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Summary
The interplay between mechanical stimuli and cellular mechanobiology orchestrates the physiology
of tissues and organs in a dynamic balance characterized by constant remodelling and adaptative
processes. Environmental mechanical properties can be interpreted as a complex set of information
and instructions that cells read continuously, and to which they respond. In cirrhosis, chronic
inflammation and injury drive liver cells dysfunction, leading to excessive extracellular matrix
deposition, sinusoidal pseudocapillarization, vascular occlusion and parenchymal extinction. These
pathological events result in marked remodelling of the liver microarchitecture, which is cause and
result of abnormal environmental mechanical forces, triggering and sustaining the long-standing
and progressive process of liver fibrosis. Multiple mechanical forces such as strain, shear stress,
and hydrostatic pressure can converge at different stages of the disease until reaching a point of no
return where the fibrosis is considered non-reversible. Thereafter, reciprocal communication be-
tween cells and their niches becomes the driving force for disease progression. Accumulating evi-
dence supports the idea that, rather than being a passive consequence of fibrosis and portal
hypertension (PH), mechanical force-mediated pathways could themselves represent strategic tar-
gets for novel therapeutic approaches. In this manuscript, we aim to provide a comprehensive re-
view of the mechanobiology of PH, by furnishing an introduction on the most important
mechanisms, integrating these concepts into a discussion on the pathogenesis of PH, and exploring
potential therapeutic strategies.
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Introduction on mechanobiology
Mechanical forces exerted by cells underlay a dy-
namic balance that orchestrates the physiology of
all living organisms. In fact, tissues and organs are
characterized by complex architectures that result
from continuous remodelling modulated by cell
mechanosensing. The balance is maintained inter-
nally via cellular tension-generated forces from the
cytoskeleton, and externally by mechanical stimuli
from the environment. From this perspective,
environmental mechanical properties can be
interpreted as a complex set of information and
instructions that cells read continuously, and to
which they adapt. Mechanical forces can be
considered an upstream driver of a cell’s pheno-
type in the field of mechanobiology, but underlying
pathological events represent the primary factor
that disrupts the complex balance of mechano-
sensing.1,2 This is the case in liver fibrosis, where
mechanical forces gradually take the lead in the
progression of the disease, sustaining and driving
liver cell dysfunction. Indeed, in chronic liver dis-
eases (CLDs) of different aetiologies, chronic
inflammation and injury initiate progressive cell
dysfunction, altering liver microarchitecture, from
which cells receive pathological stimuli in a long-
standing and progressive process.3 At this point,
multiple mechanical alterations converge at
different stages of the disease in a winch-like loop,
until reaching a point of no return, where the
fibrosis is considered non-reversible. Following
this, the reciprocal communication between cells
and their niche can be altered in many ways – e.g.
by tensile stress, hydrodynamic pressure, and shear
stress, with resulting cell stretch and/or compres-
sion – becoming the driving force for disease pro-
gression. These mechanical forces, at the cellular
and molecular level, have recently been recognized
as a driver of liver pathology,4–7 and thus a po-
tential target for novel therapeutic approaches.

Mechanosensing and mechanotransduction
The mechanosensing machinery of cells spans from
the extracellular environment all the way to the
interior of the nucleus. Externally, forces are
transmitted from the extracellular space to the cell
through transmembrane proteins, as well as
directly from the blood flow. Internally, due to re-
petitive contraction and relaxation of the actin fil-
aments of the cytoskeleton, cells sense the stiffness
or pressure of their environment, generating a
tension proportional to it. In the case of
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Key points

� Accumulating data highlight mechanobiology as a crucial initiator and
modulator of physiological and pathological cell behaviour.

� Liver cells are exposed to a variety of mechanical forces under ho-
meostatic conditions, and these become aberrant during the develop-
ment of cirrhosis.

� Chronic altered mechanical stimulation leads to dysfunctional liver
cells and contributes to the maintenance and progression of portal
hypertension.

� Targeting mechanosensing and mechanotransduction pathways may
aid in reversing phenotypical alterations of cirrhotic liver cells.

� A deeper understanding of the ways in which altered mechanobio-
logical cues modulate the progression and maintenance of chronic liver
disease may help in the design of new therapeutic strategies for portal
hypertension.
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extracellular matrix (ECM)-cell attachment, this intracellular
tension pulls on the ECM-bound integrins, which then organize
into focal adhesions (FAs) along with adaptor proteins to rein-
force the ECM-cytoskeleton link. The cytoskeleton-generated
tension is then transmitted to the nucleus by the LINC (linker
of nucleoskeleton and cytoskeleton) complex. This can be bound
either to the nuclear pore complex or to the lamins, which are
connected to the lamin-associated domains (LADs) on chro-
matin.8,9 Consequently, internal tension generated by the cyto-
skeleton during mechanosensing and mechanotransduction
deforms the nucleus proportionally to the force generated by or
applied to the cell, altering the permeability of its pores and the
traffic of biomechanically modulated molecular factors, and ul-
timately influencing gene expression by directly modifying the
chromatin structure and the permeability of the cell and nuclear
membranes (Fig. 1).

