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Abstract

We consider the design of contests when the principal can choose both the prize profile and how the 
prizes are allocated as a function of a possibly noisy signal about the agents’ efforts. We provide sufficient 
conditions that guarantee optimality of a contest. Optimal contests have a minimally competitive prize 
profile and an intermediate degree of competitiveness in the contest success function. Whenever observation 
is not too noisy, the optimum can be achieved by an all-pay contest with a cap. When observation is perfect, 
the optimum can also be achieved by a nested Tullock contest. We relate our results to a recent literature 
which has asked similar questions but has typically focused on the design of either the prize profile or the 
contest success function.
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1. Introduction

Many economic interactions can be summarized as situations where a group of agents com-
pete for a set of prizes. Examples of such contests are: (i) competition for promotions or bonuses 
among employees, (ii) elections where candidates campaign in an effort to win political office, 
(iii) entrance exams where students compete for a limited number of places in schools and uni-
versities, (iv) scientists competing for grants and prizes, and (v) sporting events. What all of these 
contests have in common is that they are designed. Some principal chooses the rules of the con-
test as well as the prizes that can be won. While the equilibrium behavior of agents in standard 
contests (Tullock contests, Lazear-Rosen tournaments, all-pay contests) has been extensively 
studied, the question of optimal contest design has received significantly less attention.1

Several recent articles have analyzed the optimal allocation of prizes in specific classes of 
contests. Examples include Schweinzer and Segev (2012) and Fu et al. (2021a) for Tullock con-
tests, Drugov and Ryvkin (2020b) and Morgan et al. (2022) for Lazear-Rosen tournaments, and 
Fang et al. (2020) and Olszewski and Siegel (2020) for all-pay contests. While these papers have 
produced important insights, sometimes the intuition obtained from one contest class does not 
translate well to a different class. For example, from Schweinzer and Segev (2012) we learn 
that in a nested Tullock contest with risk-neutral agents, a winner-take-all prize structure is opti-
mal, while Fang et al. (2020) show that in an all-pay contest the exact opposite is optimal, with 
all agents but one receiving an equal positive prize. Furthermore, it is not clear if the principal 
should use a Tullock contest or an all-pay contest, or even some other contest format which has 
not been studied yet.2 Our paper proposes a general framework in which these contest design 
questions can be analyzed, and which explains the different results in the literature. In particular, 
we establish an upper payoff bound for the principal who optimally designs a contest, and we 
provide sufficient conditions under which there exists a contest that achieves this upper bound.

In our model, the principal can choose any prize profile and any rule specifying how the prizes 
are allocated to the agents as a function of a possibly noisy signal about their efforts. When the 
principal perfectly observes the efforts, then our framework includes all the standard contest 
success functions (CSFs) as special cases. When the observation of efforts is imperfect, then 
the observational noise puts constraints on the set of CSFs that the principal can induce. The 
objective of the principal is to maximize the expected aggregate effort minus the sum of prizes. 
The agents can be risk-neutral or risk-averse, and they have convex effort cost functions.

Our first main result provides sufficient conditions for a contest to achieve our upper pay-
off bound and thus be optimal, given an arbitrary observational structure. These conditions are 
that the prize profile is minimally competitive, with n − 1 equal positive prizes and a single zero 
prize, and that the CSF has an intermediate degree of competitiveness, so that the off-equilibrium 
probability of winning a positive prize remains below an explicitly given bound for any effort 
deviation. The conditions can be easily verified and are a powerful tool for the design of opti-
mal contests under diverse observational assumptions. The result builds on the previous work in 
Letina et al. (2020), who consider perfect effort observation only. For that case, they show that 
the optimal prize profile has n − 1 equal positive prizes and that the optimum can be achieved by 
an all-pay contest with a cap. Our results here rely on the insight that there are many other CSFs 

1 For an excellent textbook treatment of the standard contests, see Konrad (2009).
2 A broader question is whether the principal should use a contest at all, rather than some other incentive mechanism. 

One setting in which contests are optimal within a larger set of mechanisms is provided in Letina et al. (2020). In their 
model, contests are optimal because they give a lenient reviewer the commitment to punish shirking agents.
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that can also achieve the optimum, and some of them are feasible for the principal even if effort 
observation is imperfect.

For the case when efforts are indeed perfectly observable, our second main result shows that, 
in addition to an all-pay contest with a cap, the optimum can also be achieved by a nested Tul-
lock contest (Clark and Riis, 1996). The optimal Tullock CSF is characterized by a precision 
parameter r∗(n) which is the largest r such that a symmetric pure-strategy equilibrium still ex-
ists. Note that we do not restrict ourselves to pure-strategy equilibria, but they emerge as part 
of the optimum. The precision parameter r∗(n) increases in n and approaches infinity in the 
limit. In other words, the optimal Tullock CSF approximates the all-pay CSF when the number 
of agents is large, but is less competitive for smaller numbers of agents. This result provides a 
unifying perspective on the findings in the literature mentioned above. The message of Fang et 
al. (2020) is that “turning up the heat” in a standard all-pay contest, by making the prize profile 
more unequal, increases the dispersion of the equilibrium effort distributions and decreases the 
expected equilibrium effort that agents exert. It follows that the principal should select the most 
equal prize profile with n − 1 identical prizes, but the agents are still mixing in equilibrium with 
this prize profile. Our results show that it is optimal to turn down the heat even more, by moving 
from the perfectly discriminating and very competitive all-pay CSF towards a smoother and less 
competitive CSF, exactly to the point where a pure-strategy equilibrium emerges. Our results 
are also in line with the seemingly contradictory intuition of Schweinzer and Segev (2012), who 
argue that optimal nested Tullock contests should turn up the heat by concentrating prizes on the 
top. This holds subject to the constraint that a pure-strategy equilibrium exists in the contest. Our 
optimal Tullock contest is indeed as competitive as possible in that sense; more concentration 
of the prizes on the top would destroy the pure-strategy equilibrium. Such insights can only be 
obtained in a setting like ours, where both the prize profile and the CSF are endogenous and can 
be chosen without functional-form constraints.

