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Evolving technology: the TRIFLO
tri-leaflet mechanical valve
without oral anticoagulation: a
potential major innovation in valve
surgery
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The aortic valve is the most frequently diseased valve and aortic stenosis (AS) is
the most prevalent valvular heart disease in developed countries. The diseased
native aortic valve can be replaced by either a biological or mechanical valve
prosthesis. The main concerns relate to durability, the need for oral
anticoagulants and the incidence of complications related to this medication.
Experimental, computational and biomolecular blood flow studies have
demonstrated that the systolic forward flow but also the reverse flow phase at
the end of the systole and leakage during the diastolic phase is mainly
responsible for platelet activation and thrombosis. Better design of mechanical
prosthetic heart valves must ensure smooth closing during flow deceleration
and must eliminate high-shear hinge flow during diastole to prevent life-
threatening thrombosis. A novel tri-leaflet valve should combine the favorable
hemodynamics and the durability of existing mechanical heart valves and
eliminate the less favorable characteristics, including the extremely rapid
closing. In this paper, we discuss some issues of current mechanical heart
valve prostheses and present a new valve design with the potential for
significant innovation in the field. The TRIFLO Heart Valve, is a rigid, three-
leaflet central flow heart valve prosthesis consisting of an alloyed titanium
housing, and three rigid polymer (PEEK) cusps. This valve has a physiological
operating mode. During the forward flow phase, the intraventricular pressure
opens the leaflets so that blood can freely flow through with little obstruction,
and with the deceleration of the blood flow, the leaflets close early and
smoothly, minimizing blood flow regurgitation, blood cell damage, and
activation of the coagulation cascade. Pre-clinical studies have shown pretty
favorable results and a first-in-man study should start very soon.
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Introduction

Aortic valve stenosis is the most frequent heart valve disease. In the Cardiovascular

Health Study that included 5,201 patients, a substantial increase in the prevalence of AS

was observed with increasing age: 1.3% in patients aged between 65 and 75 years, 2.4%

in those between 75 and 85 years, and 4% in patients older than 85 years (1). Untreated
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patients are exposed to significant risks and the overall prognosis

of the disease is dismal with a mean survival estimated between 2

and 4 years after the diagnosis of a severe AS. The primary

etiology is calcific degeneration of the valve cusps with

narrowing of the valve’s opening surface. Aortic regurgitation

(AR) is less frequent and consists of diastolic reversal of blood

flow from the aorta into the left ventricle, which may be due to

aortic valve or aortic root disease. The prevalence of moderate

and severe AR was estimated at 0.5% in the Framingham study

(2). Treatment of AS and AR consists of aortic valve

replacement (AVR), which reduces symptoms and improve

long-term survival. For approximately 15 years, transcatheter

aortic valve replacement (TAVR) has been used in older

patients (>70–75 years) and those with considerable

perioperative risk, but a general extension of the indications for

TAVR is observed in intermediate and low-risk patients too (3–

8). Primarily due to the assumption that patients receiving a

tissue valve will be free of anticoagulant therapy, tissue valves

have been extensively used in the last few years (an increase of

43,6% in the US over ten years and of 12.4% over two years in

the EU) (9–12). In addition, adoption of TAVR has accelerated

this trend.
Historical background of mechanical
valves

The caged-ball valve was developed and implanted in the 1960s

and obstructed central flow. It was replaced by tilting-disc valves in

1970 and later Kalke and Lillehei introduced the concept of bileaflet

valve at the University of Minneapolis (13). The low valve profile

and the improved central flow had obvious hemodynamic

advantages compared to the bulky cage-ball design, particularly

in the mitral position; the prosthesis was then manufactured by

St-Jude Medical and implanted for the first time in 1977. This

valve made of pyrolytic carbon became the gold standard and

more than two million valves have been implanted worldwide.

Later, the ATS AP 360 prosthesis (Medtronic, Minneapolis, USA)

and the On-X valve have been the only modest innovations

regarding bi-leaflet valve design.

However, reducing the energy required to eject the blood

through the valve did not eliminate the flow-induced activation

of the coagulation cascade. This is the reason why current bi-

leaflet mechanical valves still require life-long warfarin.