ECM-nucleus axis
Mechanosensing at the plasma membrane
Transmembrane proteins, such as integrins, play a key role in
mechanobiology, allowing cells to sense the environment.
Integrin biology is highly complex, and their involvement in
disease is wide-ranging.10 Upon stiffness sensing, integrins bind
to talin, causing its unfolding, revealing cryptic binding sites, and
recruiting vinculin11 and other cytoskeleton linker proteins. This
then leads to the activation of downstream signalling proteins.
Moreover, integrins are also involved in transforming growth
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factor-b (TGFb) signalling, allowing its release from the ECM-
bound latency associated peptide, thanks to stiffness-mediated
conformational changes.12 Besides integrins, ion channels (e.g.,
Ca2+) play an important role in plasma membrane mechano-
sensing.13 Any force applied on the cell membrane alters the
conformation of ion channels, allowing for passive transport of
ions with marked consequences on cell osmolarity, and protein
and chromatin stability. TRPV4 (transient receptor potential
cation channel subfamily V member 4) and Piezo114 are ion
channels that respond to a wide variety of mechanical stimuli,
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such as shear stress,15 membrane stretch,16 or pressure,17 and
may also be involved in vascular or immune aspects of advanced
CLD, as they play such roles in other systems.18,19 Furthermore,
caveolae,13 another mechanosensitive plasma membrane-
associated component, may be involved in maintaining endo-
thelial homeostasis, as extensively reviewed elsewhere.20

Regulation of the cytoskeleton
Downstream of integrins and FAs, several proteins guarantee
transduction of mechanical forces generated by the cytoskeleton.
Rho-GTPases play crucial roles in actin nucleation and elongation
and in actomyosin contractility. Rho-associated coiled-coil-con-
taining kinase (ROCK), an important RhoA effector, is involved in
myosin light chain phosphorylation, stimulating the interaction
between myosin and actin. Moreover, it also inhibits actin
depolymerization. The resultant turnover contributes to the dy-
namic remodelling of the cytoskeleton, supporting an increase in
tension, which is responsible for downstream transmission to-
wards the nucleus.21

Nuclear alteration
Cell contractility (i.e., during migration) imposes a transient
compressive force through lateral and ventral actin fibres
anchored to the outer nuclear membrane via the LINC complex.
However, on flat, rigid substrates, actin fibre alignment produces
stretching, compression, and indentation of the nucleus,22 which
can lead to nuclear envelope damage.23 Nuclear compression and
cytoskeletal tension are directly proportional to the rigidity of
the ECM. Disruption of the actin cytoskeleton reduces
compression on the nucleus, restoring cell functionality in high
stiffness.24 Nuclear deformation can modulate gene expression
mainly by altering chromatin rheology and nuclear membrane
permeability. Chromatin is connected to the nuclear envelope,
whose compression and stretching alters its conformation via
LADs, as comprehensively reviewed elsewhere.1 Moreover, nu-
clear deformation controls chromatin localization, methylation,
and acetylation,25,26 playing a key epigenetic role in gene tran-
scription.27 When cells spread out on stiff substrates, stretching
of the nuclear membrane induces dilation of the nuclear pore
complex, which adopts a more open conformation, allowing for
translocation of transcription factors or co-factors.8 Yes-
associated protein 1/WW-domain-containing transcription
regulator 1 (YAP/TAZ)28 are transcription co-factors whose ef-
fects in development and carcinogenesis have been widely
described.29 Interestingly, recent studies have demonstrated that
nuclear translocation of YAP/TAZ is dependent on the substrate
stiffness in a non-linear manner and that they also play promi-
nent roles as profibrotic factors.30,31 Similarly, subcellular local-
ization of myocardin-related transcription factor-A (MRTF-A) is
regulated by its association with cytoplasmic actin G, which,
upon Rho signalling and polymerization into filamentous actin,
releases MRTF-A that translocates to the nucleus and activates
SRF (serum response factor).32 Zyxin, which is part of the
mechanosensing FA complex, also translocates to the nucleus
upon cell stretch and regulates genes related to apoptosis, pro-
liferation, and inflammation.33