Perhaps the most commonly studied model with imperfect observation of efforts is one where 
the principal observes effort plus an i.i.d. noise term. Our third main result focuses on this set-
ting. We provide a condition on the distribution of noise such that the principal can still generate 
a CSF that satisfies our general optimality conditions. Recall that the principal aims for an in-
termediate degree of precision in the CSF anyway. Random observational noise makes a contest 
less competitive for any given allocation rule. As long as observation is not too noisy, the prin-
cipal can tune the heat by combining the observational noise and the allocation rule in a way 
that implements the optimum. In particular, we show that an all-pay contest with a cap (applied 
to the stochastic signals about individual agents’ efforts) is optimal. This generalizes the result 
of Letina et al. (2020) mentioned above to the case of imperfect effort observability. We then 
extend the analysis to one specific environment where the observation of effort is so imprecise 
that the general optimality conditions cannot be satisfied. We characterize the optimal contests 
in this setting and show that they still feature n − 1 equal positive prizes, a single zero prize, and 
a CSF with an intermediate degree of competitiveness.

Although the focus of our analysis is on the optimal design of contests, we also compare 
the principal’s payoff from an optimal contest to the payoff of a principal who instead can use 
an arbitrary incentive mechanism. We show that the comparison crucially depends on the ob-
servational structure. There exist observational structures for which a contest is unconstrained 
optimal, others for which the first-best can be achieved by a mechanism that is not a contest, and 
yet others for which the optimal mechanism achieves a payoff in between the contest and the 
first-best. Using an arbitrary incentive mechanism either results in a payoff that is equal to that of 
the optimal contest, equal to the first-best payoff, or anything in between. We also show that the 
3
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optimal contest payoff and the first-best payoff converge as the number of agents increases, so 
that any potential gain from using arbitrary incentive mechanisms disappears in large contests.

In our baseline model, we assume that the agents are symmetric, entry into the contest is cost-
less, and that the agents are (weakly) risk-averse. To illustrate the flexibility of our approach, 
we relax these assumptions in turn. We first consider agents with heterogeneous effort cost func-
tions. We derive the optimal contest for n = 2, and for n > 2 we provide results for the case when 
heterogeneity is sufficiently small. When agents have to incur a cost to enter the contest, we show 
that the optimal prize profile still features n − 1 equal top prizes but the lowest prize is poten-
tially positive, to give rents to the agents and incentivize entry. Finally, for risk-loving agents, the 
optimal prize structure becomes winner-take-all but the CSF still exhibits an intermediate degree 
of competitiveness.

The paper is organized as follows. The model is introduced in Section 2. Our main results 
are in Section 3. The extensions can be found in Section 4. Section 5 provides a more detailed 
overview of the related literature, and Section 6 concludes. All proofs are in the Appendix.

2. The model

2.1. Environment

There is a principal and a set of agents I = {1, . . . , n}, where n ≥ 2. Each agent i ∈ I chooses 
an effort level ei ≥ 0, incurs a cost of effort equal to c(ei), and obtains a monetary transfer ti ≥ 0. 
The payoff of agent i is

�i(ei, ti) = u(ti) − c(ei).

The utility function u :R+ → R is twice differentiable, strictly increasing, weakly concave, and 
satisfies u(0) = 0. The cost function c : R+ → R+ is twice differentiable, strictly increasing, 
strictly convex, and satisfies c(0) = 0, c′(0) = 0, and limei→∞ c′(ei) = ∞.

Denote the effort profile of all agents by e = (e1, . . . , en) ∈ E = Rn+ and the transfer profile 
by t = (t1, . . . , tn) ∈ T = Rn+. The payoff of the principal is

�P (e, t) =
n∑

i=1

ei −
n∑

i=1

ti .

That is, the principal maximizes the sum of efforts net of transfers.
After the agents have chosen their efforts, a signal s ∈ S is drawn according to an effort-

dependent probability measure ηe ∈ �S. The principal observes s but not e. We denote η =
(ηe)e∈E and call (S, η) the observational structure of the model. We do not impose any assump-
tions on the set of signals S or the stochastic signal-generating process η.3 The observational 
structure is assumed to be common knowledge.

A large range of applications and examples can be modeled by different observational struc-
tures. Perfect observability of effort is the special case where S = E and ηe is the Dirac measure 
on e. A second example is the classical moral-hazard setting where each agent’s effort ei pro-
duces a random output si such that Eηe [si] = ei (and therefore it does not matter whether a 

3 We do require the regularity condition that ηe(A) is a measurable function of e for each measurable subset A ⊆ S, to 
ensure that expected payoffs are well-defined.
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risk-neutral principal cares about effort ei , as we assume, or about output si). Our general obser-
vational structure also allows for stochastic outputs which are correlated across the agents like 
in Green and Stokey (1983) or Nalebuff and Stiglitz (1983). A third example is a setting where 
only an aggregate statistic of the effort profile becomes observable. For instance, suppose there 
are two agents and only the difference between their efforts but not the levels can be observed. 
This amounts to an observational structure where S = R and ηe is the Dirac measure on e1 − e2. 
One could also model the observation of ordinal performance ranks, or a blind review process 
where the individual efforts are anonymized.

2.2. Contests

A contest (y, π) is defined by a prize profile y and an allocation rule π . The prize profile 
y = (y1, . . . , yn) is w.l.o.g. assumed to satisfy y1 ≥ . . . ≥ yn ≥ 0. The allocation rule π deter-
mines the possibly random allocation of the prizes to the agents as a function of the realized 
signal s. Formally, π = (πk

i (s))i,k∈I,s∈S is a collection of allocation probabilities, where πk
i (s)

is the probability that agent i gets prize yk when the realized signal is s. For any fixed signal s, 
these allocation probabilities satisfy 

∑n
i=1 πk

i (s) = 1 for all k = 1, . . . , n (each prize is allocated 
with probability one) and 

∑n
k=1 πk

i (s) = 1 for all i = 1, . . . , n (each agent obtains a prize with 
probability one). In other words, the probabilities form a doubly stochastic matrix for any given 
s. By the Birkhoff-von Neumann theorem, each doubly stochastic matrix can be decomposed as 
a probability distribution over permutation matrices, which in our setting describe deterministic 
allocations of the prizes to the agents.4 Conversely, each probability distribution over permuta-
tion matrices generates a doubly stochastic matrix. This allows us to identify the allocation rule 
with a collection of doubly stochastic matrices, one for each signal realization.5

Given the fixed observational structure (S, η) and a contest (y, π), the probability that agent 
i wins prize yk when the effort profile is e can be calculated as

pk
i (e) = Eηe [πk

i (s)]. (1)

It follows that the winning probabilities in (1) also form a doubly stochastic matrix for any 
given effort profile e, because they are an average of doubly stochastic matrices. We refer to 
the collection of probabilities p = (pk

i (e))i,k∈I,e∈E as the contest success function (CSF). The 
incentives of the agents depend exclusively on the probabilities of winning the different prizes 
as a function of their efforts, and these are jointly determined by the allocation rule π chosen by 
the principal and the exogenously given distribution of the signals η. With perfect observability 
of effort, the distinction between π and p is not important. However, as we will see later, what 
the principal can implement will depend on the extent to which she can influence the CSF p by 
choice of the allocation rule π .

