 is usually driven by increased solubility associated 
with lower T (Figure S3), a potential driver of LFB for which high O2 
would simply be a proxy. Low salinity is an indicator of LFB espe-
cially in the equatorial Pacific, whereas high salinity is an indicator 
of LFB in the western South Indian Ocean and the North Atlantic 
(Figure 5d). LFB events are also favored by high Ice in the northern 
high latitudes and low Ice in the southern high latitudes (Figure 5e). 
This hemispheric divergence is explained by the species composition 
of the pelagic ecosystem in each region. In the Arctic, although larger 
sea ice coverage provides more favorable conditions for polar spe-
cies, it reduces the suitable habitat for nonpolar, nonendemic species 
(Cheung et al., 2008). Reduced biomass of nonpolar species during 
high Ice events reduces the overall pelagic biomass and contributes 

to driving LFB events in the Arctic. In contrast, nonpolar species are 
less connected with the Antarctic, where marine species are highly 
endemic and therefore well adapted to sea ice (Eastman, 2005). Re-
duced biomass of polar species during low Ice events contributes to 
driving LFB events around Antarctica in the DBEM.

3.2  |  The role of lagged effects in driving low fish 
biomass events

Anomalous ocean conditions may have lagged effects on fish bio-
mass, which potentially drive LFB events a few years later. To ac-
count for these lagged effects, ocean conditions 1– 2 years prior to 
an LFB event were also selected as predictors in our analysis.

We found that NPP from 1 and 2 years prior to an LFB event was 
selected as a predictor over about 70% of the ocean area considered 
by the model (Figure 4b). The associated regression coefficients are 
still relatively high (on the order of −0.3; Figure 4a). This lagged ef-
fect might be explained by NPP having large negative impacts on 
fish population biomass (Chassot et al., 2010), leading to a reduction 
in reproductive capacity that would take multiple years to recover 
particularly for longer- lived, later- matured species (i.e., with lower 
intrinsic population growth rate). Negative impacts from low NPP 
propagate over time through the population, potentially driving a 
decline in overall fish biomass. The lagged effect is most pronounced 
in the low latitudes (Figure S4), where time variability in NPP is also 
especially low in the ESM2M (Le Grix et al., 2022). Low NPP may 
therefore be associated with low NPP in the following years and 
thus indirectly with LFB in the following years. A time lag of 1 year 
or 2 years for T and O2 is rarely selected as a predictor (over less 
than 21% of the ocean area, Figure 4b). Moreover, the regression 
coefficients associated with lagged T and O2 are of much lower ab-
solute value compared with the regression coefficients associated 
with concurrent T and O2 (Figure 4a). T and O2 appear better suited 

F I G U R E  5  Regression coefficient associated with net primary production (a), surface temperature (b), dissolved oxygen (c), salinity (d), 
and sea ice coverage (e) conditions in the year of the event in the logistic regression. Black areas correspond to regions without fish biomass 
data, in contrast to white areas, which correspond to regions where a given ocean variable was not selected as a predictor in the logistic 
regression.
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8  |    LE GRIX et al.

at predicting concurrent LFB events than future LFB events. Com-
pared with concurrent salinity, one- year and two- year lagged S was 
selected as a predictor over a similar area (30% of the ocean area 
considered by the model). This suggests persistent low salinity con-
ditions, which indicate negative impacts on fish biomass over time. 
In contrast, one- year and two- year lagged Ice is never selected as a 
predictor, potentially reflecting high interannual variability in sea ice 
coverage. Maps of the regression coefficient associated with one- 
year and two- year lagged predictors are shown in Figure S4.

Our results highlight the important role of lagged effects in 
driving LFB events. They might include “direct” lagged effects, by 
which anomalous ocean conditions drive LFB on their own after 1 
or 2 years, as well as “indirect” lagged effects. Anomalous ocean 
conditions may indirectly drive LFB by playing the role of a precon-
ditioning event or by temporally compounding with other events 
(Zscheischler et al., 2020). Preconditioning events correspond to 
anomalous ocean conditions rendering an ecosystem more vulner-
able to subsequent ocean events, which might end up driving LFB. 
Temporally compounding events correspond to a repetition of the 
same kind of ocean event, like a marine heatwave, whose impacts 
accumulate over time and end up driving LFB.