In endothelial cells, mechanical forces other than tensile
stress play a key role in cellular homeostasis. Hydrodynamic
pressure and shear stress resulting from the action of blood flow
on cell membranes are transmitted by the actin cortex and the
glycocalyx through the cytoskeletal network up to the nucleus
JHEP Reports 2023
(Fig. 2). These mechanical forces modulate the expression and
localization of YAP and TAZ, which act in the nucleus as activa-
tors of TEAD, a family of biomechanically modulated molecular
factors, contributing to the maintenance of cellular homeosta-
sis.34 The vector of shear stress is tangential to endothelial cells,
and its magnitude and direction are key regulators of gene
expression. Flow transmits mechanical force to the nucleus via
intracellular tension from the membrane modulating vascular
endothelial-cadherin, PECAM1 (platelet and endothelium cell
adhesion molecule 1), and VEGFR2 (vascular endothelial growth
factor receptor). A cell’s adaption to various changes in blood
flow, pressure, and turbulence involves the cytoskeleton-nuclear
axis, as well as the biochemical modulation of molecular fac-
tors,35 and to a certain unknown extent their translocation due
to nuclear deformation, as described below.
Mechanobiology in portal hypertension
Portal hypertension (PH) represents the most common and
detrimental non-neoplastic complication of CLD and is diag-
nosed when the pressure gradient between the portal vein and
the inferior vena cava (measured clinically in cirrhosis by the
hepatic venous pressure gradient, or HVPG) exceeds 5 mmHg. It
is considered clinically significant when the HVPG is >−10 mmHg,
as going beyond this threshold is associated with important
clinical complications like variceal bleeding, ascites, infections,
hepatorenal syndrome, and hepatic encephalopathy.36 The
pathophysiology of PH starts with the de-differentiation of liver
cells due to continued injury, development of hepatic microcir-
culatory dysfunction, and elevation of intrahepatic vascular
resistance (IHVR). IHVR has two components: a structural one,
derived from a long-standing fibrogenic process, characterized
by distorted microcirculation due to altered microarchitecture,
vascular occlusion, parenchymal extinction, and regenerative
nodules,37 and a functional component, characterized by endo-
thelial dysfunction and hepatic stellate cells (HSCs) hyper-
contraction38 leading to a dynamic increase in vascular
resistance to blood flow. In this context, the activation of HSCs
and liver sinusoidal endothelial cells (LSECs) dysfunction
generate an altered cross-talk that further aggravates microvas-
cular dysfunction. Several factors produced by LSECs, such as
endothelin-139 or nitric oxide (NO),40 can modulate HSCs acti-
vation and increase contractility and ECM production or,
conversely, promote HSCs’ return to a quiescent phenotype.41–43

Moreover, paracrine NO signalling modulates mechanobiology-
related processes, such as the formation of FAs and migration
of HSCs.44,45 The progressive intrahepatic accumulation of ECM,
together with increased vascular tone, modifies the sinusoidal
milieu, leading to changes in the mechanical properties of the
liver and, consequently, to the adaptation of liver cells via
mechanotransduction (Fig. 3). Although PH is considered
partially reversible,46 during the progression of CLD, changes in
the local environment may reach a point of no return where the
disease is considered irreversible, which is thought to occur
when liver scarring is dense, extensively cross-linked and almost
acellular with a concomitant loss of parenchymal cell mass.
Indeed, altered mechanosignalling may be the factor that drives
progression of CLD to this non-reversible stage. This underlines
the importance of studying mechanobiology to determine the
point of no return in cirrhosis and to identify molecular targets
that could guide novel therapeutic strategies.
3vol. 5 j 100869
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Mechanical cues influencing portal hypertension
Shear stress
Shear stress is defined as the tangential force resulting from the
friction generated by blood flowing over the endothelial surface,
whose magnitude depends on the blood flow and the area of the
sinusoids. In the liver, functional vascular integrity ultimately
depends on LSEC and HSC homeostasis. Shear stress is a constant
stimulus that is crucial for the function of LSECs, which under
physiological conditions release vasodilatory agents such as NO
in response to blood flow in order to maintain a physiological
sinusoidal pressure. In PH, LSECs dysfunction is characterized by
the loss of this property, as well as changes in the release of
paracrine/angiocrine factors,47 impairing hepatic sinusoid cell
cross-talk, activating mechanosensing-related molecular path-
ways,48 and changing the membrane-related proteome profile.49

LSECs dysfunction may be the upstream event responsible for
the structural and functional components of IHVR,36 playing a
major role together with cytokines release in driving HSCs acti-
vation. Kruppel-like factor 2 (KLF2) is a transcription factor that
sustains LSECs’ protective phenotype50 by regulating the release
of NO and vasoconstrictors like endothelin-1. KLF2 expression
rises with the magnitude of shear stress and is an early indicator
of microcirculatory dysfunction in CLD.51 However, its role is still
discussed due to the presence of two KLF2 transcripts generated
by alternative splicing, that prevent it from being a direct
JHEP Reports 2023
therapeutic target for CLD.52 Unfortunately, the role of epigenetic
changes in LSECs stressed by PH is still not clear; understanding
how these changes affect the promoter of KLF2 at CpG islands
would uncover a key aspect of the pathophysiology of CLD. In
addition, decreased bioavailability of NO is sustained by the
increased amount of reactive oxygen species (which are
responsible for NO scavenging rate), by a deficit in tetrahy-
drobiopterin (a chaperone required for endothelial NO synthase
[eNOS] coupling), and by an increased synthesis of asymmetric
dimethyl-arginine (an endogenous eNOS inactivator).53 Finally,
together with KLF2 expression, LSECs autophagy plays an
important role in response to shear stress. A recent work from
our group highlighted the protective role of a statin (simvastatin)
in maintaining the cross-talk between autophagy and KLF2
expression via its inhibitory effect on Rac1.54

