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High-resolution maps show that rubber 
causes substantial deforestation

Yunxia Wang1 ✉, Peter M. Hollingsworth1, Deli Zhai2, Christopher D. West3,  
Jonathan M. H. Green3, Huafang Chen4,5, Kaspar Hurni6,7, Yufang Su8,11, 
Eleanor Warren-Thomas9,10, Jianchu Xu4,11 & Antje Ahrends1 ✉

Understanding the effects of cash crop expansion on natural forest is of fundamental 
importance. However, for most crops there are no remotely sensed global maps1, and 
global deforestation impacts are estimated using models and extrapolations. Natural 
rubber is an example of a principal commodity for which deforestation impacts  
have been highly uncertain, with estimates differing more than fivefold1–4. Here we 
harnessed Earth observation satellite data and cloud computing5 to produce high- 
resolution maps of rubber (10 m pixel size) and associated deforestation (30 m pixel 
size) for Southeast Asia. Our maps indicate that rubber-related forest loss has been 
substantially underestimated in policy, by the public and in recent reports6–8. Our 
direct remotely sensed observations show that deforestation for rubber is at least 
twofold to threefold higher than suggested by figures now widely used for setting 
policy4. With more than 4 million hectares of forest loss for rubber since 1993 (at least 
2 million hectares since 2000) and more than 1 million hectares of rubber plantations 
established in Key Biodiversity Areas, the effects of rubber on biodiversity and 
ecosystem services in Southeast Asia could be extensive. Thus, rubber deserves more 
attention in domestic policy, within trade agreements and in incoming due-diligence 
legislation.

Around 90–99% of tropical deforestation is linked to the production of 
global commodities such as beef, soy, oil palm, natural rubber, coffee 
and cocoa9. Understanding the effects of individual commodities on 
natural forests is of fundamental importance for targeted policies and 
interventions. However, with relatively few exceptions—most notably 
oil palm and soy1,10—directly observed global or regional maps derived 
from satellite imagery are unavailable for most commodities. Instead, 
commodity-specific global deforestation is typically estimated using 
models11,12 and extrapolations13,14 with large levels of uncertainty.

Natural rubber is an example of a commodity whose effects on forests 
have remained poorly understood despite its economic importance15 
and the potential for widespread deforestation, land degradation and 
biodiversity loss13,16–21. Natural rubber is used in the manufacture of at 
least 1 billion tyres per year15,22, and continued and increasing global 
demand is driving land use conversion in producer countries14. Pro-
duction is primarily located in Southeast Asia (over 90% of the global 
production23), with the remainder coming from South and Central 
America and more recently also West and Central Africa24. Rubber is 
produced from the latex of a tropical tree (Hevea brasiliensis) and the 
spectral signature of rubber plantations is similar to that of forest25, 
making it challenging to identify conversion of natural forest to rub-
ber plantations from space. In addition, around 85% of global natural 

rubber is produced by smallholders26, meaning that the plantations 
are scattered and often below 5 ha in size, increasing the challenge of 
detecting them from satellite imagery or capturing them in other forms 
in national crop statistics. Consequently, the locations and impacts of 
rubber plantations are surrounded by uncertainty and estimates of 
rubber-driven deforestation differ by more than fivefold: from less than 
1 million ha almost globally between 2005 and 20183 to more than 5 mil-
lion ha between 2003 and 2014 in continental Southeast Asia alone2. 
Direct observations based on remote sensing have previously existed 
only for subsets of Southeast Asia2,27,28, individual countries1,29 or subna-
tional areas30, and most are outdated so do not reflect the current risk.

At present, the most widely used dataset to estimate global 
rubber-related deforestation has been derived using a ‘land balance’ 
model11. This model combines remotely sensed data on tree cover loss 
with non-spatial estimates of crop expansion, derived mainly from 
national-scale statistics. The ‘land balance’ approach means that tree 
cover loss is not spatially linked to commodity expansion and therefore 
is not a substitute for more accurate products that provide spatially 
explicit estimates of crop expansion into forest areas, as explicitly 
acknowledged by the authors31. The land balance-derived data3,4  
suggest that rubber is a relatively minor problem when compared to 
the impact of other main forest risk commodities, with soy and palm oil 
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accounting for seven and eight times more deforestation than rubber, 
respectively; and in UK imports6 for 57 and 20 times more deforestation. 
This has contributed to the reduced attention that rubber has received 
as a driver of deforestation compared to other commodities and has 
led to extensive debate about the need to include rubber in policy, such 
as the European Union (EU) Deforestation Regulation7 and secondary 
legislation associated with the UK Environment Act Schedule 17. How-
ever, given the inherent uncertainty in model-based estimates, there 
is an urgent need for robust evidence to provide guidance for policy 
interventions to avoid rubber being prematurely excluded from key 
policy processes and interventions.

Furthermore, monitoring the effectiveness of policy and compli-
ance with legal and voluntary zero-deforestation commitments will 
need spatially explicit commodity production data. This is now highly  
relevant because, following prolonged uncertainty about the inclusion 
of rubber in the EU Deforestation Regulation, a recent trialogue (Decem-
ber 2022) reached agreement to extend the scope of the regulation to 
also include rubber (a preprint version of this manuscript (https://doi.
org/10.1101/2022.12.03.518959) formed part of the evidence contribut-
ing to the trialogue), a decision adopted by the European Parliament 
on 19 April 2023. The ability to monitor rubber-related deforestation 
will be critical for the implementation of this legislation, for similar 
legislation potentially following in the United Kingdom and USA  
(for which relevant acts are now restricted to illegal deforestation) and 
for monitoring various private sector voluntary commitments such as 
those made under the auspices of the Global Platform for Sustainable 
Natural Rubber (GPSNR).

Here we present up-to-date analyses and provide Southeast Asia-wide 
maps of rubber and associated deforestation, encompassing more than 
90% of natural rubber production volume. This is now possible thanks 
to increases in the resolution of Earth observation data, which can also 
capture smallholder plantations. We used the latest high-resolution 
Sentinel-2 imagery (at a spatial resolution of 10 m) to map the extent 
of rubber across all Southeast Asia in 2021. Our approach is based on 
the distinctive phenological signature of rubber plantations, which 
allows them to be distinguished from both evergreen (Extended Data 
Fig. 1) and deciduous (Extended Data Fig. 2) tropical forests on the basis 
of leaf fall and regrowth, which (particularly in mainland Southeast 
Asia) occur in specific time windows. To tackle the challenge of heavy 
cloud cover in the region we used multiyear imagery composites. For 
all areas identified as rubber in 2021 we assessed whether (and when) 
prior deforestation had occurred using historical Landsat imagery 
and a spectral-temporal segmentation algorithm (LandTrendr)32. The 
Landsat archive allowed us to track deforestation back to the early 

1990s. We count only the first occurrence of deforestation to minimize 
the inclusion of plantation rotation. Here, we use the term ‘deforesta-
tion’, but it is of note that we track any type of tree cover loss since 1993. 
Thus, the rubber-related ‘forest’ loss quantified here can include the 
conversion or rotation of agroforests, plantation forests, agricultural 
tree crops and rubber itself if established in the 1980s and hence mature 
by 1993 (Supplementary Note). A graphical overview of our methods is  
available in Extended Data Fig. 3.