Fortunately, progress has been made to analyze better the

relationship between flow characteristics and thromboembolic

complications of mechanical heart valves. Experimental,

computational and biomolecular blood flow studies have

demonstrated that the reverse flow phase at the end of the

systole and leakage flow during the diastolic phase is mainly

responsible for platelet activation and thrombosis (14–18). Recent

computational studies also highlighted the relevance of systolic

forward flow on platelet activation (16, 18). Nevertheless, most of

the medical community still believes that oral anticoagulation

following implantation of a mechanical heart valve is required

because foreign material is exposed to blood flow.
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Anticoagulant treatment following
mechanical valve implantation: still a
critical issue

According to the current guidelines, patients who receive a

mechanical heart valve must undergo life-long oral

anticoagulation using vitamin K antagonists (VKA), with

warfarin being the most frequent treatment (9, 10). Indeed,

VKAs are the only oral anticoagulants approved for this

indication. Besides the narrow therapeutic window, major

drawbacks are variable dose response in individuals, interaction

with some foods and drugs, and variable laboratory monitoring.

Patients who do not take anticoagulation undergo a high risk of

valve thrombosis. This risk also exists when the international

normalized ratio (INR) remains below the targeted 2.0–3.0 range

for a prolonged period. On the other hand, major fluctuations

may still occur despite strict adherence to higher INR values and

lead to bleeding and thromboembolic complications that may

cause considerable morbidity and mortality. This is one of the

reasons why even younger patients may avoid VKAs and choose

tissue valves despite their limited durability (11, 12).

In randomized studies and registries, new oral anticoagulants

(NOACs) have demonstrated their superiority regarding reduced

bleeding complications in patients with non-valvular atrial

fibrillation compared to VKAs with similar efficacy and are

recommended as first choice in the guidelines (19).

Unfortunately, a simple translation of these results to patients

with a mechanical valve is inaccurate, and NOACs are still not

indicated for this special condition.

In the RE-ALIGN trial (clinicaltrials.gov number NTC

01505881), the use of dabigatran as compared with warfarin was

associated with an increase of the composite of death, stroke,

systemic embolism, and myocardial infarction (8% vs. 2%,

respectively; P = 0.11), as well as bleeding complications (27% vs.

12%, respectively; P = 0.01). The trial was stopped prematurely

(20). The small, pilot, phase 2 CATHAR trial investigated the

safety and efficacy of rivaroxaban use in mechanical prostheses

but was stopped due to low enrolment of patients

(clinicaltrials.gov number: NCT02128841) (21).

The PROACT Xa trial (clinicaltrials.gov number:

NCT04142658) investigated the On-X mechanical valve (On-X

Life Technologies, Austin, Texas, USA) in 375 high-risk patients

randomized at three months post-AVR to receive aspirin with

oral anticoagulation for a targeted INR of 1.5–2.0 or 2.0–3.0 (22).

Through 5-year follow-up, bleeding rates were significantly lower

for patients in the low INR group (P = 0.002), without significant

increases in thromboembolic events (P = 0.13).

Based on this study, the FDA approved warfarin management of

selected aortic valve patients at INR levels between 1.5 and 2.0. The

low-risk arm in which 201 patients ≥18 years of age without

thromboembolic risk factors were randomized to receive a double

antiplatelet aggregation treatment or standard warfarin plus aspirin

was terminated for excess cerebral thrombo-embolic events (3.12%

per patient-year vs. 0.29% per patient-year, p = 0.02) in the DAPT

group with no differences in bleeding or all-cause mortality (23).
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A study investigating 863 patients with an On-X valve who

received either apixaban 2 × 5 mg daily or warfarin with a target

INR between 2 and 3 (ClinicalTrials.gov number, NCT04142658)

was stopped because of an excess of thromboembolic events in

the apixaban group while bleeding events were similar in both

groups (24).

Other studies have examined the value of self-monitoring to

improve the quality of long-term anticoagulation with VKAs.

Koertke and co-authors performed a randomized trial in which

2,673 patients undergoing SAVR were randomized to

anticoagulation with a target INR of 1.8–2.8 vs. 2.5–4.5. After 2-

year follow-up, neither the rate of thromboembolic events nor

the rate of bleeding was significantly different in the low-dose vs.

conventional dose groups (25).

In a meta-analysis of 11 randomized trials comparing self-

monitoring and management of anticoagulation found a

significant decrease of thromboembolic events in the self-

monitoring group with similar rates of bleeding and death

among 6,417 participants (26).