Hydrodynamic pressure
Sinusoidal stretch and pressure are also crucial in modulating
cell phenotype, as suggested by data obtained in models of
chronic liver congestion.55 Moreover, once it progresses, liver
disease of any aetiology will encompass increased fluid pressure
and abnormal cell stretch due to disturbed vascular flow,
cholestasis, and interstitial oedema. Theoretically, once fibrosis
develops, the tissue becomes less compliant and cell stretch will
become less prominent, while at the same time, pressure within
4vol. 5 j 100869
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the sinusoids will increase and will be transmitted to the adja-
cent cells.

In other contexts, both forces have been shown to influence
several processes in endothelial cells, as reviewed elsewhere.56

Comparatively few studies have so far investigated the effects
of sinusoidal stretch and pressure during CLD development.
Recently, our group has demonstrated the relative contribution
of pathologic pressure to LSEC dysfunction in CLD and has
described a pressure-sensitive transcription factor, CBX7 (chro-
mobox homolog 7), modulated by miR-181a-5p. Moreover,
expression of CBX7 significantly correlated with HVPG, while its
downstream secreted proteins (ECAD and SPINK1) represent
accurate biomarkers for assessing the presence of PH and
CSPH.57 In congestive liver disease, upon endothelial cell stretch,
a Piezo1-Notch1 receptor-Hes/Hey pathway has been described,
which results in microthrombosis and increased hydrodynamic
pressure, ultimately forming a feedback loop that aggravates
disease progression.16 Thrombosis of small vessels may also play
a role in liver diseases of other aetiologies,37 a hypothesis sup-
ported by the favourable effect of anticoagulant treatment in
JHEP Reports 2023
cirrhosis.58,59 Whether mechanical stimuli also play a role in the
occurrence of microthrombosis outside of congestive liver dis-
ease is not yet established. Moreover, the swelling and increased
size of lipid-laden hepatocytes have also been proposed to act as
an external mechanical stimulus by encroaching upon the sinu-
soidal space and decreasing its lumen size, thus disrupting
microvascular homeostasis early in the development of NAFLD
(non-alcoholic fatty liver disease), and contributing to the
development of PH, as reviewed elsewhere.60–62

Matrix stiffness
A characteristic of CLD is a progressive increase in liver stiffness
due to excessive matrix deposition. A large amount of evidence
in the clinical setting has shown that liver stiffness in patients
with compensated CLD is a potent independent predictor of the
presence of PH63 and of the development of first clinical
decompensation.64 Interestingly, even in patients who devel-
oped a first decompensating event (in whom cirrhosis and PH
are always present), a higher liver stiffness predicted recurrent
decompensation and liver-related mortality.65 In a carbon
5vol. 5 j 100869
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tetrachloride (CCl4) model of murine cirrhosis, it was found
that myofibroblastic differentiation preceded excessive ECM
deposition and was related to increased stiffness due to LOX
(lysyl oxidase)-mediated cross-linking of already present
collagen fibres.66 Recent studies assessed the effects of increased
matrix stiffness on the phenotype of cells isolated from healthy
livers. Both hepatocytes and HSCs grown in high stiffness con-
ditions (mimicking the stiffness of cirrhotic livers) undergo
morphological and functional changes, adopting a more dedif-
ferentiated and proliferative phenotype.67–69 Hepatocytes
diminish their synthetic and detoxifying functions,67–70 changes
partially related to Rho/ROCK-modulated downregulation of
HNF4a (hepatocyte nuclear factor-4a) at the nuclear level.68,69 In
HSCs, markers of activation are increased,67,70,71 while peroxi-
some proliferator-activated receptor-c (PPARc) is decreased,70

and the activity of matrix metalloproteinase 9 and TIMP1
(TIMP metalloproteinase inhibitor 1) is altered, perpetuating the
fibrotic process.72