Rubber map for Southeast Asia
According to our maps, mature rubber plantations occupied an area 
of 14.2 million hectares in Southeast Asia in 2021, with more than 70% 
of the production area situated in Indonesia, Thailand and Vietnam. 
Other notable areas were situated in China, Malaysia, Myanmar, Cam-
bodia and Laos (Table 1 and Fig. 1a). This figure is conservative in that 
estimates based on reference ground data33 suggest that rubber may 
occupy a larger area in Southeast Asia (Table 1 and Supplementary 
Table 1). The rubber maps achieved a good overall classification accu-
racy (OA = 0.95 ± 0.02 95% confidence interval (CI); Supplementary 
Table 1) with good accuracy and precision of estimates for mainland 
Southeast Asia (OA > 0.99 ± 0.01 95% CI; Supplementary Table 2) but 
higher omission errors and less overall accuracy for insular Southeast 
Asia (OA = 0.85 ± 0.06 95% CI; Supplementary Table 3). Here, limited 
seasonality (Extended Data Fig. 4) and greater heterogeneity in cli-
matic conditions (Extended Data Fig. 5) mean that rubber phenology 
is less predictable, with trees defoliating at different times, exhibiting 
partial defoliation or no defoliation at all34. Hence, despite running the 
rubber detection algorithm separately for two different subregions to 
address the spatial heterogeneity in climate conditions (Extended Data 
Fig. 6), omission errors remain in insular Southeast Asia (Extended 
Data Figs. 7 and 8; see Methods). Overall, user’s accuracy (the comple-
ment of commission error) was 0.99, and producer’s accuracy (the 
complement of omission error) was 0.95 but dropped to 0.57 when 
based on estimated area. (When based on estimated area the error 
matrix and hence producer’s accuracy are adjusted by area weights, 
calculated as the proportionate area occupied by the class33, meaning 
that the complement of producer’s accuracy measures potentially 
omitted area proportions.) The low producer’s accuracy when based 
on estimated area is in part due to us erring on the side of omission 
errors (mainly affecting insular Southeast Asia) and also because 
rubber occupies a proportionately small area compared to the class 
it is separated from (all other tree cover), meaning that any rubber 
point erroneously mapped as other tree cover had a large influence on 

Table 1 | Area estimates of rubber plantations for individual countries in Southeast Asia

Country Rubber (ha) Rubber (%) Rubber in KBA 
(ha)

Rubber (%) 
in KBA

FAO 2020 harvested 
rubber (ha)23

Rubber in 2018 
(ha)28

Rubber in 2014 (ha)2

Indonesia 4,745,921 34% 362,951 8% 3,668,735 NA NA NA

Thailand 3,744,139 26% 291,600 8% 3,292,671 4,650,000 1,429,487 2,861,400*

Vietnam 1,606,594 11% 59,401 4% 728,764 740,000 912,696 1,916,600*

China 1,097,213 8% 58,073 5% 745,000 NA NA NA

Malaysia 985,335 7% 49,391 5% 1,106,861 NA NA NA

Myanmar 779,717 6% 84,577 11% 323,956 680,000 NA NA

Cambodia 618,135 4% 117,682 19% 310,877 200,000 917,446 2,974,300*

Laos 574,035 4% 49,125 9% NA 700,000 260,471 765,600*

Southeast Asia 14,151,090 1,072,800 8% 10,176,864

24,587,796* ± 4,615,324 (95% CI)

For China, only the main production areas are included (Xishuangbanna and Hainan). Here, we present our most conservative figures (mapped area). The sample-based area estimate and its 
CI (following ref. 33; Supplementary Table 1) suggest that the rubber area may be higher (indicated by an asterisk). Reference 2 also derived standard mapped figures and sample-based area 
estimates (indicated by an asterisk). For Thailand, their figures only include northeast Thailand, and for Vietnam, only areas south of Hanoi. NA, not available.

https://doi.org/10.1101/2022.12.03.518959
https://doi.org/10.1101/2022.12.03.518959


Nature | www.nature.com | 3

estimated rubber area (Supplementary Table 1). Although we present 
both mapped and estimated area (Table 1), we emphasize the more 
conservative (mapped) estimate.

Our mapped estimate of 14.2 million ha rubber in Southeast Asia is 
consistent with the sum of national statistics reported to the Forest 
and Agriculture Organization of the United Nations (FAO), according to 
which the total area of harvested rubber in Indonesia, Thailand, Vietnam, 
China, Malaysia, Myanmar, Cambodia and Laos was 10.18 million ha in 
202023. Owing to the now low global rubber price many plantations 
may not be harvested, meaning that, although our mean estimate is 
higher than the values reported to the FAO, there is a broad alignment.  
Our estimates are also generally within the bounds estimated by two 
other recent remote sensing studies for rubber2,28 (Table 1).

Substantial deforestation due to rubber
We used time-series Landsat imagery to identify the deforestation date 
for all areas classed as rubber in 2021 in two categories: 1993–2000 
and 2001–2016 (overall classification accuracy of 0.85 ± 0.09 95% CI; 
Supplementary Table 4). For this we used the LandTrendr algorithm35, 
which identifies breakpoints in the pixels’ spectral history. Here, we 
tracked the largest breakpoint in the normalized burn ratio (NBR), 
indicative of a sudden change from forest or other types of tree cover 
to bare and/or burnt ground (Extended Data Fig. 9). We used only the 
first main breakpoint, going as far back in time as the imagery allows 
(early 1990s), meaning that we include rotational plantation clear-
ance into the deforestation estimate only if these plantations were 
established in the 1980s and hence detectable as mature tree cover by 
the early 1990s. In addition, we count pixels as deforested only if their 
previous NBR was above a threshold of 0.6 to minimize the inclusion 
of pixels that may have been deforested or degraded before the 1990s.

Our data show that rubber led to substantial deforestation across 
all of Southeast Asia (Fig. 1b). In total, we estimate that 4.1 million ha 
of forest were cleared for rubber between 1993 and 2016. This is a con-
servative estimate for two reasons: (1) we map deforestation only for the 

area mapped as rubber in 2021, meaning that if our rubber area map is 
conservative (see above), so is our map of rubber-related deforestation 
and (2) the NBR threshold we use may lead to underestimated deforesta-
tion in areas with naturally drier vegetation, more bare ground and/or 
regular fires. Removing the threshold leads to an estimate of almost 
6 million ha of forest loss.

According to our maps, almost three-quarters of this forest clearance 
occurred since 2001 (3 million ha). Sample-based area estimates (Sup-
plementary Table 4) suggest that the deforested area since 2000 may 
have been somewhat lower (2.5 million ha ± 0.35 million ha 95% CI), but 
overall our results suggest that rubber-related deforestation is not just 
a historic problem and that substantial deforestation occurred after 
2000. In addition, more than 1 million ha of rubber plantations in 2021 
were situated in Key Biodiversity Areas (KBAs)36,37, which are globally 
important for the conservation of biodiversity (Table 1).