Example 1. Suppose efforts can be perfectly observed (s = e with probability one). Assume that 
there are two agents, so that the prize profile is y = (y1, y2) with y1 ≥ y2 ≥ 0. If the principal 
designs an all-pay contest, we obtain for i, j = 1, 2 with i 	= j ,

4 The decomposition is not necessarily unique, but this is not relevant in our setting since the agents care only about 
their own probabilities of winning each prize.

5 Similar to before, we require the regularity condition that each πk(s) is a measurable function of s.

i

5
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π1
i (e) = p1

i (e) =

⎧⎪⎨
⎪⎩

1 if ei > ej ,

1/2 if ei = ej ,

0 if ei < ej .

If the principal designs a Tullock contest with impact function f , we have

π1
i (e) = p1

i (e) =
⎧⎨
⎩

f (ei)

f (ei) + f (ej )
if max{ei, ej } > 0,

1/2 else.

In this interpretation, the noise in the prize allocation is deliberately designed by the principal 
and not the consequence of imperfect observation of efforts. �
Example 2. Now suppose the efforts of the two agents are imperfectly observed, and s =
(s1, s2) ∈ R2. Assume the principal designs an all-pay allocation rule as a function of the sig-
nals,

π1
i (s) =

⎧⎪⎨
⎪⎩

1 if si > sj ,

1/2 if si = sj ,

0 if si < sj .

The induced CSF then depends on the shape of the observational noise. If, for example, si =
ei + εi and the noise terms εi are i.i.d. Gumbel with mean zero, then it follows like in the well-
known logit model (McFadden, 1974) that

p1
i (e) = exp(ei/β)

exp(ei/β) + exp(ej /β)

for some β > 0. In this interpretation, a specific Tullock CSF arises as a consequence of im-
perfect observation of efforts. See Jia et al. (2013) for similar results for various other noise 
structures. �

Given a contest, the agents choose their efforts simultaneously, anticipating that the prizes y
will be distributed according to the CSF induced by the observational structure and the allocation 
rule. Let σi ∈ �R+ be agent i’s mixed strategy and let ei ∈R+ represent pure strategies. Strategy 
profiles are given by σ = (σ1, ..., σn) ∈ (�R+)n. We also use σ to denote the induced product 
measure in �E. We say that a contest (y, π) implements a strategy profile σ if it satisfies

�i(σi, σ−i | (y,π)) ≥ �i(σ
′
i , σ−i | (y,π)) ∀σ ′

i ∈ �R+,∀i ∈ I, (IC-A)

where �i(σ | (y, π)) = Eσ

[∑n
k=1 pk

i (e)u(yk)
] − Eσi

[c(ei)] and the winning probabilities are 
given by (1). The principal chooses a contest (y, π) which implements a strategy profile σ in 
order to maximize her expected payoff. Formally, the principal’s problem is given by

max
σ,y,π

�P (σ | (y,π)) s.t. (IC-A), (P)

where �P (σ | (y, π)) = Eσ

[∑n
i=1 ei

]−∑n
i=1 yi . A contest (y∗, π∗) is optimal if there exists 

σ ∗ such that (σ ∗, (y∗, π∗)) solves (P).
6
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3. Optimal contests

3.1. General properties

The level of effort that the principal can induce will depend on the observational structure. 
As a simple illustration of this point, consider the case when the signals are independent of the 
effort profile. In this case, since effort is costly and does not affect the distribution of signals 
and prizes, the agents would always choose zero effort and the principal optimally decides not to 
award any positive prizes. However, when signals are sufficiently informative about efforts, the 
principal will be able to design contests which generate strictly positive payoffs.

In this subsection, we derive general conditions which are sufficient for a contest to be op-
timal. These conditions are stated in terms of the prize profile and the induced CSF. Whether 
it is possible for the principal to generate a CSF satisfying these conditions will depend on the 
exogenously given observational structure. In the subsequent subsections, we will study various 
observational structures, check whether the sufficient conditions can be attained, and explore the 
shape of the required allocation rule π .

Consider the prize profile y∗ = (x∗/(n − 1), . . . , x∗/(n − 1), 0) where the total sum x∗ is 
characterized by

u′
(

x∗

n − 1

)
= c′

(
c−1

(
n − 1

n
u

(
x∗

n − 1

)))
.

Profile y∗ features n − 1 equal positive prizes and a single zero prize. An agent participating 
in any contest (y∗, π) only cares about the aggregate probability of obtaining any one of the 
identical positive prizes. Denote this probability by p−n

i (e) = 1 − pn
i (e). Furthermore, let the 

effort level e∗ be given by

e∗ = c−1
(

n − 1

n
u

(
x∗

n − 1

))
.

We will denote by (ei, e∗−i ) the effort profile where agent i chooses effort ei and all agents j 	= i

choose effort ej = e∗. Letina et al. (2020) have shown that – in a setting with perfect observability 
of effort – optimal contests feature the prize profile y∗ and implement the symmetric effort profile 
(e∗, . . . , e∗). The resulting maximal payoff �∗ = ne∗ − x∗ under perfect information is clearly 
an upper bound on the principal’s payoff with an arbitrary observational structure. Our following 
proposition gives conditions under which a contest achieves this upper bound even with imperfect 
observability of effort and is thus optimal.

Proposition 1. Fix an arbitrary observational structure (S, η). If a contest (y, π) has the prize 
profile y = y∗ and the CSF satisfies, for each i ∈ I ,

(i) p−n
i (e∗, e∗−i ) = n−1

n
, and

(ii) p−n
i (ei, e∗−i ) ≤ c(ei )

u(x∗/(n−1))
, ∀ei 	= e∗,

then it is optimal, because it implements (e∗, . . . , e∗) and achieves the payoff bound �∗.