Recently, our group demonstrated the effect of substrate
stiffness on the phenotype of LSECs.67 When cultured on poly-
acrylamide (PAA) gels with high stiffness (30 kPa), healthy rat
LSECs displayed a reduced number of fenestrations, increased
laminin B1 and eNOS expression, and decreased NO synthesis,
consistent with features of in vivo capillarization. Altogether, this
evidence suggests that, in the fibrotic liver, hepatic cells would
be constantly activated due to high ECM stiffness, contributing to
disease progression. However, the mechanisms of stiffness
sensing in the liver remain largely unknown. In the liver,
the previously described integrin-talin-cytoskeleton-nucleus
pathway may also be crucial for stiffness sensing. Indeed, an
increase in different subtypes of integrins has been described in
CLD;73 however, integrin-mediated cytoskeletal mechano-
transduction is not well understood in the different liver cell
types. Although nuclear deformation is a direct consequence of
increased matrix stiffness, deformation of the nucleus (and its
downstream effects on gene expression) could occur. Indeed,
nuclear localization of the transcriptional co-factor YAP, chro-
matin modifications, and altered cellular response to underlying
matrix stiffness due to nuclear deformation are observed in
lipid-loaded hepatocytes.74,75 Whether this mechanism might be
part of the complex pathogenesis of hepatocellular carcinoma
(HCC) in non-cirrhotic NAFLD livers remains to be ascertained.
The mechano-responsive transcriptional co-factor YAP also
modulates the phenotype of HSCs in response to increased
stiffness via its cytoskeletal-dependent translocation to the nu-
cleus, contributing to a profibrotic programme.31,76 In vivo, YAP
and its target genes Ctgf and Ankrd1 may be induced very early,
after only one administration of CCl4, a timepoint when necro-
inflammation is the only significant change that may increase
tissue stiffness. This suggests the possible involvement of
mechanoresponsive mechanisms in early disease stages, along-
side their known role in later disease stages, which are charac-
terized by a vicious cycle wherein increasing fibrosis maintains
the nuclear localization of YAP that further promotes fibrosis.30

As a proof-of concept, YAP inhibition with verteporfin (visu-
dyne) reduces fibrogenesis in CCl4 and bile duct-ligated murine
models,30,76 therefore validating its relevance in the progression
of the disease. In LSECs, the role of YAP in stiffness sensing has
not yet been characterized, although it is likely to be relevant, as
demonstrated by studies in other vascular beds. In pulmonary
hypertension, increased matrix stiffness induces a YAP/TAZ-
controlled metabolic switch towards increased glycolysis and
JHEP Reports 2023
glutaminolysis, thus supporting endothelial cell hyper-
proliferation, endothelial-to-mesenchymal transition, and
vascular remodelling.77 Moreover, a YAP/TAZ-miR130/301 circuit
has been described, which both responds to increased matrix
stiffness and promotes further ECM remodelling via the PPARy-
APOE-LRP8-LOX pathway, thus highlighting the modified ECM as
both cause and consequence of vascular lung diseases.78 Aside
from YAP, the transcriptional co-factor MRTF-A has been shown
to progressively increase in parallel with the rise in portal
pressure in a CCl4 rat cirrhosis model.79 However, this study only
investigated whole liver homogenates, which leaves open the
question as to the specific function of MRTF-A in endothelial cells
and other individual cell types. During activation of HSCs, MRTF-
A and myocardin enhance cells’ contractility, motility, and pro-
liferation, and impair SRF, Smad2/3 and Erk1/2-mediated fibro-
genic signalling, resulting in a decrease in collagen expression.80

Alternatively, p300 is another transcriptional regulator involved
in HSCs activation. Indeed, high matrix stiffness promotes AKT-
mediated phosphorylation of p300 acetyltransferase, a post-
translational modification that confers p300 with higher stabil-
ity and mediates its nuclear translocation, with the subsequent
activation of HSCs and upregulation of aSMA (a-smooth muscle
actin) and CTGF (connective tissue growth factor).81 In TGFb1-
stimulated fibroblasts, p300 acts as a shuttle for nuclear trans-
location of SMAD2/3, and TAZ (but not YAP),82 a mechanism
which might also be involved in stiffness sensing. Aside from
altering nuclear transport, mechanical forces may also induce
changes in chromatin conformation and other epigenetic
mechanisms.25,26,83 In TGFb1-stimulated fibroblasts, p300 drives
expression of target genes by histone acetylation, while in vitro
activation of HSCs causes MeCP2-mediated transcriptional
repression of PPARc.84,85 Whether these modifications are
related to stiffness sensing, as described in other contexts, has
not been determined. Lastly, the relationship between matrix
stiffness and inflammation is worth noting. The capacity of
neutrophils to transmigrate across the endothelium has been
shown to increase proportionally with substrate stiffness in
TNFa-activated endothelial cells and human umbilical vein
endothelial cells grown on a stiff substrate have a stronger pro-
inflammatory response to LPS stimulation, as evidenced by
upregulation of interleukin-8, ICAM-1 (also known as CD54) and
VCAM-1 (vascular cell adhesion molecule 1).86,87