In terms of individual countries, both historically and since 2001, 
deforestation was highest in Indonesia, followed by Thailand and  
Malaysia (Figs. 2 and 3). Although these three countries accounted  
for more than two-thirds of total rubber-related deforestation in  
Southeast Asia during 2001–2016, substantial deforestation also 
occurred in Cambodia since 2001, where more than 40% of rubber 
plantations were associated with deforestation (Fig. 2) and 19% of  
rubber area was situated in KBAs (Table 1).

Rubber deforestation is underestimated
Recent estimates of deforestation embedded in rubber, intended to 
inform policy in the EU7, G7 (ref. 8) and the United Kingdom6, all used the 
data generated by ref. 11, which place total rubber-related deforestation 
between 2005 and 2017 at below 700,000 ha (in 135 countries, including 
all principal rubber producers, except China and Laos). Translating to 
an average annual deforestation of 53,000 ha (Table 2), these estimates 
lie several-fold below the estimates of this and other studies on the basis 
of spatially explicit data—in the case of Cambodia, several hundredfold 
(Table 2). A revision of the data from ref. 3 now provides an almost 
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Fig. 1 | Rubber distribution in 2021 and associated deforestation across 
Southeast Asia. a,b, Rubber distribution (a) and associated deforestation (b). 
For better visualization, the rubber map (a) was aggregated to 500 m pixel size 
by calculating the proportion of 10 m rubber pixels in each 500 m pixel and the 
rubber-related deforestation map (b) was aggregated to 500 m pixel size by 
calculating the proportion of 30 m deforestation pixels within each 500 m 
pixel. The maps in their original resolution are available at https://wangyxtina.

users.earthengine.app/view/rubberdeforestationfig1. The area mapped as 
rubber is conservative and has higher accuracy for mainland Southeast Asia 
than for insular Southeast Asia (here defined as all of Malaysia and Indonesia), 
for which omission errors were higher (Supplementary Tables 1–3). Source of 
administrative boundaries: the Global Administrative Unit Layers (GAUL) 
dataset, implemented by FAO within the CountrySTAT and Agricultural Market 
Information System projects.
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30-fold higher estimate for deforestation in Cambodia (Table 2) but 
still places total quasiglobal rubber-related deforestation between 
2005 and 2018 below 1 million ha. By contrast, the World Resources 
Institute1 estimated that rubber replaced 2.1 million ha of forest dur-
ing 2001–2015 in just seven countries, which account for less than half 
of global natural rubber production, and ref. 2 estimated that rubber 
replaced more than 5 million ha of forest in continental Southeast Asia 
alone. Although our estimates are conservative compared to these 
other estimates and because none of the figures can be directly com-
pared as they refer to somewhat different time periods and different 
definitions of forest, it is of critical note that even our lower 95% CI 
still greatly exceeds (more than double) the model-based estimates 
now widely used to guide policy and to calculate deforestation foot-
prints. Furthermore, even if we replaced our estimates for Indonesia 
and Malaysia with those of ref. 11, the two countries in which ref. 11 
attempted to exclude plantation rotation from deforestation totals, 

our annual rubber-deforestation totals would still be more than twice 
as high (Supplementary Note).

Discussion
Here we provide high-resolution maps for rubber and associated defor-
estation between 1993 and 2016 for all Southeast Asia. We show that 
rubber has led to several million hectares of deforestation and that 
the global data3,4 now widely used in setting deforestation policies are 
likely to severely underestimate the scale of the problem. Although very 
helpful for providing a holistic assessment of the role of agricultural 
commodities in driving tropical and subtropical deforestation across 
the globe, these previous and other model-based data are not a sub-
stitute for spatially explicit estimates of crop expansion into natural 
forests31. Our estimates lie several-fold above these data despite cover-
ing only Southeast Asia and not, for example, West and Central Africa, 
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where there has been substantial recent rubber expansion, probably 
driving deforestation24.

Owing to the heterogenous data landscape with greatly variable 
accuracy across crops, the effects of crops on deforestation cannot 
be reliably compared. The findings of this study would place rubber 
deforestation above the effects found for coffee and, contrary to what 
has been previously assumed, above the effects of cocoa1,4. The rubber 
impact is still lower than the impact of oil palm, but not by a factor of 
8–10 as has been previously suggested1,4 and instead only by a factor of 
2.5–4.0 (also noting that here we are comparing our data for Southeast 
Asia only with global estimates for these other crops). However, these 
comparisons are difficult to make, not least because the estimated 
impacts of cocoa also differ threefold between studies1,4, with cocoa 
being another example of a crop for which there are no global remotely 
sensed maps.

Our map of rubber extent is likely to be conservative. First, we used 
2021 as the reference year and hence do not capture deforestation 
for rubber if, by 2021, the rubber plantation had been converted to a 
different land use. Because there was a rubber price boom in the first 
decade of this millennium, followed by a price crash since 201138, it is 
possible that in the meantime some rubber area has been converted 
to other, more lucrative, land uses38, which will not be included in our 
estimates. Second, ground reference data indicate that we err on the 
side of omission errors, with sample-based area estimates33 suggest-
ing that the rubber area could be substantially larger (Supplemen-
tary Table 1), particularly in insular Southeast Asia. This is because 
the limited seasonality of the equatorial climate precludes a strong 
and predictable phenological response of rubber in insular South-
east Asia34. Furthermore, insular Southeast Asia has more persistent 
cloud cover than mainland Southeast Asia, with 7% and 10% of the study 
area in Indonesia and Malaysia, respectively, lacking clear Sentintel-2 
images (Supplementary Table 7). Consequently, our maps are more 
accurate for mainland Southeast Asia than for insular Southeast Asia 
(Supplementary Tables 2 and 3), where rubber area (and hence asso-
ciated deforestation) may be underestimated. Any comparisons by 
country or other spatial units across these two subregions thus need 
to be done with caution in the light of this limitation. Third, we used 
the European Space Agency (ESA) global tree cover map39 as a mask for 

mapping rubber plantations. If rubber areas were not picked up as tree 
cover by this map, they are also excluded from our estimates. Finally, 
we map only mature rubber; younger rubber plantations (around less 
than 5 years old) are excluded. Our algorithm is also unlikely to detect 
diseased rubber if this is manifested as unseasonal leaf shedding, or 
rubber-based agroforestry systems and ‘jungle’ rubber40 (now eco-
nomically marginal41) unless rubber is the dominant component of 
the canopy. If our rubber map is conservative, mapped deforestation 
will also be conservative, as deforestation detection was restricted to 
areas mapped as rubber.