Another potentially important investigation, the DIAMOND

trial (ClinicalTrials.gov number NCT05687448) is designed to

determine if patients with mechanical AVR can be maintained

effectively with a better safety (net clinical benefit) for apixaban

compared to warfarin. In the study group, patients are treated

with apixaban 5 mg twice daily while in the comparison group,

patients receive warfarin with an INR target of 2.5 (range: 2.0–

3.0). The primary objective is to demonstrate that antithrombotic

treatment with apixaban is non-inferior to warfarin for the

primary net clinical benefit endpoint of ischemic outcomes

(death, myocardial infarction, stroke, systemic embolism and

valve thrombosis) and bleeding. The study is about to receive

public funding to start inclusion.

Finally, another aspect that may gain importance soon is the

possibility of telemedicine-guided INR management to increase

patient compliance, and improve oral anticoagulation quality.

Some interesting trends have been observed during the pandemic

while telemedicine and artificial intelligence may further boost

such approaches (27–29).
The main problems of traditional
mechanical valves

Interestingly, failures of mechanical valves in the past have

always been related to high forces generated by the non-

physiologic closing mode. These include fracture of the outlet

strut (Bjork-Shiley) by closing rebounds (30, 31), leaflet erosion

(Duromedic) by cavitation (32), thrombosis (Medtronic

Parallel) (33, 34) and closing leaflet dysfunction (Medtronic

Advantage) as well as by design flaws (35). The forces observed

during a mechanical bi-leaflet valve’s closure are by far higher

than those needed to close a tissue valve. This type of valve

cannot close without reverse flow because flow deceleration in

late systole does not generate sufficient closing pressure

(Figure 1); thus, the valve closes late extremely rapidly (36–38).
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Excessive reverse flow velocities during this fast closing phase

leads to extremely low pressure causing cavitation, which

describes a phenomenon of “blood boiling”. Nitrogen and carbon

dioxide are extracted from the blood and bubbles with a longer

lifespan can be detected in the systemic circulation as “high-

intensity transient signals” (39–41). Moreover, platelets are

extremely sensitive to shear stress and instantaneously develop

membrane tethers, leading to platelet aggregates (42). Exposure

to unfavorable flow conditions or even stagnation promotes

further thrombus growth. It has been found that shear stresses

exceeding the threshold for platelet activation are present during

the diastolic phase of the cardiac cycle.

After prosthetic valve closing, aortic blood pressure leads to a

leakage flow through the narrow gaps in the hinge recesses of bi-

leaflet valves. Like the non-physiologic closing mode, this leakage

flow is suspected to lead to shear-induced thrombosis in the

hinge region, which carries the risk of thromboembolism and

leaflet immobilization (15, 17).
Optimizing the design: potential
advantages of a tri-leaflet mechanical
valve

Better design of mechanical prosthetic heart valves must ensure

smooth closing during flow deceleration and eliminate high-shear

hinge flow during diastole to prevent life-threatening thrombosis.

A novel tri-leaflet valve should combine the favorable

hemodynamics and the durability of existing mechanical heart

valves and eliminate the less favorable characteristics, including

the extremely rapid closing (37, 38, 42).

In vitro studies suggest the three valve cusps close at the onset

of diastole within an average closing time of about 60 milliseconds,

much slower than bi-leaflet valves and similar to the softer closing

mode of a tissue valve (36, 38). Further studies of this tri-leaflet

mechanical valve using micro-particle image velocimetry did not

show critical regions of flow stagnation and zones of excessive

shear in the pivoting region suggesting low potential for

thrombogenic events that may allow for avoidance of long-term

anticoagulation.

The new tri-leaflet valve (designed originally by Didier

Lapeyre, MD and called later the TRIFLO Valve, Novostia,

Switzerland) is much more similar to a biological valve than to

a bi- leaflet valve (Figure 2). The TRIFLO Heart Valve, is a

rigid, three-leaflet central flow heart valve prosthesis consisting

of an alloyed titanium housing, three rigid polymer (PEEK)

cusps and a polyester sewing ring. Figure 2 shows the valve in

the open and closed positions. Due to its configuration, the

TRIFLO heart valve has a physiological operating mode.