To achieve optimality, property (i) of the proposition requires that in equilibrium all agents 
must receive a positive prize with equal probability (n − 1)/n. Note that, if the observational 
7
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Fig. 1. Probability that agent i wins a positive prize when deviating from e∗ , calculated for n = 2 and u(t) = √
t and 

c(e) = e2.

structure (S, η) is not symmetric across agents, the allocation rule π must compensate that asym-
metry. Property (ii) specifies how precisely the CSF has to discriminate between different levels 
of effort in order to achieve the optimum. If an agent deviates to some effort ei 	= e∗, the prob-
ability of winning a positive prize has to remain below a certain boundary. This boundary is a 
continuous and strictly increasing function of the deviation effort, and therefore optimal CSFs 
must have an intermediate level of precision. They must be precise enough to detect and punish 
downward deviations sufficiently strongly, but they are not allowed to be too precise in detecting 
and rewarding upward deviations.

This insight is illustrated in Fig. 1 for the case of two agents. The top left panel shows the 
probability that the deviating agent i wins the positive prize with a linear Tullock CSF where 
p1

i (e) = ei/(ei + ej ). As noted before, this probability could be due to deliberate randomization 
of the principal and/or noise in the observation of efforts. The linear Tullock CSF is not suffi-
ciently precise in punishment because downward deviations from e∗ do not lead to a sufficient 
decrease in the winning probability which would deter the deviation. The top right panel shows a 
standard all-pay CSF, which the principal can induce if she observes at least the ordinal ranking 
of the agents’ efforts. This all-pay CSF has the opposite problem; it is too precise in rewarding 
upward deviations because small upward deviations lead to a too large increase in the probability 
of winning, making such deviations profitable. The bottom left panel shows an all-pay CSF with 
a cap at e∗. It perfectly discriminates any downward deviation but does not discriminate upward 
8
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deviations, and hence is feasible whenever the principal can detect downward deviations from the 
equilibrium effort with probability one. In a setting with perfect observability of efforts, Letina et 
al. (2020, Theorem 3) have shown that an all-pay contest with a cap at e∗ is optimal. However, as 
Proposition 1 and Fig. 1 suggest, there are other CSFs which can achieve the optimum. We will 
demonstrate that some of these CSFs are feasible even with quite imprecise or coarse observation 
of efforts.

Fang et al. (2020) have shown that reducing inequality in the prize profile is beneficial for the 
principal in a contest with an all-pay CSF, which only admits mixed-strategy equilibria. Reduc-
ing prize inequality reduces dispersion of efforts chosen in the mixed equilibrium, and random 
effort choice is inefficient due to convex effort costs. Fang et al. (2020) therefore conclude that it 
is optimal in all-pay contests to move towards the least unequal prize profile with n − 1 identical 
positive prizes and one prize of zero (see also Glazer and Hassin, 1988; Letina et al., 2020). Gen-
eralizing this insight by Fang et al. (2020), our Proposition 1 shows that a minimally competitive 
prize profile y∗ is optimal also when the CSF is not exogenously fixed to be all-pay. The general 
message of Fang et al. (2020) is that “turning up the heat” in an all-pay contest increases the 
dispersion of the equilibrium effort distributions and decreases the expected equilibrium effort 
that agents exert. As a consequence, the principal should turn down the heat by using the mini-
mally competitive prize profile. Our result in Proposition 1 shows that it is optimal to turn down 
the heat of the contest even more, by moving away from the perfectly discriminatory and thus 
very competitive all-pay CSF towards less discriminatory and hence less competitive CSFs. The 
optimal precision of the CSF is such that dispersion of equilibrium efforts vanishes entirely and 
a pure-strategy equilibrium emerges.

3.2. Perfect observability of effort

Perfect observability of effort is a special case of the observational structure (S, η) where 
S = E and ηe is the Dirac measure on e. When effort is perfectly observable, we now show 
that, in addition to the all-pay contest with a cap at e∗, a properly designed Tullock contest can 
also achieve the optimum. This result is interesting for at least three reasons: (i) it shows that 
the optimum can be achieved by a smooth and strictly increasing contest success function, (ii) 
Tullock CSFs can be naturally ordered by a precision parameter which will provide insights 
about the optimal intensity of competition in contests, and (iii) it shows that a commonly studied 
contest format is optimal.

Tullock contests with n agents and a single positive prize are typically characterized by an 
allocation function of the form

π1
i (e) = p1

i (e) = f (ei)∑
j∈I f (ej )

. (2)

The impact function f is continuous, strictly increasing and satisfies f (0) = 0 (Skaperdas, 1996). 
If all agents exert zero effort, each of them wins with equal probability. With more than one 
positive prize, the contest success function can be applied in a nested fashion (see Clark and 
Riis, 1996).6 The first prize is allocated according to (2) among all n agents, the second prize is 
allocated according to (2) restricted to those n − 1 agents who have not received the first prize, 
and so on. To write this in our notation, let P k

i denote the set of all permutations τ : I → I which 

6 For sufficient conditions guaranteeing existence and uniqueness of pure strategy equilibria in nested Tullock contests 
see Fu et al. (2021b, 2022).
9
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satisfy τ(i) = k. When all efforts are strictly positive, a nested Tullock contest then gives rise to 
the allocation probabilities

πk
i (e) = pk

i (e) =
∑
τ∈Pk

i

n∏

=1

[
f (eτ−1(
))∑n

j=
 f (eτ−1(j))

]
. (3)

The extension to the case where some efforts are zero is straightforward.

Proposition 2. Suppose efforts are perfectly observed. Then, the nested Tullock contest is optimal 
if the prize profile is y = y∗ and the CSF is given by (3) with

f (ei) = c(ei)
r∗(n) and r∗(n) = n − 1

Hn − 1
,

where Hn =∑n
k=1 1/k is the n-th harmonic number.

To prove Proposition 2, we employ a novel approach that is of independent interest and could 
prove useful in other settings. Instead of showing directly that no profitable deviation exists, we 
fix an arbitrary deviation and ask for which levels of the Tullock exponent r this deviation is 
not profitable. Using this approach, we can show that when r ≥ r∗(n), there are no profitable 
deviations from the equilibrium effort to lower effort levels. The inequality r ≥ r∗(n) reflects 
that the CSF must be sufficiently precise to deter downward deviations. When r ≤ r∗(n), there 
are no profitable deviations to higher effort levels. The inequality r ≤ r∗(n) reflects that the 
CSF cannot be too precise, as otherwise upward deviations would become attractive. Altogether, 
the optimal Tullock contest features the intermediate precision parameter r∗(n) and therefore 
an intermediate intensity of competition.7 This is illustrated in Fig. 2, again for the case of two 
agents. The optimal Tullock CSF is smooth and tangential to our upper bound from Proposition 1
at the equilibrium effort.