We have considered and accommodated possible areas of ambigu-
ity that might otherwise lead to an overestimation of deforestation 
using our method. First, rotational plantation and tree crop clearing 
and replanting may erroneously be classed as deforestation. This is 
a key issue, which is notoriously difficult to address and hence also 
affects other studies1,11 (Supplementary Note). The issue is likely to be 
particularly important in Indonesia, Malaysia and Thailand, where rub-
ber and other plantations have a longer history of planting. To address 
this, we use the first deforestation date and ignore subsequent pixel 
changes, meaning that this problem would apply only to plantations 
and tree crops established before, and mature by, 1993. This baseline 
is relatively conservative. In addition, we set a strict NBR threshold 
(indicative of ‘green and healthy’ vegetation) that pixels had to exceed 
before counting as deforested; relaxing that threshold leads to sub-
stantially higher deforestation estimates. Second, deforestation may 
have occurred for a different land use, with the area subsequently 
converted to rubber. This may particularly be the case in more mar-
ginal climates in mainland Southeast Asia where rubber expansion 
is more recent16 (for example, deforestation in northern Vietnam in 
the 1990s may have mainly occurred for industrial forestry, with rub-
ber replacing forestry plantations more recently). However, the issue 
will be smaller for rubber than for plantations such as oil palm, which 
boomed and expanded more recently42, possibly replacing other 
land uses in addition to forests. Rubber is a crop with a longer history 
in the area and a greater plantation longevity of around 25 years30. 
Third, the vegetation in some pixels may have undergone some type 
of disturbance in the rubber defoliation time window, followed by 
regrowth in the rubber refoliation window, leading to them having the 

Table 2 | Comparison of rubber-related deforestation estimates generated by this and other studies

Method Definition of ‘forest’ Time period Reference area Rubber-related deforestation in 1,000 ha yr−1

Total in 
reference area

Indonesia Thailand Malaysia Cambodia

Ref. 4 Land balance 
model

Tree cover greater than or 
equal to 25% (ref. 51)

2005–2017 135 tropical countries, 
including all chief 
rubber producers 
(except China and Laos)

53 22 9 5 0.1

Ref. 3 2005–2018 52 23 6 5 3

Ref. 1 Mix of spatially 
explicit data

Tree cover greater than or 
equal to 30% (ref. 51)

2001–2015 Brazil, Cambodia, 
Cameroon, Democratic 
Republic of the Congo, 
India, Indonesia and 
Malaysia

140 64 NA 48 22

Ref. 2 Remote 
sensing

Internal classifier 2003–2014 Mainland Southeast Asia 135 NA NA NA 69

437* 232*

Ref. 29 Remote 
sensing

Tree cover greater than or 
equal to 10% (ref. 52)

2001–2015 Cambodia NA NA NA 34

This study Remote 
sensing

ESA WorldCover 10 m 2020 
v.100 (tree cover greater 
than or equal to 10%)

2001–2016 
(baseline 
1993)

Southeast Asia 186 66 39 20 15

156* ± 22 NA NA NA NA

The dataset in bold (first row) has been used to guide deforestation policy7 and to calculate the imported deforestation of individual countries6,8. In this study, we use a conservative baseline of 
1993. The earliest baseline in other studies is 2000 and hence other studies will include more plantation rotation. The different base lines also mean that our estimates cannot easily be set into 
the context of overall deforestation in Southeast Asia (estimated to be 3.22 million ha yr−1 between 2001 and 201918). At face value our rubber deforestation estimates account for 5–6% of that 
figure but this is very conservative as the overall figure is derived using a baseline of 2000 and hence includes more plantation rotation (of rubber and other types of tree cover). Sample-based 
area estimates for this study (following ref. 33) and for ref. 2 are indicated by an asterisk.
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characteristic phenology signature of rubber and erroneously being 
classed as such. To exclude such pixels and increase the accuracy of 
our analysis we created a ‘disturbance’ mask (Methods). Thus overall, 
we consider our estimates of deforestation due to rubber plantations 
more likely to be an underestimate than an overestimate of the scale of  
the issue.

The current estimates for deforestation caused by rubber3,4 used 
for policy considerations in the EU7 and the United Kingdom6 are 
based on a land balance model11,12. Such models typically allocate total 
deforestation area to different commodities on the basis of national 
(or subnational, for example in the case of this model for Brazil and 
Indonesia) reports of crop expansion11. This can lead to substantial 
overestimates or underestimates of the role of different crops in driv-
ing deforestation31. First, crop expansion statistics are hampered by 
uncertainties and inconsistent reporting across crops and countries. 
Second, although the total area of a crop can remain stable, its actual 
place of occupancy may change31. This is highly relevant to rubber as 
oil palm has expanded into traditional rubber growing areas43,44, with 
new compensatory rubber plantations being established elsewhere, for 
example, in uplands18,30 and often climatically marginal areas16, where 
they may be associated with deforestation. In fact, the land balance 
model4 includes a large amount of unattributed deforestation that 
could not be explained by crop expansion statistics. Our higher rubber 
deforestation estimates could help to explain some of this unattrib-
uted deforestation. In summary, while the use of extrapolation13,14 and 
model-based11,12 approaches provides some form of estimation for the 
extent of deforestation due to rubber plantations, we advocate caution 
in its interpretation. Instead, where available, we argue for the use of 
results from direct observations of the dynamics of crop production 
systems (for example, using remotely sensed satellite imagery), thereby 
greatly increasing the accuracy of deforestation estimates.

In terms of future projections of the impact of rubber and the 
time-critical need for deforestation legislation, it is likely that demand 
for natural rubber will continue to increase15. Synthetic alternatives 
or other natural sources are not a perfect substitute45,46 and, being 
based on petrochemicals primarily derived from crude oil, they are 
also considered more environmentally harmful. Natural rubber, on the 
other hand, is a renewable resource with the potential to contribute 
to climate change mitigation47 and benefit the livelihoods of small-
holder farmers48. However, if not regulated carefully, rubber growing 
can have severe negative consequences for livelihoods26,49 and lead to 
environmental degradation13,16–21 and biodiversity loss41. These impacts 
are often concealed to consumers, with natural rubber products being 
marketed as ‘sustainable products made from trees’. Our deforestation 
data also suggest that the assumed ‘breathing space’38 generated by 
the now low rubber price may be false, with continued (and volatile) 
deforestation for rubber since 2011, a problem that could increase if 
rubber prices rise again.

Given the substantial rubber-related deforestation demonstrated 
here, it is encouraging that rubber is beginning to be included in rel-
evant policy debates, with the last-minute inclusion of rubber in the 
scope of the EU Deforestation Regulation. Initiatives such as the GPSNR, 
a multistakeholder membership organization committed to transpar-
ent improvements in socioeconomic and environmental performance 
of the natural rubber value chain, are also requiring members to address 
deforestation. A frequently voiced concern is that rubber supply chains 
are difficult to trace and that deforestation regulations place a dis-
proportionate burden on rubber operators. Contrary to oil palm, for 
which there is a limited time window (about 24 h) between harvest and 
processing at mills, unprocessed rubber has greater longevity, allow-
ing transport over several hundred kilometres and exchange between 
several aggregators before arrival at processing facilities50, presenting 
traceability challenges. Another critically important point is the need 
to ensure that smallholders are not disadvantaged by deforestation 
regulations, as, contrary to larger companies, they may not be able to 

afford the premiums for certified sustainable production. Although 
concerns about the potential marginalization of smallholders apply 
to all commodities, it is a particularly important consideration for 
commodities that are strongly linked to smallholder livelihoods and 
development prospects, such as rubber. Recent initiatives, for example 
by the Forest Stewardship Council, have demonstrated that the chal-
lenges can be overcome when farmers are organized in groups, with 
an extra benefit being that farmer cooperatives can negotiate a joint 
price to buffer their livelihoods against the volatile global rubber price. 
In addition, whilst supply chains are indeed complex and challenging 
to trace, the high-end rubber processing side is dominated by very 
few and identifiable actors. Around 70% of the global natural rubber 
production is used in tyres with a few main companies accounting for 
most consumption15, many of which are already part of the GPSNR.