3.3  |  Most influential predictor of low fish 
biomass events

We identified at each grid cell the most influential predictor of LFB 
events, that is, the predictor associated with the highest absolute re-
gression coefficient (Figure 6). NPP is the main predictor over most 
(52%) of the ocean area considered by the model. −1- year and −2- year 

lagged NPP are the main predictors over 16% of the ocean, mostly 
located in the subtropical gyres, where NPP variability is low. T is 
the main predictor in the eastern equatorial Pacific, in the equatorial 
Atlantic and locally over the Gulf Stream region and in the high lati-
tudes. O2 is the main predictor over a few regions, for example, locally 
in the eastern equatorial Pacific and Atlantic. S is the main predic-
tor in the western equatorial Pacific. Lastly, Ice is the main predictor 
over certain regions in the high latitudes, such as in the Arctic Ocean. 
Overall, our results highlight the dominance of NPP, as a useful indi-
cator of potential extreme declines in pelagic fish biomass over most 
of the ocean area (Figure 6). This is consistent with previous studies 
on the link between long- term changes in NPP and fish production 
(e.g., Blanchard et al., 2012; Chassot et al., 2010; Lotze et al., 2019; 
Stock et al., 2017), although we look here at annual changes.

3.4  |  Categorizing the drivers of low fish biomass 
events into moderate, extreme, univariate, and 
compound drivers

We use LASSO logistic regression with lagged effects to classify the 
drivers of LFB events into four categories: univariate, compound, 
moderate, and extreme. Our methodology utilizes the regression 
coefficients from the previously built logistic regression to deter-
mine whether an LFB event can be driven by univariate or moderate 
anomalies in ocean conditions or if compound or extreme anomalies 
are necessary (see Section 2).

Our analysis shows that moderate oceanic events can drive LFB 
events over only 30% of the ocean area considered by the model 
(in gray in Figure 7a), primarily in the low latitudes, particularly in 

F I G U R E  6  Most influential predictor of LFB events, defined as the predictor with highest absolute regression coefficient in the logistic 
regression.
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    |  9LE GRIX et al.

F I G U R E  7  Spatial distribution of each category of LFB drivers. The legend indicates the fraction of ocean area considered by the model 
occupied by each category. (a) Extreme events are necessary to experience LFB events. (b) Compound events are necessary to experience 
LFB events. Both upper panels are superimposed to create the bottom panel (c), which shows where compound extreme events are 
necessary to experience LFB events.
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10  |    LE GRIX et al.

the central equatorial Pacific, and in the California Current System. 
These regions have a high number of predictors in the logistic regres-
sion, and moderate anomalies in multiple variables may compound 
to drive LFB events. Extreme oceanic events are necessary to expe-
rience LFB events over 70% of the ocean area, primarily in the mid- 
to- high latitudes (yellow area in Figure 7a). This is further supported 
by the co- occurrence of LFB events with extreme conditions, such as 
extremely high SST, low O2, and low NPP in the mid- latitudes, as well 
as with extremely high Ice and low Ice in the northern and southern 
high latitudes, respectively (Figure S5).

Next, we analyze whether univariate events alone can drive LFB 
events or if compound events are necessary. Our results show that 
univariate events can drive LFB events over 22% of the ocean area, 
primarily in the eastern equatorial Pacific (in gray in Figure 7b), where 
high absolute regression coefficient for O2 and T suggests that even 
univariate O2 and T events may be sufficient to drive LFB events. 
Over the remaining 78% of the ocean area (in blue in Figure 7b), 
compound events are necessary to experience LFB events. In the 
Appendix, we further differentiate between temporally compound-
ing events, where one single ocean variable is anomalous over 
multiple years, and multivariate compound events, where multiple 
ocean variables are anomalous (Figure S6). Temporally compounding 
events are necessary for the occurrence of LFB events over 36% 
of the ocean area (in light blue in Figure S6), mostly located in the 
subtropics, where NPP, −1 year NPP, and −2 year NPP are LFB pre-
dictors. There, low NPP could persist over multiple years and drive 
LFB. In contrast, multivariate compound events are necessary for 
LFB events over the remaining 42% of the ocean area (in dark blue 
in Figure S6), where multiple events such as high T, low O2, and low 
NPP events may compound to drive LFB.