If there are two agents and hence one positive prize, we obtain r∗(2) = 2. It is well-known that 
this is the largest value of the parameter r for which the two-agent Tullock contest still has a pure-
strategy equilibrium. This property of the optimal contest carries over to n > 2. The precision 
parameter r∗(n) is such that any increase in r would destroy the pure-strategy equilibrium.8

For the case of n risk-neutral agents and cost functions of the monomial form, Schweinzer 
and Segev (2012) show that there is a continuum of nested Tullock contests that all generate 
the first-best pure-strategy efforts, for a given prize sum. That continuum is parametrized by the 
precision parameter r ∈ [n/(n − 1), (n − 1)/(Hn − 1)] and the prizes are concentrated on the top 
as much as possible so that the pure-strategy equilibrium still exists. Considering their special 
case, where the first-best is achievable due to risk-neutrality of the agents, this multiplicity of 
optimal contests of course carries over to our setting. In the general case with risk-averse agents, 
where the first-best is not achievable, the optimal contest described in Proposition 2 always has 

7 Readers familiar with the Tullock form may be surprised that f depends on the cost function c. However, standard 
formulations of the Tullock contest assume linear cost functions, which is then equivalent to a reformulation of our 
model where agents choose expenditure levels c(ei ) directly. It may also appear that an all-pay contest with a cap is more 
“detail-free” than the optimal Tullock contest, since the function f depends on c. However, this is not the case, as the 
level of the cap in the optimal all-pay contest also depends on c (as does the optimal prize profile y∗).

8 This is also similar to the finding in Morgan et al. (2022), who show that in a large Lazear-Rosen tournament, the 
optimal level of precision of the CSF is such that the agents are indifferent between dropping out of the contest and 
participating.
10
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Fig. 2. Probability that agent i wins a positive prize when deviating from e∗ in the optimal Tullock contest, calculated 
for n = 2 and u(t) = √

t and c(e) = e2.

the highest possible precision parameter r∗(n) = (n − 1)/(Hn − 1) from along the continuum. 
A higher r would make the contest too competitive and induce wasteful mixing in equilibrium. 
A lower r would induce less effort, and, in contrast to Schweinzer and Segev (2012), these 
weaker incentives cannot be compensated by a more unequal prize profile when the agents are 
risk-averse.

As already mentioned by Schweinzer and Segev (2012), the randomness parameter r∗(n) is 
strictly increasing in n and satisfies limn→∞ r∗(n) = ∞. In other words, the optimal contest 
becomes more precise and more competitive as n grows, and it approximates an all-pay contest 
in the limit when the contest becomes large.9

3.3. Imperfect observability of effort: some instructive cases

In this section, we look for optimal contests when observability of effort is imperfect. We 
first consider several cases where our upper payoff bound can be achieved despite the imperfect 
observation. When that is the case, Proposition 1 can be used to greatly simplify the identification 
of optimal contests. Then, we consider one case in which observation is so imperfect that the 
upper payoff bound can no longer be achieved, and use it to show how our approach can be 
fruitful even in such environments.

3.3.1. Upper payoff bound achievable
The most common way in which imperfect observation is modeled in the literature is to as-

sume that a random shock is added to the effort that an individual agent exerts. Formally, we 
say that the observational structure (S, η) features i.i.d. additive noise if, for each agent i ∈ I , 
the principal observes a signal si = ei + εi , where the noise terms εi are i.i.d. draws from a 
distribution with cumulative distribution function F and support contained in an interval [ε, ε].

Given this noise structure, we can derive a condition on the distribution F under which the 
principal can choose an allocation function which generates a CSF satisfying the optimality 

9 Our Appendix A.3 contains a formal proof of that claim. See Siegel (2009) for a general treatment of all-pay contests 
and Olszewski and Siegel (2016) for large contests.
11
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Fig. 3. Probability that agent i wins a positive prize when deviating from e∗ in the optimal all-pay contest with a cap for 
i.i.d. additive noise εi ∼ U [−0.1, 0.1], calculated for n = 2 and u(t) = √

t and c(e) = e2.

conditions in Proposition 1, and we can study properties of the optimal CSF. To this end, denote 
by F− the left-continuous limit of F , i.e., F−(x) = limy↗x F (y) for all x.

Proposition 3. Suppose efforts are observed with i.i.d. additive noise. If

F−(ε + e∗ − e) ≥ 1 − c(e)

c(e∗)
, ∀e ∈ [0, e∗], (4)

then a contest with prize profile y = y∗ and an all-pay allocation rule with a cap at s̄ = e∗ + ε

is optimal.

Any agent who exerts the equilibrium effort e∗ will generate a signal si ≥ s̄, which is at 
or above the cap. An agent who unilaterally deviates downwards to ei ∈ [s̄ − ε, e∗) may still 
generate a signal at or above the cap with positive probability and thus win a prize with positive 
probability. In order for (e∗, . . . , e∗) to be an equilibrium, the observational structure must be 
precise enough so that such downwards deviations are detected and punished with sufficiently 
high probability. Proposition 3 provides exactly this condition on the distribution of observational 
noise. Upwards deviations are never rewarded because of the cap, like in the case of an all-pay 
contest with a cap under perfect observability. Fig. 3 illustrates this for the case of two agents. 
The optimal CSF is a continuous modification of the previous all-pay contest with a cap, and it 
is feasible despite imperfect observation of downwards deviations from equilibrium.

Perfect observation of efforts is still a special case to which Proposition 3 applies, by setting 
ε = ε = 0. Thus, the optimality of an all-pay contest with a cap for perfectly observable efforts 
by Letina et al. (2020) is a corollary of Proposition 3.

The following corollary demonstrates a straightforward application of the condition in Propo-
sition 3.

Corollary 1. Suppose εi is uniformly distributed and � ≡ ε̄ − ε < e∗. Then, the condition in 
Proposition 3 is satisfied if � ≤ c(e∗)/c′(e∗).