During the forward flow phase, the intraventricular pressure

opens the leaflets so that blood can freely flow through with

little obstruction, and with the deceleration of the blood flow,

the leaflets close early and smoothly, minimizing blood flow

regurgitation, blood cell damage, and activation of the

coagulation cascade.
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FIGURE 1

(A) Closing mode comparing a tissue valve (yellow) with a mechanical bi-leaflet valve (red). The St Jude valve is wide open at zero flow while the tissue
valve (CE) is fully closed. Left is valve opening and right valve closure. The bi-leaflet valve cannot close without reverse flow because flow deceleration in
late systole does not generate sufficient closing pressure. Unlike the leaflets of a native valve (or of a tissue valve), the carbon leaflets start closing only with
the onset of reverse flow which accelerates rapidly due to the low pressure in the relaxing ventricle. Moreover, the valve closes extremely fast and exhibits
leaflet rebound while reverse flow velocities as high as 200 m/sec (approximately 700 km/h) occur. (B) Closing mode comparing a tissue valve (yellow)
with a mechanical tri-leaflet valve (green). The tri-leaflet valve closing mechanism is rather similar to that of a tissue valve (CE). Left is valve opening and
right valve closure.
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The housing and the leaflets are designed to guide and control

leaflet motion, ranging from the open to fully closed position with a

virtual pivot mechanism (no cavities or fixed points of rotation).

Flow separation, blood stagnation areas and turbulent shear

stresses, are minimized. The housing incorporates an orifice with

flared inlet extending through the annulus, aimed at preventing

pannus overgrowth on the inflow side and the flow turbulences,

as well as a flared outlet to maintain optimal flow. The three

leaflets are equally sized and shaped and are protected against

impingement with one another by the three pivot guards on the

outflow side of the housing.

Similarily to other valves, the sewing ring is knitted from velour

polyester fabric. Three black reference markers facilitate

orientation, the sewing ring is designed to be positioned supra-

annularly (Figure 2).
Preclinical data

Pre-clinical data on the TRIFLO Heart valve was obtained

using animal implantation to demonstrate the safety and

performance of the device. A regulatory animal study was

conducted between January and July 2022 using the standard

adult sheep model at the University of Minnesota. Six sheep were

implanted with 21 mm TRIFLO Heart Valves, and two sheep

were implanted with the control valves (On-X). All animals

survived the 140-day minimum implant duration.

Anticoagulation treatment consisted of heparin 2,000 IU twice

daily for 2 days only.

Serial post-operative blood samples showed no significant

difference between the tested valves and no negative

experimental device effect. The device hemodynamic parameters

measured were normal and no surgical handling difficulties for

the test valve were reported. Pathology studies revealed that the
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interior surfaces of the housing, the hinge region, and the leaflets

were free of thrombus and pannus (Figure 3). The tissue

surrounding the sewing ring demonstrated normal host reaction

response, chronic inflammation and a good endothelialization.

Post-mortem examination of the major organs was normal in all

animals. All valves had normal surfaces after implant as observed

with microscopic inspection and leaflets were clean at scanning

electron microscopy inspection. Structural integrity evaluation

revealed normal wear after five months of implantation and no

sign of cavitation, corrosion or structural failure. Only

implantation and long-term observation in humans will allow to

confirm the favorable results observed in the animal studies,

especially regarding the following expected clinical benefits:

• Avoidance of long-term anticoagulation and related bleeding

complications and requirements for monitoring. We expect

the percentage of major bleeding complications at 12 months

with TRIFLO Heart Valve to be non-inferior to the percentage

of major bleeding according to published data of the

biological valve and lower than the values obtained with other

similar mechanical valves requiring anti-coagulant treatment

(43, 44).

• Elimination of iterative valve replacements due to the durability

of the mechanical characteristics of the valve.

• Improvement in the overall quality of life measured by the

KCCQ (Kansas City Cardiomyopathy questionnaire) (45)

compared to current mechanical valves which require chronic

anticoagulation

Although the TRIFLO Heart Valve has been extensively tested

in vitro, by computer simulation and in animals studies, human

studies are essential to validate device safety and performance. A

lifelong durable valve without the need for anticoagulation has

been the police of prosthetic heart valve development. The

introduction of the TRIFLO valve in the clinical practice
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FIGURE 2

(A) The TRIFLO valve in the overview. (B) The TRIFLO valve with opened and closed leaflets.
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promises to be an important development in valve surgery. The

first-in-man implantation that is planned for Q4 2023 has the

potential to revolutionize valvular surgery, in a similar way that

TAVR did more than 15 years ago.

Nevertheless, the residual risks following the implantation of

the TRIFLO Heart Valve are not different from those associated

with any surgical aortic valve implant. These risks include:

endocarditis, major bleeding, myocardial infarction, new onset of

atrial fibrillation, need for pacemaker implantation, paravalvular

leak, stroke, thromboembolism, transient ischemic attack, and

valve thrombosis.