Matrix stiffness also has an impact on intercellular cross-talk
in the liver. Indeed, improvement of the phenotype of cirrhotic
LSECs and HSCs in response to low matrix stiffness can improve
the phenotype of other HSCs and LSECs, respectively, in a para-
crine manner.67 Moreover, culture of LSECs on a high stiffness
substrate can drive HSCs activation and ECM remodelling
through the DDR2-JAK2/PI3K/AKT-myocardin signalling
pathway, creating a profibrogenic feedback loop involving sinu-
soidal phenotype and ECM stiffness.88

Reversibility of the effects of mechanosensing
Importantly, the mechanosensing mechanism and its effects seem
to be reversible. Freshly isolated HSCs, LSECs and hepatocytes
from cirrhotic animals displayed an improvement in their
phenotype, function, and paracrine communication, and showed
an altered response to a drug with antifibrotic effects when plated
on soft matrices or treated with cytoskeleton disruptors.67

Moreover, culture-activated HSCs grown on progressively soft-
ening matrices exhibited a reduction in spreading, nuclear YAP/
TAZ and actin organization; however, they displayed an
6vol. 5 j 100869



intermediate phenotype with reduced GFAP and rapid reac-
tivation upon re-stiffening of the substrate.89 Indeed, YAP/TAZ are
related to mechanical memory in mesenchymal cells and may
play a role in the early reactivation of HSCs90 along with substrate-
modulated epigenetic changes.25,90 This data suggests that
modulating molecular pathways involved in stiffness sensing
could represent novel therapeutic strategies for CLD regression.

Finally, the interplay between increased tissue stiffness and
HCC, as a significant complication in patients with PH, also
merits attention. In the clinical setting, a higher liver stiffness as
measured by transient elastography is associated with increased
risk of HCC development in patients with HCV91,92 and there is a
positive correlation between ECM stiffness of HCC tissues and
integrin b1 expression.93 In vivo, HCC growth is accelerated in
fibrotic, stiff livers compared to healthy ones.94 In vitro, HCC cells
respond to increased matrix stiffness through enhanced prolif-
eration, a switch towards a mesenchymal phenotype, and inhi-
bition of apoptosis.95,96 Possible mechanisms of carcinogenesis
mediated by mechanosensing in the cirrhotic liver are down-
regulation of proteasomal degradation of YAP,97 mechanically
induced chromatin modifications and genomic instability, which
have been demonstrated in other tissues.7
Opportunities to therapeutically target
mechanobiological changes in liver fibrosis and portal
hypertension
Generally, there are two major approaches when considering
modulation of mechanosensitive pathways: firstly, targeting the
mechanical input itself, by attenuating matrix stiffness (e.g.,
targeting fibrosis) or normalizing blood flow (e.g., using vasoac-
tive substances), and secondly, inhibiting the cellular response
downstream of mechanical stimulation. Several methods aimed
at reducing tissue stiffness have been tried in CLD; however, the
most clinically advanced efforts have shown little success so far.
Simtuzumab (lysyl oxidase like 2 antagonist), which targets ECM
cross-linking, had no effect in NASH-, HCV/HIV-, or primary
sclerosing cholangitis-related CLD due to redundant mechanisms
contributing to tissue stiffening in more advanced stages of the
disease.98–100 Similarly, inhibition of galectin-3 (a pro-
inflammatory and profibrotic factor) has shown basically no ef-
fect in NASH-related CLD.101 Several other approaches targeting
tissue stiffness are being tested in the preclinical setting and may
hold promise, such as inhibition of collagen I, ECM cross-linking
or DDR1, as reviewed elsewhere,102 although these therapies are
likely to be more effective at inhibiting disease progression than
reversing more advanced disease. An alternative to targeting the
mechanical properties of the ECM may be to modulate how cells
respond to these altered mechanical features of the environ-
ment. In this sense, several potential druggable targets exist.
Integrins are the first ones to sense and transmit mechanical
stimuli from the ECM to the cell and thus their inhibition is an
attractive therapeutic option. One integrin inhibitor (PLN-1474,
an integrin amb1 inhibitor) has been tested in phase I clinical
trials in the context of liver fibrosis. Preclinical data for this
approach are promising,103–105 with the caveat that inhibition of
specific integrins (amb3 and amb5 by cilengitide, an anti-
angiogenic compound) has been linked to undesired pro-
inflammatory and profibrotic effects.106 The Rho/ROCK signal-
ling axis is another potential target for mitigating the cellular
response to mechanical stimuli, with several inhibitors available.
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However, few studies have specifically investigated them in
direct relation to mechanosensing. Statins can modulate this
pathway by inhibiting post-translational modifications of Rho-
GTPases, which are necessary for their activation and localiza-
tion to the plasma membrane.34 Statins are known to improve
endothelial dysfunction through a variety of mechanisms, among
them Rho-GTPase-driven ones107 and their benefits in CLD have
been abundantly demonstrated.108–110 At the cellular level, sim-
vastatin has been shown to improve matrix stiffness-induced
endothelial dysfunction mediated by Rho activity.111 Atorvasta-
tin has been shown to mediate senescence of activated HSCs
in vitro,112 as well as to inhibit ROCK activity and increase eNOS
levels and functionality in vivo.113,114 Downstream of Rho-
GTPases, the ROCK inhibitors fasudil, ripasudil and, more
recently, belumosudil, are approved in certain parts of the world
for different diseases. In human CLD, the only trial investigating
fasudil has demonstrated a significant acute haemodynamic
response, likely due to its vasorelaxant properties.115 However,
systemic effects on mean arterial pressure and systemic vascular
resistance prevent its widespread implementation in this setting,
pointing to the need to design more targeted inhibition strate-
gies.116,117 At the transcriptional level, YAP/TAZ is one of the most
investigated potential targets for modulating mechanores-
ponsiveness in cirrhosis and liver carcinogenesis.30,96 However,
no clinical data is currently available.