Lastly, we overlapped Figure 7a,b to identify regions where 
the LFB drivers must be both an extreme and a compound event 
(Figure 7c). The fraction of ocean area where extreme and com-
pound events are necessary to experience LFB events overlap in 
the mid- to- high latitudes (61% of the ocean, in green in Figure 7c). 
There, a compound extreme event with an extreme in at least 
one variable is required to drive extreme impacts on pelagic fish. 
Note that although compound extreme events are necessary to 
experience LFB events over 61% of the ocean area (in green in 
Figure 7c), this area comprises only 37% of the total pelagic fish 
biomass (also in green in Figure S7c), as fish species are heteroge-
neously distributed over the global ocean (Figure S1a). Over the 
remaining 13% of the ocean area (in gray in Figure 7c), LFB events 
can be driven by a univariate event as long as it is extreme or, 
interchangeably, by a moderate event as long as it is a compound 
moderate event (i.e., a combination of moderate anomalies in mul-
tiple ocean variables). A univariate and moderate anomaly in one 
ocean variable is not sufficient to drive LFB anywhere (in black on 
the legend of Figure 7c). In the appendix, we converted the frac-
tion of ocean area occupied by each driver category (Figure 7) into 
the corresponding portion of the global mean fish biomass within 
each category (Figure S7), addressing heterogeneous fish biomass 
over the global ocean.

4  |  DISCUSSION AND CONCLUSION

We investigated the drivers of extremely low pelagic fish biomass 
(LFB) events by applying a LASSO logistic regression to output of a 
global marine fish model. We found that low net primary productiv-
ity is the most influential predictor of LFB events over the majority 
(68%) of the surface ocean considered by the model. The predic-
tion of such LFB events is substantially improved by considering net 
primary production 1– 2 years before the event. We also found that 
a moderate and univariate anomaly in one ocean variable is not suf-
ficient to drive LFB events and that over 61% of the surface ocean, 
anomalies in multiple ocean variables— which must be extreme in at 
least one variable— are required to cause LFB events. Our findings 
highlight the key role of extreme and compound events for severe 
impacts on pelagic fish biomass.

This study takes the original approach of investigating the driv-
ers of extreme impacts on pelagic fish biomass using a backward as-
sessment method. Contrary to previous studies that apply a forward 
approach to investigate the impacts of extreme hazards, such as ma-
rine heatwaves, on ecosystems (e.g., Cheung et al., 2021; Cheung & 
Frölicher, 2020; Smale et al., 2019; Smith et al., 2023), the focus here 
is rather on extreme impacts on fish and what drives such impacts. 
Such backward approaches have become more common in recent 
years, for instance to identify drivers of extremely low vegetation ac-
tivity and carbon uptake (Zscheischler et al., 2013; Zscheischler, Ma-
hecha, et al., 2014), floods (Jiang et al., 2022), and crop failure events 
(Vogel et al., 2021). The backward approach allows for the identifi-
cation of potentially unexpected drivers (van der Wiel et al., 2020), 
such as low NPP, and for the distinction between univariate, com-
pound, moderate, and extreme drivers. The dominant role of low 
NPP, and not of high temperature (e.g., Cheung & Frölicher, 2020), 
in driving extremely low fish biomass, was particularly unexpected. 
Our findings may explain why some recent studies did not find sub-
stantial impacts of marine heatwaves on ecosystems, for example, 
on the biomass and community composition of coastal Atlantic and 
Pacific demersal fish communities over the last three decades (Fred-
ston et al., 2023). In contrast, our results are supported by previous 
studies arguing that long- term changes in fish production strongly 
mirror long- term changes in NPP (e.g., Blanchard et al., 2012; Chas-
sot et al., 2010; Lotze et al., 2019; Stock et al., 2017). Marine heat-
waves possibly lead to negative or more negative impacts when 
compounded with other stressors, such as low NPP. A multivariate 
approach is recommended to best apprehend changes in fish bio-
mass. Additionally, we found that combinations of moderate ocean 
anomalies might be sufficient to drive extreme impacts on pelagic 
fish biomass over 22% of the ocean area considered by the model. 
Therefore, monitoring multiple ocean ecosystem drivers in addition 
to marine heatwaves (e.g., Jacox et al., 2022) may help to improve 
predictions of high impacts on the pelagic fish ecosystem.