Further work is needed to make connections between rubber-driven 
deforestation and specific supply chains but, in the absence of such 
information, it should be assumed that main importers of rubber such 
as the EU are substantially exposed to rubber-related deforestation. 
In addition, the lack of traceability information at present provides a 
further argument for the inclusion of rubber in regulatory processes 
to drive traceability efforts and to provide an opportunity for supply 
chains to support sustainable production.

In summary, we believe that rubber merits more consideration in 
policies and processes that aim to reduce commodity-driven deforesta-
tion and that it is vitally important to use the best available evidence 
on the scale of the problem. The issue outlined here for rubber is of 
fundamental importance in its own right because rubber is responsible 
for millions of hectares of deforestation. However, we also highlight 
the wider need to enhance the evidence base available to inform policy 
decisions and to aid their implementation. There is an opportunity 
for increased clarity and rigorous quantification of the extent of envi-
ronmental degradation caused by main cash crops that is increasingly 
possible using remotely sensed Earth observation.
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Methods

Here, we used Sentinel-2 imagery to produce a map of rubber planta-
tions for all Southeast Asia in 2021, and we mapped the occurrence 
and the timing of deforestation for these plantations on the basis of 
time-series data from Landsat images (1993–2016). An overview of the 
Methods is presented in Extended Data Fig. 3.

Sentinel-2 imagery
Sentinel-2 is an optical multispectral imaging mission from the Coper-
nicus Programme headed by the European Commission in partnership 
with ESA53. It acquires very high-resolution multispectral imagery with 
a global revisit frequency of 5 days. In this study, we used the Sentinel-2 
level-2A Surface Reflectance imagery for 2020–2022 obtained through 
Google Earth Engine5 to map the extent of rubber plantations in South-
east Asia in 2021. Sentinel-2 Surface Reflectance imagery has been 
corrected for atmospheric influences with the Sen2Cor processor algo-
rithm54–56. To remove clouds and cloud shadows, we used the QA60 
cloud mask band and Sentinel-2 cloud probability datasets55 in which 
pixels with cloud probability greater than 50% are considered as clouds. 
Cloud shadows are defined as areas of cloud projection intersection 
with low-reflectance, near-infrared pixels. Full details are available 
at https://developers.google.com/earth-engine/tutorials/commu-
nity/sentinel-2-s2cloudless. Cloud cover was a small issue in mainland 
Southeast Asia but presented greater challenges in insular Southeast 
Asia, affecting 7% and 10% of the study area in Indonesia and Malaysia, 
respectively (Supplementary Table 7).

For each image, we selected ten bands and computed seven spectral 
indices. The bands comprised four 10 m resolution bands (blue, B2;  
green, B3; red, B4; and near-infrared, B8) and six 20 m resolution bands 
(red-edge bands57, B5, B6, B7 and B8A; short-wave infrared bands, 
B11 and B12). The seven spectral indices were normalized difference 
vegetation index (NDVI), normalized difference water index (NDWI), 
renormalization of vegetation moisture index (RVMI), NBR, modified 
NBR (MNBR), soil-adjusted vegetation index (SAVI) and enhanced veg-
etation index (EVI). All bands and spectral indices were resampled to 
10 m resolution for further analysis. Working with a 10 m resolution 
instead of a 20 m resolution allowed us to take advantage of the high 
resolution of key bands (for example, the NDVI component bands B4 
and B8) to capture smallholder plantations (often less than 1 ha in size) 
as best as possible.

The equations used for calculating the spectral indices are as  
follows:

NDVI =
B8 − B4
B8 + B4

(1)

NDWI =
B8 − B11
B8 + B11

(2)

RVMI =
NDVI − NDWI
NDVI + NDWI

(3)

NBR =
B8 − B12
B8 + B12

(4)

MNBR =
B8 − (B11 + B12)

B8 + B11 + B12
(5)

SAVI =
1.5 × (B8 − B4)
(B8 + B4 + 0.5)

(6)

EVI =
2.5 × (B8 − B4)

(B8 + 6 × B4 − 7.5 × B2 + 1)
(7)

Mapping the extent of rubber plantations
We designed a new phenology-based methodology to map rubber 
plantations across Southeast Asia. Unlike evergreen and deciduous 
tropical forest and most other tree plantations present in the region, 
rubber plantations shed their leaves during the dry season and subse-
quently regain their leaves before the onset of the wet season. Whether 
this is primarily a response to drought or cold stress is the subject of 
ongoing research58,59 but, particularly in mainland Southeast Asia, the 
cold and dry seasons coincide, meaning that, here, the lack of mecha-
nistic understanding of this phenological response does not preclude 
identifying the time window of its occurrence.

While mainland Southeast Asia is characterized by a seasonal mon-
soonal climate, insular Southeast Asia is less seasonal and the onset 
of a dry season, if present, mostly falls into a different time of year 
compared to mainland Southeast Asia (Extended Data Fig. 5). There-
fore, we divided the region into two subregions (Extended Data Fig. 6). 
In mainland Southeast Asia, the northeast monsoon brings dry and 
cool continental air60 and rubber defoliation generally occurs during 
January–February with subsequent refoliation during March–April 
(Extended Data Fig. 1). This distinct signature also allows the sepa-
ration of rubber from deciduous forest, which is present in much of 
mainland Southeast Asia: leaf regrowth in other species in decidu-
ous forest mainly coincides with the onset of the wet season in May 
(Extended Data Fig. 2).

In contrast to mainland Southeast Asia, large parts of insular South-
east Asia do receive rainfall during the northeast monsoon with the 
southwesterly flowing air masses gathering moisture as they pass over 
the warm sea. Instead, there can be a dry season during the southwest 
monsoon (May to September) when the air masses reverse and the 
northeasterly blowing winds bring dry air from the Australian con-
tinent60. However, in the equatorial maritime climate the dry season 
tends to be neither prolonged nor distinctive (Extended Data Fig. 4) 
and soil moisture can remain stable or at least above critical levels34.

Originating from the Brazilian Amazon, the deciduous behaviour 
of H. brasiliensis is thought to have evolved as an adaptive strategy for 
drought or more generally stress avoidance59. Consequently, in years 
or areas where there is no clear-cut stress in the form of a distinctive 
dry and/or cold season, leaf shedding will only be partial, not take place 
at all and/or will be influenced by micrometeorological conditions 
with trees defoliating asynchronously even within the same stand34. 
Few reports exist on rubber phenology in insular Southeast Asia. The 
limited available evidence34,61–65 (covering about 18 sites, which are 
spatially biased towards the main rubber growing areas Sumatra and 
Malay Peninsula, with only one report for Borneo and none for islands 
further east) suggests that, where there is a predictable defoliation 
window, it generally occurs during January–February (Malay Peninsula 
and northern Sumatra) or during June–September (further south).