The i.i.d. additive noise setting of Proposition 3 is by far not the only case in which optimal 
contests can be derived using our Proposition 1. We illustrate this with two additional examples. 
12
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Fig. 4. Probability that agent i wins a positive prize when deviating from e∗ in Examples 3 and 4, calculated for u(t) = √
t

and c(e) = e2.

In the first example, the observational noise has an unbounded support and can be correlated 
across the agents. In the second example, observation is not noisy, but only a coarse aggregate 
statistic of the effort profile can be observed.

Example 3. Consider a setting with two agents and effort cost function c(ei) = γ e
β
i for some 

γ > 0 and β > 1. The observational noise takes a multiplicative or log-additive form: when 
agent i exerts effort ei , then a signal si = eiri is generated, where the pair (r1, r2) follows a 
bivariate log-normal distribution,

(r1, r2) ∼ lnN
[(

ν1
ν2

)
,

(
σ 2

1 σ12

σ12 σ 2
2

)]
.

We show in Appendix A.6 that the principal can choose an allocation rule which generates a CSF 
satisfying the conditions in Proposition 1 whenever the inequality

σ 2
1 + σ 2

2 − 2σ12 ≤ 2/(πβ2)

holds, which again just requires that the observational noise is not too large. The optimal contest 
allocates the positive prize to agent 1 with a probability that is increasing in the ratio of observed 
signals s1/s2. More precisely, agent 1 receives the prize when s1/s2 is larger than a log-normally 
distributed random number, and conversely for agent 2. Similar contests with multiplicative noise
have been studied in the literature.10 With this construction, the overall randomness in the prize 
allocation can be adjusted to the appropriate interior level which guarantees optimality. This is 
illustrated in the left panel of Fig. 4.

Example 4. Consider a setting with two agents in which the difference s = e1 − e2 can be ob-
served (and perfectly so), but no additional information about the effort profile. We show in 
Appendix A.6 that, despite this strong constraint, the principal can always choose an allocation 
rule which generates a CSF satisfying the conditions in Proposition 1. The optimal contest allo-
cates the positive prize to agent 1 with a probability that is increasing in the observed difference 

10 See, for instance, Jia et al. (2013). We are not aware of an explicit treatment of the multiplicative log-normal noise 
model in the literature, but of course it can be transformed into a specific probit model with additive normal noise (Dixit, 
1987).
13
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s. More precisely, agent 1 receives the prize whenever s is larger than a uniformly distributed 
random number, and conversely for agent 2. Such contests with additive noise have also been 
studied in the literature.11 An appropriate level of randomness in the allocation rule again en-
sures that the contest has the optimal intermediate level of precision. This situation is illustrated 
in the right panel of Fig. 4.

3.3.2. Upper payoff bound not achievable
Of course, Proposition 1 is not always applicable. One example is the extreme case of unin-

formative signals discussed in Section 3.1. More generally, it will be impossible to implement 
the effort profile (e∗, . . . , e∗) when the signals on which the prize allocation can be conditioned 
are too noisy or too coarse.

To illustrate that our approach can still be fruitful in such environments, consider the follow-
ing example of an observational structure. Given the agents’ effort profile e ∈ E, the principal 
observes a signal s ∈ S = E which fully reveals the truth (s = e) with probability ω ∈ [0, 1]; 
with the remaining probability, the signal is pure noise, generated by a fixed probability mea-
sure η̂ ∈ �E that is independent of effort. This “truth-or-noise” signal structure has been studied 
before in the information economics literature (e.g., Johnson and Myatt, 2006; Lewis and Sap-
pington, 1994; Shi, 2012). It has the advantage of providing a measure of the informational 
friction of the environment. By varying the value of ω, we can cover both the cases of perfect 
observability (ω = 1) and zero observability (ω = 0).

The possibility of pure noise prohibits the principal from achieving the same payoff as under 
perfect observability. To see why, note that the agents receive zero rents in optimal contests 
with perfect observability. With pure noise, the principal has to leave some rents to the agents, 
because the noise implies that some agents must win a prize with positive probability even when 
they deviate to zero effort and have zero costs. The optimal contest can still be derived using 
a modified approach. Let us define the prize profile yω = (xω/(n − 1), ..., xω/(n − 1),0) yω =
(xω, . . . , xω,0) for every ω ∈ [0, 1], where the total sum xω is uniquely pinned down by

u′
(

xω

n − 1

)
= c′

(
c−1

(
ω

(n − 1)

n
u

(
xω

n − 1

)))
.

When ω > 0, the prize profile yω features n − 1 equal positive prizes and a single zero prize; for 
ω = 0, all prizes are zero. It again suffices to describe any contest (yω, π) by its probability of 
assigning one of the identical positive prizes to each agent i given the signal realization s ∈ E, 
which we write as π−n

i (s) = 1 − πn
i (s). Further, let the effort level eω be given by

eω = c−1
(

n − 1

n
u

(
xω

n − 1

))
.

We will use (ei, eω−i ) to denote the effort profile where agent i chooses effort ei and all agents 
j 	= i choose effort ej = eω.

Proposition 4. Suppose the observational structure is truth-or-noise. A contest (y, π) is optimal 
if the prize profile is y = yω and the allocation rule π satisfies, for each i ∈ I ,

11 See, for instance, Lazear and Rosen (1981) and Hirshleifer (1989). Che and Gale (2000) provide a general treatment 
of contests with additive uniform noise. They show that these contests often do not have a symmetric pure-strategy 
equilibrium. The uniform distribution used in our construction is chosen precisely to avoid this problem.
14



I. Letina, S. Liu and N. Netzer Journal of Economic Theory 213 (2023) 105616
(i) π−n
i (eω, eω−i ) = n−1

n
, and

(ii) π−n
i (ei, eω−i ) ≤ c(ei )

u(xω/(n−1))
, ∀ei 	= eω.

Proposition 4 implies the existence of an optimal contest – one can always construct an allo-
cation rule π that satisfies both conditions (i) and (ii). The proposition also subsumes the optimal 
contest in Letina et al. (2020) as a special case, because yω = y∗ and eω = e∗ when ω = 1. 
However, when ω < 1, the principal can never be sure whether an agent is working or shirking, 
and has to leave a strictly positive rent to the agents if she wants to incentivize them to work. 
Although a contest with n − 1 equal positive prizes and a single zero prize remains optimal, the 
principal finds it desirable to limit the agents’ information rents by providing a lower incentive 
power (xω < x∗) and asking them to exert less effort than before (eω < e∗).