How to investigate the mechanobiology of portal
hypertension
Tissue stiffness
Tissue stiffness can be measured in several ways, both at the
microscopic and the macroscopic level. In the clinical setting,
tissue stiffness is measured for diagnostic and prognostic pur-
poses by shear wave or magnetic resonance elastography. In the
laboratory setting, the stiffness of tissues or different materials
used for cell culture, as well as the stiffness of cells themselves,
can be measured at macro- or microscopic scale by atomic force
microscopy, pipette aspiration, shear rheometry, and several
other methods.118 The stiffnesses of tissues in the human body
have been established to range from very soft (1-3 kPa) for brain
tissue,118 to very stiff (Gpa) for bone, with healthy liver having a
mean stiffness of 2.3–4.6 kPa.119,120 In cirrhosis, liver stiffness
increases significantly and changes in liver stiffness correlate
both with progression and regression of the disease.

In vitro, several biophysical methods can be employed to
mimic the conditions of healthy and diseased organs. One of the
more common such methods uses hydrogels of different stiff-
nesses, which can be functionalized and coated with the desired
ECM protein; cells can either be cultured on top of the hydrogel,
in a 2D setting, or encapsulated within the hydrogel to mimic a
3D setting. The composition of such hydrogels is varied and the
choice of material depends on each experimental question.121,122

Moreover, several techniques allow for temporal and spatial
modulation of the polymerization degree of these hydrogels,
thus enabling the study of cellular response to dynamic stiff-
ening or softening of their substrate, as well as to different
patterns or gradients.31,89,123,124 Generally, the stiffness of
hydrogels used for in vitro research of liver cells is situated be-
tween 0.5-5 kPa for simulating healthy liver and 10-30 kPa for
fibrotic/cirrhotic liver, with few exceptions where higher stiff-
nesses (60 kPa, corresponding to advanced, decompensated
cirrhosis) have been used.
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Moreover, force application can be made, for example, by
microbeads attached to the cell (e.g., to an integrin), which can
then be moved through magnetic or optical tweezers, thus
generating a mechanical stimulus at the single-cell level. By
using atomic force microscopy, isolated pressure can be applied
to either the plasma membrane or the cell nucleus.28,125–128 To
understand cellular responses to cell stretching, there exist sys-
tems which allow for the application of uniaxial or multiaxial,
cyclic or static stretch to either single cells or cell sheets. How-
ever, liver endothelial cells are subjected to non-pulsatile flow,
thus experimental models using cyclic stretch are not entirely
translatable to what happens in vivo in CLD.

Shear stress and hydrostatic pressure
Given the complexity of the sinusoids, in recent decades, the idea
of creating a support able to mimic the sinusoidal milieu has
gained attention. Recapitulating PH in vitro is challenging
because together with stiffness, shear stress and hydrostatic
pressure should also be applied in the co-culture system. Shear
stress can be modulated by dynamic cell culturing, which en-
ables the control of pressure, flow, and cell-cell communication.
In 2014, our team developed the first device able to mimic the
architecture and paracrine communication of the liver sinusoid
as well as the shear stress in pathological conditions.129,130 These
studies, together with those from other groups,131 demonstrated
that microfluidics recapitulate key mechanical stimuli of the
in vivo scenario.114 Liver-on-a-chip is a technology that can be
scaled, connecting several organs together to understand organ
cross-talk in liver disease.132,133 This is particularly important in
PH, where extrahepatic manifestations like splanchnic hyper-
aemia or bacterial translocation, among the many components,
contribute mechanically and biologically to disease progression.