An important aspect of this study is that it considers the per-
spective of a very large assemblage of pelagic fish species, as op-
posed to focusing on individual species. Note that our analysis 
excludes demersal fishes and benthic invertebrates. Each pelagic 
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    |  11LE GRIX et al.

species has its own unique response to anomalous ocean conditions, 
based on its natural habitat and range of tolerance (Pörtner, 2002; 
Pörtner & Peck, 2010). For instance, some species that are already 
at the upper limit of their thermal tolerance might be negatively 
affected by elevated temperatures, while others may benefit from 
the same warming event. However, the overall response of the pe-
lagic fish ecosystem to changes in ocean conditions is not yet well 
understood. This study offers an initial evaluation of the drivers of 
extreme declines in the biomass of pelagic fishes. It forms the foun-
dation for future studies, which could then focus on specific oceanic 
events, known to impact pelagic ecosystems. Such studies could be 
conducted at a finer temporal scale, so as to also address the role of 
event intensity and duration in driving impacts.

A compound event combines individual ocean events, whose ef-
fects may act synergistically to drive LFB events (Boyd & Brown, 2015; 
Gruber et al., 2021). We employed a logistic regression to analyze these 
effects, assuming an additive relationship between them. However, it 
is important to note that these effects may not be linear, as demon-
strated by previous research (Zscheischler & Seneviratne, 2017). For 
example, the combined effect of increased temperature and reduced 
net primary production on fish may be different from the sum of their 
isolated effects. To further investigate this, we conducted a sensitivity 
analysis (not shown) that considered mixed effects in the logistic re-
gression. Specifically, we allowed the product of two ocean variables 
to be selected as a predictor of LFB events under the condition that it 
improved the prediction. However, in our study, accounting for mixed 
effects did not improve the prediction of LFB events. In contrast, it 
reduced the model performance by 14%, possibly due to difficulties in 
selecting the best predictors among many variables.

The robustness of the results presented here depends on the fidel-
ity of the DBEM in simulating the ocean ecosystem drivers of changes 
in pelagic fish biomass. The DBEM has been shown to reproduce ob-
served shifts in the biomass and distribution of hundreds of fish species 
under moderate (e.g., Cheung et al., 2013, 2016) and extreme (Cheung 
et al., 2021) changes in ocean conditions. However, as with any model, 
the DBEM is an incomplete representation of the pelagic ecosystems 
(Cheung et al., 2011) and certain limitations require further discussion. 
One limitation of the DBEM is that it does not account for vertical 
heterogeneity in ocean ecosystem drivers and assumes surface ocean 
conditions to be the primary drivers of pelagic fish biomass. In real-
ity, pelagic fishes are also distributed at subsurface, where changes in 
ocean conditions do not necessarily mirror changes in surface ocean 
conditions. This is particularly true in not well- ventilated regions, such 
as oxygen minimum zones, where oxygen changes are decoupled from 
changes in surface oxygen. Further studies are needed to better assess 
the role of subsurface oxygen anomalies in driving extreme declines in 
pelagic fish biomass (e.g., Morée et al., 2023). Another limitation of 
the DBEM is that it integrates the effect of recruitment and mortality 
through an intrinsic population growth model; therefore, we cannot 
disentangle the respective contributions of a change in recruitment or 
mortality to reducing fish biomass during LFB events. Additionally, the 
DBEM simulations that we used in this study do not consider the ef-
fects of ocean acidification or fishing pressure on fish biomass. Ocean 

acidification can cause physiological stress and perturb fish olfactory 
ability to detect suitable habitat, potentially leading to population de-
clines (Branch et al., 2013; Cheung et al., 2011; Melzner et al., 2009; 
Munday et al., 2009; Tai et al., 2021). These effects may be particu-
larly pronounced when combined with other ocean stressors such as 
low oxygen (Gobler & Baumann, 2016) or high temperature (Burger 
et al., 2022; Cornwall et al., 2021). Fishing pressure also impacts fish 
biomass (e.g., Watson et al., 2013) and may be a primary reason for 
the recent marine biodiversity decline (Jaureguiberry et al., 2022). 
However, fisheries target specific species, and each species reacts 
differently not only to the fishing pressure but also to environmental 
stressors. Therefore, one cannot disentangle the respective effects 
of fishing and the environment on the whole pelagic ecosystem. The 
DBEM offers the possibility to remove the fishing pressure and con-
centrate on the environmental drivers of LFB events. Once the envi-
ronmental drivers are understood, further studies could address the 
additional role of fisheries in driving extreme changes in fish biomass 
(Cheung et al., 2011, 2022; Tai et al., 2018).