Because the divergent defoliation patterns described in the avail-
able literature mainly affect Indonesia and as, owing to consistently 
high temperatures, stress, if present, is likely to occur in the form of 
drought, we delineated two climatic subzones as follows: we mapped 
average monthly precipitation66 across Indonesia and identified the 
driest month for each pixel (around 1 × 1 km); we then delineated all 
pixels with the driest month between June and September as a separate 
subregion (region B, where defoliation was assumed to take place June–
September with subsequent refoliation during October–December). 
The remaining pixels and all of Malaysia and mainland Southeast Asia 
were assigned to region A, where defoliation was assumed to take place 
between January and February with subsequent refoliation during 
March–April (Extended Data Fig. 6).

The lack of distinctive seasonality near the equator means that inac-
curacy of our classification was greatest near the equator (Extended 
Data Figs. 7 and 8) and mainly manifested in omission errors (3% of our 
661 ground reference points used for validation were false negatives 
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and only 0.3% were false positives; of the false negatives, 95% occurred 
in insular Southeast Asia). Beyond about 7° N the climate becomes 
more continental with clear-cut seasonality and no more false nega-
tives were recorded.

The unique phenology of rubber, where exhibited, thus makes 
rubber distinguishable from other tree cover using satellite imagery. 
Here we used a tree cover mask from the ESA global land cover map39  
(the ESA WorldCover 10 m 2020 product) as a base map for classifying 
tree cover into rubber and other tree cover based on the spectral dif-
ferences described above. According to an independent evaluation67 
the ESA global land cover map achieves reasonably good accuracies 
for tree cover (user’s accuracy of 80.1 ± 0.1 95% CI and producer’s accu-
racy of 89.9 ± 0.1 95% CI). For the defoliation stage, we generated a 
composite image using a 15% NDVI percentile threshold of all images 
acquired during January and February in 2021 and 2022 for region A and  
during June–September in 2020 and 2021 for region B. For the refolia-
tion stage, we used the 85% NDVI percentile as a threshold to generate 
a composite of all images acquired during March and April in 2021 and 
2022 for region A and during October–December in 2020 and 2021 
for region B. This was to reduce noise generated by remaining clouds 
and shadows. Each composite image contained 17 variables, including 
10 spectral bands and 7 spectral indices (see section on ‘Sentinel-2 
imagery’ above).

The classification was produced using a random forest machine 
learning algorithm. For hyperparameter settings and a summary of 
individual variable contributions to the classification, see Supple-
mentary Tables 8 and 9. We collected a total of 3,826 reference sample 
points (2,010 for rubber and 1,816 for evergreen forest; Extended Data 
Fig. 6) and randomly split them into 80% and 20% for training and test-
ing the random forest classifier, respectively. This left us with about 
700 points for testing; following the equations by ref. 33 we estimated 
that a sample size of n = 441 was sufficient for achieving a standard 
error of the overall accuracy of s.e. = 0.01. Of these more than 3,800 
points, 2,000 were based on randomly sampled reference ground data  
collected by the World Agroforestry Centre in 2010, covering the entire 
region and consisting of a mix of field data and visually interpreted 
very high-resolution satellite data. We revised the classification for 
these points for 2021 following a visual interpretation protocol (see 
below). The remainder were points from randomly sampled reference 
ground data covering mainland Southeast Asia68 and Xishuangbanna, 
China69. With more than 50% of the points used in this study collected 
in the field, their classification is likely to be very accurate. However, 
any field data will to some extent suffer from an accessibility bias with 
potential implications for accuracy and area estimation, which we 
further discuss below.

The visual interpretation process was carried out by two inter-
preters using Collect Earth Online70–72 (CEO) and Google Earth Pro73  
(Supplementary Fig. 1). Google Earth Pro provided access to high and 
very high-resolution imagery with acquisition dates, and a custom-built 
project in CEO provided access to very high-resolution Mapbox Satel-
lite imagery base maps, 2021 monthly Planet NICFI images (Norway’s 
International Climate and Forests Initiative satellite data program) 
and yearly composite images for January–February and March–April 
from Sentinel-2 (2017–2021)1 and Landsat-5-7-8 (1988–2016; cour-
tesy of US Geological Survey). First, we assigned each sample point 
to a land cover class for the year 2021. Second, if the land cover was 
rubber, we identified the deforestation date for that point using his-
torical Landsat images. Where available, more very high-resolution 
imagery from Google Earth was used to facilitate the interpretation  
process.

Disturbances such as degradation or plantation removal can poten-
tially produce similar spectral features to rubber phenology, lead-
ing to commission errors. To reduce commission errors, we removed 
all rubber pixels where this may have occurred using a 2021 primary  
forest mask and a no-disturbance mask (Extended Data Fig. 3). The 2021 

primary forest mask was created by using the 2001 primary forest layer 
from ref. 74 and removing areas of subsequent forest loss between 2000 
and 2021 (Hansen Global Forest Change v.1.9)51. The no-disturbance 
mask was generated with the following steps: (1) calculate the NBR 
index (equation (4)) for all Sentinel-2 images between 2019 and 2021; 
(2) create 3-year NBR median composites for March–June, July– 
September and October–December (region A) or January–May and 
October–December (region B) (yielding three composites for region 
A and two composites for region B); (3) extract the values of NBR com-
posites for all the rubber samples; (4) plot the NBR values and calcu-
late the 5% percentile thresholds for individual composites, meaning 
95% of NBR values of rubber samples are above these thresholds; and 
(5) apply the thresholds to all three (region A) or two (region B) NBR 
composite images, resulting in five binary images (1, no disturbance; 0, 
potential disturbance). If a pixel was classed as 1 in all three (region A)  
or two (region B) binary images, it was considered as not disturbed. 
A 5 × 5 pixel majority filter was applied to the no-disturbance mask to 
remove isolated pixels.

The accuracy of the final map was evaluated using the remaining 20% 
of the reference ground data points (n = 661), following standard good 
practices33 (Supplementary Table 1). Sample-based area estimates33 sug-
gested that the rubber area could be substantially larger than mapped 
(Supplementary Table 1), particularly in insular Southeast Asia (Sup-
plementary Table 3). This is likely to be a consequence of a less predict-
able phenology34,61–65 and more cloud cover (Supplementary Table 7) 
affecting our ability to map rubber in this region. In addition, we erred 
on the side of reducing commission errors by applying postclassifica-
tion masks (as described above). A further explanation is the highly 
unequal weights of the map classes, with rubber occupying less than 5% 
of the overall area. Consequently, rubber points mapped as other tree 
cover led to large area corrections. Finally, the area estimation protocol 
assumes a completely probabilistic sampling design whereby every 
point—in accessible and inaccessible locations—had an equal chance 
to be included. The ground reference data sample design was random 
but more than 50% of the points were collected in the field (and hence 
in reasonably accessible areas). This may be a further explanation for 
the ‘over’ correction of the rubber class as the correction assumes that 
every forest point had the same chance to be misclassified as rubber, 
whether accessible or not. Hence, to err on the side of conservative 
estimates, we report both area estimates (mapped and sample-based) 
but concentrate our reports on the smaller one of these figures.

In summary, we developed a new approach, which involves classifying 
an ESA tree cover baseline map39 into rubber and other tree cover based 
on phenology and removing any pixels that are potentially confounded 
by disturbance using a primary forest mask and a no-disturbance mask, 
which we generated specifically for this purpose. We also applied a 
postclassification 5 × 5 pixel majority filter to the resulting map 
and a minimum patch size threshold of 0.5 ha to reduce pixel-level  
classification noise and classification artifacts.