Modulation of mechanosensing/transduction
Furthermore, pharmacological strategies can be employed to
modulate different known mechanosensing or mechano-
transducing molecules. The most straightforward of these ap-
proaches is inhibition of cytoskeletal tension using molecules
such as latrunculin B, cytochalasin D (actin polymerization in-
hibitors), and blebbistatin (myosin inhibitor), among others.134

For more specific research questions, Rho/ROCK inhibitors135

can be employed, as well as inhibition of initial stiffness
sensing by integrin inhibitors or modulation of calcium flow
through mechanosensitive ion channels. Mechano-effectors at
the nuclear level can also be modulated, as exemplified by ver-
teporfin, a YAP inhibitor.135 Moreover, genetic approaches can
also be employed to knock-down or knock-in different molecules
involved in mechanosensing pathways.

Experimental challenges
Several issues arise when investigating mechanobiology in the
liver. Firstly, there is no standardized range for the translation of
the mechanical inputs that the liver receives during develop-
ment of CLD into in vitro models. When liver stiffness is
measured in the clinical setting, the obtained value comprises
the rigidity of the ECM and cells, as well as other factors, such as
cholestasis, inflammation, and blood flow. How cells perceive
these different inputs is challenging to dissect in an in vitro
setting. This has resulted in the use of a wide range of substrate
stiffnesses in cell experiments, starting from the 0.1-1 kPa
measured in decellularized liver ECM,68 up to values of 10-
30 kPa,67 as translated from the clinical setting. This makes
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between study comparisons difficult. Besides the stiffness itself,
cell behaviour can be altered by modulating the biochemical
properties of the scaffold. This makes decellularized scaffolds a
suitable system when compared with artificial scaffolds. As an
example, mesenchymal stem cells have been shown to respond
differentially to soft vs. stiff PAA, whereas polydimethylsiloxane
gels do not induce any differential response in the same condi-
tions.136,137 However, PAA gels cannot mirror the native compo-
sition of the matrisome.

Secondly, the results obtained in vitro by applying mechanical
stimuli are more difficult to translate to the in vivo setting,
compared to the research of purely biochemical pathways, and
they generally are merely correlated to observations made
in vivo. The pharmacological or genetic manipulations described
previously are hard to employ in an in vivo setting due to their
wide-ranging effects.

Finally, attention must be given to the phenomenon of me-
chanical memory of cells when designing in vitro mechanobiol-
ogy experiments. Although this concept is not fully understood
yet, several studies have described an influence of past exposure
to high stiffness on cell behaviour even after they are exposed to
soft substrates.25,89,90 This raises the question of whether cell
lines expanded and passaged on classic tissue culture poly-
styrene, which has an extremely high stiffness, will respond in
the same way to a change in substrate rigidity as cells isolated
freshly from a soft organ, such as the liver.

Another important issue is the cumulative effect of shear
stress with stretching on specific pathways. NO as well as KLF2
can be modulated by stiffness and shear stress, which compli-
cates the ability of in vitro models to recapitulate in vivo disease
models. There is not yet a standardized system that can modu-
late shear stress and stiffness to mimic the progression of the
disease. However, if we consider these mechanical stresses
separately, there has been marked innovation in experimental
models in the past few years. New in vitro platforms have pro-
vided opportunities to uncover the isolated contribution of each
applied force, facilitating the understanding of the role of indi-
vidual pathways and therefore of their modulation. These sys-
tems go from the basic 2D co-culture systems114,138 to the more
advanced 3D cultures139–143 depending on the type of stimulus
that is required. However, there remain several limitations to 3D
systems, including the control of sinusoidal regeneration and
generation of blood vessels, and recapitulating nutrient avail-
ability and gas exchange. This was partially overcome by the
application of large vessels as scaffolds for LSECs.144,145 A valu-
able alternative for the study of LSEC/HSC cross-talk in the
presence of shear stress is the liver-on-a-chip system.129,146
Conclusions
Mechanical stimuli and cellular mechanobiology balance tissue
and organ physiology through a complex set of information and
instructions, which cells continuously read and to which they
respond. Chronic inflammation and injury in cirrhosis
drive liver cell dysfunction, leading to excessive ECM deposi-
tion, sinusoidal pseudo-capillarization, vascular occlusion, and
parenchymal extinction. This results in marked micro-
architecture remodelling, altering environmental mechanical
forces and triggering a progressive process of liver fibrosis,
which becomes irreversible at a certain stage of the disease. PH
is characterized by the alteration of several mechanical forces
acting extra- and intrahepatically. Therapeutic approaches
8vol. 5 j 100869



targeting the intrahepatic contribution to PH must rebalance
the intracellular forces exerted by the cytoskeleton and pro-
mote the balanced remodelling of the liver microarchitecture.
JHEP Reports 2023
Reciprocal communication between cells and their niches rep-
resents a crucial target for novel therapeutic strategies against
the progression of liver fibrosis.
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