The clinical investigational plan mandates careful patient

selection by the investigator and the onsite Heart Team to

minimize the risks for the subjects enrolled in this clinical

trial. In addition, a centralized assessment of the subject by a

Clinical Review Committee (CRC) will confirm subject

eligibility through careful preoperative evaluation. Close

postoperative monitoring will also minimize foreseeable risk

and discomfort.

In addition, patients will be submitted to carotid Doppler

examination to allow early detection of any microemboli (46).

The patients will be examined under standard conditions: quiet

room, supine position, eyes closed, and the start of the recording

after resting for at least 10 min.

The heart rate is monitored during each examination. The

Doppler frequency spectra of both carotid arteries (CAs) are

recorded simultaneously and continuously for 30 min. The

emitting power and the gain of the channels are set at the

lowest intensity required to demonstrate a weak background

flow velocity spectrum. This allows easy recognition of

embolic signals, which appear as bright spots within the

background spectrum. Emboli are identified by three different

methods:
(1) Visually, on the monitor displaying the fast Fourier transform

Doppler color-coded spectra of both CAs;

(2) Acoustically, by continuous on-line observation by the

examiner using headphones; and
FIGURE 3

Specimen of TRIFLO valve after animal explantation show no thrombotic de
excessive fibrous tissue formation (pannus) at the level of the sewing ring and
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(3) Computer-assisted, using the system software (Emboli

Detection Program). Embolic signals are identified by an

experienced sonographer according to the following criteria:

• They are short (<0.1 s), transient, unidirectional, high-

amplitude signals, with a narrow spectrum;

• They occur at random in the cardiac cycle and change their

frequency/velocity depending on their location in the

cardiac cycle and as they pass through the sample volume;

• And they generate a chirping audio quality, with a

harmonic tone.

Only signals detected acoustically and visually will be

considered. For correlations, the emboli count in the left and

right CAs are added to a sum score (FES during 30 min). For

various reasons, the number of embolic signals per time unit is

the most reliable parameter of the embolic signals recorded by

TCD monitoring.
Discussion

There has been little true innovation in the development of

surgically implanted heart valve prostheses over the last four

decades. Current generation mechanical valves have the

disadvantages of long-term anticoagulation with warfarin, and

stented xenograft bioprostheses, both porcine and pericardial,

have limited durability. Indeed, much of the lack of development

in mechanical valve substitutes relates to industry focus on

transcatheter devices and the huge penetration of TAVR in

clinical practice. Indeed, there is a major problem of under- or

misinformation by clinicians and patients regarding the long-

term consequences of TAVR implantation in patients with long

life expectancy. Although transcatheter valves have dramatically

improved the outlook of elderly patients with AS, there is little

appreciation of actual long-term data and high TAVR

explantation mortality rates. Clearly, there continues to be a huge

unmet need for more durable and less thrombogenic heart valves

worldwide, particularly for younger patients, including children
posits on the leaflets from the aortic view (left) nor the internal ring nor
/or below the valve on the ventricular side (right).
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and women of childbearing age suffering from congenital or

rheumatic valve disease.

Patients living with current mechanical valves are estimated to

have only a 50% chance of being alive without experiencing serious

thromboembolic or bleeding complications (47). Tissue valves fail

in the mid-term according to the age of the patients at the time of

implantation. In developing countries, there are two main

challenges: the long-term oral anticoagulation in patients with a

mechanical prosthesis due to a lack of monitoring INR and the

limited durability of tissue valves, particularly when implanted in

younger patients (<40 years of age).

Almost six decades after the pioneering work of Albert Starr,

Alain Carpentier, and Walton Lillehei, prosthetic heart valves are

still based mainly on concepts of the 1970s. Today but also in

the near future, there is and will be a global need for affordable

and safe valve substitutes for younger patients, especially in

developing countries (47–52). Repetitive interventions using only

tissue valves are not optimal for these patients.

Older mechanical valve designs are still competing with the

less durable technology of tissue valves due to a lack of interest

in new valve designs and materials. Surgeons should express the

need and willingness to use such new valves. Based on best-

practice industrial design and test principles, the long-term

performance of a valve prosthesis is a priori predictable, which

is in contrast to any treatment to avoid xeno-tissue

degeneration that requires years of follow-up before

disadvantages can be ruled out.
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