Identifying the deforestation date
We tracked the first historical deforestation date since 1993 for all rub-
ber plantations mapped in 2021. This was done using the LandTrendr 
spectral-temporal segmentation algorithm32,75 (a Landsat-based 
algorithm for the detection of trends in disturbance and recovery). 
LandTrendr characterizes the history of a Landsat pixel by decompos-
ing the time series into a series of bounded line segments (that is, trends 
over several years) and identifying the breakpoints between them. 
These linear segments and breakpoints allow for the detection the 
greatest pixel-level change (for example, deforestation) and therewith 
for the identification of the year in which this greatest spectral change 
occurred (Extended Data Fig. 9).

In this study, we ran LandTrendr GEE API75 (a JavaScript module devel-
oped in Google Earth Engine, https://emapr.github.io/LT-GEE/api.
html) using the annual time-series index from USGS Landsat Surface 

https://emapr.github.io/LT-GEE/api.html
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Reflectance Tier 1 datasets. For hyperparameter settings see Supple-
mentary Table 9. The clouds and cloud shadows were masked using 
CFMASK76. A medoid approach was used to generate the annual com-
posite image. This approach uses the value of a given band that is numer-
ically closest to the median of all the available images for each year. In 
this study, we used time series of the NBR index (NBR = (NIR − SWIR)/
(NIR + SWIR)) from 1993 to 2021 for the temporal segmentation. The 
deforestation date was identified as the end year of the linear segment 
with the largest slope (greatest loss). As an extra constraint, we imposed 
a minimum start NBR value for this linear segment of more than 0.6, 
thereby reducing the risk of including previously degraded or cleared 
areas where tree cover was consequently sparser. Any deforestation 
pixels below this threshold were excluded from our deforestation esti-
mates. We also applied a 3 × 3 pixel majority filter to remove any isolated 
pixels. To select optimal values for the NBR threshold and the majority 
filter, we tested combinations of NBR threshold values between 0.51 and 
0.61 (in steps of 0.005) with a 3 × 3 and a 5 × 5 pixel majority filter and 
selected the values that provided maximum overall accuracy. Finally, 
we excluded pixels with a deforestation date later than 2016 because 
it takes around 5 years for rubber plantations to be identifiable from 
the satellite imagery following planting.

As for the rubber map, we evaluated the accuracy of the deforesta-
tion date map and calculated estimated area following a standard 
good practices protocol33, using all reference sample points (collec-
tion described above in the section on ‘Mapping the extent of rubber 
plantations’) for which clear deforestation dates could be identified 
(n = 67). As there were insufficient deforestation reference samples to 
support a finer temporal classification, we decided to conservatively 
group the deforestation map into two broad classes: deforestation up 
to and including 2000 and deforestation between 2001 and 2016. As 
for rubber, we report all area estimates (mapped and sample-based) 
to highlight the lowest estimates. Full details of accuracy and area  
estimates are provided in Supplementary Tables 4–6.

Deforestation in Key Biodiversity Areas
To explore the potential impacts of rubber and associated deforesta-
tion on regional biodiversity we calculated the area of rubber and 
associated deforestation within KBAs36. KBAs are some of the most 
critical sites for the conservation of species and habitats globally and 
hence rubber and deforestation in these areas pose a threat to global  
biodiversity.

Software
Figure 1 was produced using Colaboratory and Figs. 2 and 3 using 
Google Sheets.

Inclusion and ethics
This work is the result of a collaborative partnership between scientists 
from China and the United Kingdom and includes specialists from 
inside and outside rubber growing areas. Consideration was given to 
citation diversity. The study received approval by the Royal Botanic 
Garden Edinburgh’s institutional ethics committee.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The Earth observation datasets that supported the findings of this study 
are publicly available (for example, Google Earth Engine data cata-
logue). The rubber and associated deforestation maps produced here 
(Fig. 1a,b) are available from https://doi.org/10.5281/zenodo.8425153. 
They are also available within Google Earth Engine: rubber, https://code.
earthengine.google.com/?asset=users/wangyxtina/MapRubberPaper/

rForeRub202122_perc1585DifESAdist5pxPFfinal; associated forest 
loss, https://code.earthengine.google.com/?asset=users/wangyxtina/
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preNBR600. Source data are provided with this paper.

Code availability
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google.com/?accept_repo=users/wangyxtina/Nature_rubber.
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Extended Data Fig. 1 | Examples of the characteristic spectral signature of 
rubber and evergreen forests caused by differing phenology in Southeast 
Asia. The example pixels for rubber (100.6835 longitude, 22.1786 latitude)  
and evergreen forest pixels (100.5931 longitude, 22.1910 latitude) shown here 
are located in Xishuangbanna, China (phenology region A). Rubber has a 
distinct phenology, shedding leaves in January to February and subsequently 
refoliating in March and April. Two-year (2021 and 2022) composite image 

differences between defoliation and refoliation stages were used as inputs for a 
Random Forest classifier to distinguish rubber and forest. The bottom subplot 
shows the temporal pattern of the NDVI in January-April 2021 and January- 
April 2022 (the grey line separates the two years). NDVI: Normalized Difference 
Vegetation Index ( )Band Band

Band Band
8 − 4
8 + 4

. Images: ESA Sentinel-2. The figure was produced 
in Colaboratory.



Extended Data Fig. 2 | Example of differences in Sentinel-2 spectral indices 
caused by the different phenological responses of rubber, evergreen forest 
and deciduous forest. The coordinates for these points are rubber: 100.6835 
longitude, 22.1786 latitude; evergreen forest: 100.5931 longitude, 22.1910 
latitude; and deciduous forest: 100.7219 longitude, 22.1858 latitude. While the 
defoliation of deciduous forest lasts until May, rubber defoliation takes place 
between January and February and the leaves are regained before the onset  

of the wet season in May. The grey line represents the cut-off date for the 
composite images used for classifying rubber (when rubber leaves have already 
flushed but deciduous forest leaves not yet). The figure was produced in 
Colaboratory. NDVI: Normalized Difference Vegetation Index ( )Band Band

Band Band
8 − 4
8 + 4

. 
NBR: Normalized Burn Ratio ( )Band Band

Band Band
8 − 12
8 + 12

. NDWI: Normalized Water Index 

( )Band Band
Band Band

8 − 11
8 + 11

.
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Extended Data Fig. 3 | Methodology flow for mapping rubber (blue), 
generating a disturbance mask (orange) and estimating deforestation 
(red). All processing was done in Google Earth Engine. For explanations on  

the different phenology windows used see Extended Data Figs. 5 and 6. The 
figure was produced in Microsoft Word.