3.4. Second-best payoffs

In this subsection, we compare the principal’s payoffs when using an optimal contest with the 
second-best payoffs, where second-best is defined as what the principal can achieve by using an 
arbitrary incentive mechanism without being constrained to the class of contests, but still under 
a possibly imperfect observational structure. Can the principal do better by not using a contest? 
The answer to this question depends crucially on the observational structure, as we show by the 
following three examples.

Example 5. There are observational structures for which an optimal contest is second-best, so 
that the restriction to the class of contest mechanisms comes without loss for the principal. Con-
sider an example with two agents and two signals, I = S = {1, 2}. The signals are generated by 
the probabilities

ηe({i}) =

⎧⎪⎨
⎪⎩

1 if ei < ej = e∗,
0 if ej < ei = e∗,
1/2 otherwise,

for i, j = 1, 2 with i 	= j . In words, if one agent deviates downward from (e∗, e∗), this agent is 
announced. In all other cases, one of the two agents is announced randomly.

Consider the contest (y, π) with y = (x∗, 0) and

π1
i (s) =

{
1 if s = j,

0 if s = i,

so agent i wins the positive prize if and only if the signal announces the other agent. It is easy to 
see that this contest implements (e∗, e∗). Hence it is an optimal contest and generates an average 
payoff per agent of size e∗ − x∗/2 for the principal.

We claim that this is also the highest payoff that the principal can achieve when using more 
general incentive mechanisms. For the given observational structure, a general mechanism is 
described by � = {(t̄i , t i )}i=1,2, where t̄i (t i ) is transfer that the principal pays to agent i when 
the signal is s = j (s = i).12 Note that an effort level e′ > e∗ can never be a best response for an 

12 It is without loss to restrict attention to deterministic transfers given each signal, because the agents are weakly 
risk-averse and the principal is risk-neutral.
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agent, irrespective of what strategy the other agent is playing, because reducing the effort slightly 
saves effort costs without changing the distribution of the signal. By the same argument, an effort 
level 0 < e′ < e∗ can never be a best response. Hence we can restrict attention to effort strategies 
which are binary distributions over {0, e∗} and denote by σi the probability that agent i chooses 
e∗. Given σj , agent i weakly prefers e = e∗ over e = 0 if and only if(

1 − σj

2

)
· u(t̄i ) + σj

2
· u(ti) − c(e∗) ≥ 1 − σj

2
· u(t̄i ) + 1 + σj

2
· u(ti),

or, equivalently, u(t̄i) −u(t i) ≥ c(e∗)/2 = u(x∗), which is thus a necessary condition to generate 
any positive effort in equilibrium. The most cost-effective way to meet this inequality is to set t̄i =
x∗ and t i = 0. But then it is clear that the principal cannot do better with an arbitrary mechanism 
than with the optimal contest. �
Example 6. There are other observational structures for which the principal can do better by not 
using a contest. Consider the case of n agents and perfect observability of effort. In that case, 
the principal can treat each agent separately and pay a monetary transfer if and only if the agent 
exerts a desired effort level. Transfers only have to compensate agents for their cost. It is thus 
possible to achieve the first-best solution. The first-best effort is

eFB = c−1
(
u
(
xFB

))
,

and the first-best transfer xFB to an agent is defined by the first-order condition

u′ (xFB
)

= c′ (c−1
(
u
(
xFB

)))
.

Denote by �FB = eFB − xFB the first-best payoff per agent for the principal. It is easy to show 
that e∗ ≤ eFB and e∗ − x∗/n ≤ �FB , and the inequalities are strict whenever u is strictly con-
cave. �
Example 7. There are also examples where the principal can do better than with a contest even 
though the first-best is not achievable. Suppose that each agent’s effort is perfectly observable up 
to a cap ē with e∗ < ē < eFB , but the individual signal remains capped at ē for all higher effort 
levels. It is immediate to see that the first-best is not achievable. However, it is possible to elicit 
the effort ē from each agent by paying the transfer u−1 (c (ē)) if the signal indicates that the effort 
was at least ē and zero otherwise. This generates a payoff for the principal that is strictly larger 
than with a contest. �

Giving a general answer to the question which share of second-best payoffs the principal can 
achieve by using a contest is impeded by the fact that we (and decades of literature) do not know 
the second-best for all conceivable observational structures, many of which are untractable. We 
now show, however, that the problem becomes less pressing when the number of agents is large, 
because the contest payoffs converge to the first-best as n grows.

Let (Sn, ηn)n∈N be a sequence of observational structures such that there exists a contest 
achieving our payoff bound when the number of agents is n and the observational structure is 
given by (Sn, ηn), for every n ∈ N . Examples include perfect observation of each agent’s effort 
or i.i.d. additive noise as characterized in Proposition 3. Denote by x∗

n the optimal sum of prizes 
in the contest when there are n agents, defined as before, and by e∗

n the corresponding individual 
effort elicited by an optimal contest. Let �∗

n = e∗
n − x∗

n/n denote the average payoff per agent 
for the principal.
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Fig. 5. Share of first-best payoffs with an optimal contest.

Proposition 5. limn→∞ e∗
n = eFB and limn→∞ �∗

n = �FB .

Similar arguments can be made about risk-aversion. For a parameterized example where the 
agents’ payoffs are �i(ei, ti ) = tαi − e2

i , Fig. 5 depicts the percentage of first-best payoffs that 
the principal can achieve with an optimal contest as a function of the risk-aversion parameter α
and for several values of n. As α → 1 the share of first-best payoffs that the principal can capture 
converges to one. Even for a modest number of agents, the principal obtains a substantial share of 
the first-best by running an optimal contest. For instance, already for n = 6 the principal captures 
more than 90% of the first-best payoffs for any α ∈ (0, 1).

4. Extensions

4.1. Heterogeneous agents

Our framework can also incorporate heterogeneity in the abilities of the agents. Consider a 
variation of the model in which the payoff of agent i is given by

�i(ei, ti) = u(ti) − ci(ei),

where the cost functions ci satisfy our previous assumptions but can be different across agents. 
For the case of two agents, we provide a result that generalizes Proposition 2 (which assumes 
perfect effort observability) to arbitrary cost functions.

Proposition 6. Suppose efforts are perfectly observed and n = 2. Then, for any profile of cost 
functions (c1, c2), the following contest is optimal:

(i) The prize profile is y∗ = (x∗, 0) where x∗ is given by

(x∗, e∗
1, e∗

2) ∈ argmax
x,e1,e2≥0

e1 + e2 − x s.t. c1(e1) + c2(e2) = u(x).