The conclusions of this study are not only dependent on the 
global fish model used but also on the ocean ecosystem drivers as 
simulated by the GFDL ESM2M. For example, the dependencies be-
tween ocean variables, such as the correlation between net primary 
production and temperature, may differ between the GFDL ESM2M 
and other Earth system models. Dependencies between ocean vari-
ables are reflected in the logistic regression coefficients and may 
impact our results. In particular, the negative correlation between 
net primary production and temperature in GFDL ESM2M is overes-
timated in the tropics and strongly underestimated around Antarc-
tica when compared to observation- based data (Le Grix et al., 2022). 
Therefore, the role of compound high temperature and low net pri-
mary productivity events in driving low fish biomass events may be 
overestimated in the tropics and underestimated around Antarctica. 
In addition, the GFDL ESM2M has been shown to underestimate 
NPP in sea- ice- covered regions (Dunne et al., 2013). Sea ice limits 
incoming solar radiation and therefore phytoplankton growth in the 
model, although previous studies suggest sustained NPP within the 
sea ice cover by sea- ice- bound algae, which support a thriving polar 
ecosystem (Eicken, 1992; Koch et al., 2023). To further validate the 
robustness of our results, different Earth system models with po-
tentially divergent dependencies between ocean variables should be 
used, following similar sensitivity experiments as over land (Tschumi 
et al., 2023). New simulations from global fish models forced by dif-
ferent Earth system models, that have now become available under 
the Inter- Sectoral Impact Model Intercomparion Project (ISIMIP) 
framework (Tittensor et al., 2021), might be used for an intermodel 
comparison study in the future. In this study, the selection of the 
GFDL ESM2M was motivated by the availability of a large ensemble 
simulation (LES), which provides the necessary large dataset from 
which to study rare extreme events. At present, there are only a few 
LES available with fully coupled Earth system models that simulate 
ocean ecosystem drivers (e.g., Deser et al., 2020; Maher et al., 2019; 
Rodgers et al., 2015, 2021). Our analysis could, for example, be repli-
cated using the 100- member CESM2- LES (Rodgers et al., 2021).
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12  |    LE GRIX et al.

The drivers of LFB events identified in this study are affected by 
climate change, as the ocean is warming and losing oxygen, sea ice is 
retreating and primary production is responding to changes in tem-
perature, nutrients, light levels, and grazing pressure (Kwiatkowski 
et al., 2020). Changes in these environmental stressors are bound to 
affect marine ecosystems (e.g., Cheung et al., 2013; Doney et al., 2012; 
Lotze et al., 2019), and therefore likely also the occurrence of LFB 
events. For example, over regions where high temperatures drive LFB, 
for example, in the eastern equatorial Pacific and equatorial Atlantic, 
one would expect an increase in LFB events under global warming. 
Similarly, a change in NPP's mean state (Steinacher et al., 2010; Stock 
et al., 2017) and variability would alter the likelihood of LFB events 
given the dominant role of low NPP in driving LFB over most of the 
global ocean. In conjunction with short- term forecasts and longer- 
term projections of ocean conditions, our findings help anticipate 
potential declines in pelagic fish biomass. Early prediction allows mit-
igating measures to be quickly implemented to moderate impacts on 
ecosystems and the societies relying upon them.

This study provides insights into potential environmental drivers of 
high impacts on pelagic fish biomass. We highlight the key role played 
by univariate extreme events, compound moderate events, and com-
pound extreme events in driving severe impacts on fish. Our results 
motivate further work on ocean extreme and compound events, as 
well as the monitoring of multiple ocean ecosystem drivers including 
net primary productivity as a means to predict impacts on pelagic fish.
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