Extended Data Fig. 4 | Average monthly rainfall during January to February 
(A) and June to September (B). Contrary to mainland Southeast Asia, which 
experiences a distinctive dry season during the northeast monsoon January to 
February, there is less seasonality in insular Southeast Asia. The areas identified 
as Region B are generally somewhat drier during June to September when the 
southwest monsoon brings dry air masses from the Australian continent 
(Diercke Weltatlas. Schulbuchverlage Westermann Schroedel Diesterweg 
Schoningh Winklers GmbH, 2015). However, the difference is small and, in some 
areas or years, may never translate into decreased soil moisture (Niu, F., Röll, A., 

Meijide, A., Hendrayanto & Hölscher, D. Rubber tree transpiration in the 
lowlands of Sumatra. Ecohydrology 10, doi:10.1002/eco.1882, 2017) and  
hence not prompt a clear-cut phenological response in rubber. This explains 
why there are a lot more rubber omission errors in insular Southeast Asia 
(Supplementary Table 3 and Extended Data Figs. 7 and 8). Rainfall data are from 
Hengl, T. & Parente, L. (Zenodo: https://doi.org/10.5281/zenodo.6458580, 
2022) and administrative boundaries from the Global Administrative Areas 
database version 1.0. The figure was produced in ESRI ArcMap 10.8.2.

https://doi.org/10.5281/zenodo.6458580
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Extended Data Fig. 5 | Driest month based on 15-year rainfall averages. To 
account for the spatial heterogeneity in the onset of the dry wintering season 
we ran the rubber mapping algorithm separately for two climatic subregions: 
Region A where rubber defoliation was assumed to occur between January to 
February and Region B where rubber defoliation was assumed to occur 
between June to September. Region B was delineated by identifying all pixels 
( ~ 1×1 km) in Indonesia where the driest month was either June, July, August or 
September. All other pixels, including all areas in Malaysia, were assigned to 
Region A. Owing to heterogenous local topography and wind conditions, 
rainfall patterns in insular Southeast Asia vary over short distances, in addition 
to which substantial temporal variation can be present e.g. in the form of the  

El Niño-Southern Oscillation phenomenon. The division into climatic Regions 
A and B reflects a trade-off between running the algorithm separately for many 
small subregions and the need for sufficient ground reference data for robust 
inferences. In addition, in perhumid areas near the equator (e.g. northern 
Borneo) this division becomes arbitrary as the lack of seasonality in these areas 
(Extended Data Fig. 4) precludes a clearly predictable phenological rubber 
response. Rainfall data are from Hengl, T. & Parente, L. (Zenodo: https://doi.
org/10.5281/zenodo.6458580, 2022) and administrative boundaries from the 
Global Administrative Areas database version 1.0. The figure was produced in 
ESRI ArcMap 10.8.2.

https://doi.org/10.5281/zenodo.6458580
https://doi.org/10.5281/zenodo.6458580


Extended Data Fig. 6 | Rubber phenology regions, grids and sampling 
points. To account for differences in the onset of the dry season we divided the 
study area into two climatic subregions based on the occurrence of the driest 
month (Extended Data Fig. 5). Region A: rubber defoliation was assumed to 
occur between January to February and refoliation between March to April. 
Region B: rubber defoliation was assumed to occur between June to September 
and refoliation between October to December. The algorithm was run separately 

for 3 by 3-degree grid cells (in blue). The forest and rubber reference ground 
data (open dots; n = 661) were used for training the rubber detection algorithm 
(80% of the points) and for validating the map (20%). Source of administrative 
boundaries: The Global Administrative Unit Layers (GAUL) dataset, implemented 
by FAO within the CountrySTAT and Agricultural Market Information System 
projects. The figure was produced in Colaboratory.
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Extended Data Fig. 7 | Spatial distribution of rubber classification errors. 
Of n = 661 validation ground reference points, there were 19 false negatives (of 
which 18 occurred in Malaysia and Indonesia) and only two false positives (one 

in Xishuangbanna and one on Sumatra). Source of Administrative boundaries: 
Global Administrative Areas database version 1.0. The figure was produced in 
ESRI ArcMap 10.8.2.



Extended Data Fig. 8 | Frequency distribution of omission and commission 
errors against latitude. A: Of n = 661 validation ground reference points, 21 
had a classification error, of which 90% were omission errors (false negatives) 
with only two commission errors (false positives). B: The frequency of omission 

errors was highest near the equator. False negatives remained up until c. 7° north. 
Beyond this point the climate becomes more continental and seasonal (Extended 
Data Fig. 4) and no more false negatives were found (Extended Data Fig. 7). The 
figure was produced using R library ‘ggplot2’.
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Extended Data Fig. 9 | Diagram illustrating the LandTrendr segmentation 
algorithm for detecting historical deforestation using Landsat time series 
of the Normalized Burn Ratio index. The example rubber pixel is located in 

Cambodia (105.4350 longitude, 12.5468 latitude). Further details on the 
LandTrendr algorithm are available at: https://emapr.github.io/LT-GEE/
landtrendr.html. The figure was produced in Microsoft Excel.

https://emapr.github.io/LT-GEE/landtrendr.html
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection All software used for data collection (Google Earth Engine, Google Earth Pro, and Collect Earth Online) are publicly available.

Data analysis All software used for data analysis (Google Earth Engine, and R 4.2.2) are publicly available and all code is deposited in a public repository: 
https://earthengine.googlesource.com/users/wangyxtina/Nature_rubber. Users with a Google Earth Engine account can access the code on: 
https://code.earthengine.google.com/?accept_repo=users/wangyxtina/Nature_rubber

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The earth observation datasets that supported the findings of this study are publicly available (e.g., Google Earth Engine data catalogue). The rubber and associated 
deforestation maps produced here (Fig. 1a,b) are available from https://doi.org/10.5281/zenodo.8425153. They are also available from within Google Earth Engine: 
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Rubber:  
https://code.earthengine.google.com/?asset=users/wangyxtina/MapRubberPaper/rForeRub202122_perc1585DifESAdist5pxPFfinal 
Associated forest loss: 
https://code.earthengine.google.com/?asset=users/wangyxtina/MapRubberPaper/rRubber30m202122_deforestationAPI20012016_preNBR600  

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender n/a

Reporting on race, ethnicity, or 
other socially relevant 
groupings

n/a

Population characteristics n/a

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Analysis of remotely-sensed data to map rubber in 2021 and to map and quantify associated deforestation

Research sample Reference ground data (in total >3,800 points) based on field observations, augmented with visually interpreted very-high resolution 
satellite data

Sampling strategy Stratified random. Sample sizes were pre-determined based on a good practices protocol (Olofsson et al. 2014. Good practices for 
estimating area and assessing accuracy of land change. Remote Sensing of Environment 148, 42-57)

Data collection Of the over 3,800 points, 2,000 were based on randomly sampled reference ground data collected by the World Agroforestry Centre 
in 2010, covering entire Southeast Asia and consisting of a mix of field data and visually interpreted very-high resolution satellite 
data. We updated the classification for these points for 2021 following a visual interpretation in Collect Earth Online and Google 
Earth Pro. The remainder (>1,800 points) were points from randomly sampled field data covering mainland Southeast Asia. 

Timing and spatial scale The maps cover 1993 to 2021. The spatial extent encompasses all Southeast Asia at pixel resolutions of 10 and 30 m

Data exclusions No data were excluded

Reproducibility All findings are reproducible and the code to reproduce the findings is available on GitHub. Where parameter choices affected the 
outcomes, the choices and their effects are clearly outlined in the manuscript.

Randomization Reference ground data were randomly split into training and test data using a random number generator.

Blinding All relevant analyses and data collections were completed and the code was debugged before the results were revealed.  

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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