(ii) The CSF is of the Tullock type (2) with individual-specific impact functions

fi(ei) = ci(ei)
r∗
i

c (e∗)r∗
i −1

and r∗
i = 1 + ci(e

∗
i )

cj (e
∗)

, ∀i = 1,2, j 	= i.

i i j
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For the special case where c1(·) = c2(·) = c(·), we obtain e∗
1 = e∗

2 = e∗ and r∗
i = 2, so that 

the optimal impact functions are (up to an irrelevant multiplicative constant) given by fi(ei) =
c(ei)

2, exactly like in Proposition 2 for n = 2. With asymmetric cost functions, by contrast, 
the optimal impact functions must be individual-specific.13 The implemented effort levels will 
typically also not be identical for the two agents. Consequently, the winning probabilities cannot 
be identical in equilibrium, because the agents have to be compensated for different effort costs. 
That this kind of biasing of a contest is beneficial when agents are heterogeneous is well-known 
(see e.g. Ewerhart, 2017; Franke et al., 2018). Our result establishes the form of biasing that is 
optimal when the principal is not restricted to a specific class of CSFs.

That the principal would optimally choose a zero prize yn = 0 continues to hold with n > 2
asymmetric agents (see Lemma 7 in the Appendix). Generalizing the optimality of n − 1 equal 
positive prizes faces the difficulty that some agents may have substantially higher effort costs 
in equilibrium than others, and cannot be compensated for their costs even if they win one of 
the identical prizes for sure. Our next result rests on the insight that effort profiles for which 
the agents’ costs are so strongly heterogeneous cannot be optimal if their cost functions are not 
strongly heterogeneous. To formalize this idea, we fix any sequence of cost function profiles 
(cm

1 , . . . , cm
n )m∈N such that, for each i ∈ I , the sequence (cm

i )m∈N converges uniformly to a 
common cost function c as m → ∞.

Proposition 7. Suppose efforts are perfectly observed and let (cm
1 , . . . , cm

n ) → (c, . . . , c) uni-
formly. Then, there exists m ∈ N such that for all m ≥ m, a contest with n − 1 equal positive 
prizes and one zero prize is optimal.

The optimality of a minimally competitive prize profile is robust to heterogeneity even with 
n > 2 agents, as long as the heterogeneity is not too large. Again, an optimal contest will typically 
ask for different effort levels from different agents, and allocates the zero prize with non-identical 
probabilities across the agents in equilibrium. While Proposition 7 only states the existence of an 
optimal contest with n − 1 identical prizes, it is easy to show that those prizes and the optimal 
effort levels are characterized by a generalized version of the optimization problem in part (i) of 
Proposition 6, namely

(x∗, e∗) ∈ argmax
x,e

n∑
i=1

ei − x s.t.
n∑

i=1

ci(ei) = (n − 1)u

(
x

n − 1

)
.

Given the complexity of the problem, we leave the question whether a suitably defined asym-
metric nested Tullock contest can achieve the optimum, and the possible extensions to imperfect 
effort observation, to future research.

4.2. Costly entry

Often, simply participating in a contest is costly. For example, applying for a research grant 
requires an investment of time and effort to understand the rules and requirements. Furthermore, 
these costs are likely to be agent-specific and, from the principal’s point of view, uncertain. The 

13 See, for example, Cornes and Hartley (2005) for an equilibrium analysis of Tullock contests with individual-specific 
impact functions. Sahm (2022) studies the optimal choice of the Tullock exponent r with heterogeneous agents under the 
constraint that the contest must be symmetric.
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literature has studied such situations but typically restricts the analysis to a specific class of 
CSFs (e.g., Fu et al., 2015; Liu and Lu, 2019; Morgan et al., 2012). This section shows how our 
generalized approach to contest design can be extended to settings with costly entry.

We again restrict attention to the case of perfectly observable efforts. Suppose that each of 
the n agents has a private entry cost zi ≥ 0 which is independently drawn according to some 
common cumulative distribution function G. This cost is assumed to be additive to the agents’ 
previous payoff functions. Each agent observes his entry cost and decides whether to enter the 
contest or not. The set of entrants then becomes observable to everyone. The sunk entry cost zi is 
irrelevant after the entry decision. Furthermore, we require contests to be anonymous, so that an 
agent’s name i is also irrelevant. This allows us to denote by Im = {1, . . . , m} the set of agents 
in the contest for each positive number of entrants m ≤ n and to drop the index i from the active 
agents’ payoff functions. The corresponding set of possible effort profiles is Em = Rm+.

The principal specifies the rules of the contest in advance, for each positive number of entrants 
m ≤ n. Thus, a contest ((ym, πm))m=1,...,n describes for each m

(i) a prize vector ym = (ym
1 , ..., ym

m) ∈ Rm+ with ym
1 ≥ . . . ≥ ym

m , and

(ii) anonymous allocation probabilities πm = (π
m,k
i (e))i,k∈Im,e∈Em .

We restrict attention to the implementation of symmetric strategy profiles characterized by 
(z̄, e1, . . . , en): each agent chooses to participate in the contest if and only if zi ≤ z̄ for some 
common cutoff z̄ ≥ 0, and when m agents join the contest, each active agent i ∈ Im chooses the 
same effort level em ≥ 0.

If an agent is active and chooses effort e in a contest with m participants while all other m − 1
participants are choosing the effort level em, then he will obtain the expected payoff

�m
(
e, em

−i | (ym,πm)
)=

m∑
k=1

π
m,k
i

(
e, em

−i

)
u(ym

k ) − c(e).

We say that a contest ((ym, πm))m=1,...,n implements (z̄, e1, . . . , en) if both of the following 
conditions are satisfied:

(i) �̄(m) ≡ �m
(
em, em

−i | (ym,πm)
)≥ �m

(
e, em

−i | (ym,πm)
)
, ∀e ∈R+ and m ∈ {1, ..., n},

(ii)
∑n

m=1

(
n−1
m−1

)
G(z̄)m−1(1 − G(z̄))n−m�̄(m) = z̄.

Condition (i) is simply the previous constraint (IC-A) applied to each possible number of en-
trants separately. Condition (ii) determines the cutoff z̄ at which an agent is indifferent between 
participating or not, anticipating that all other agents apply the same cutoff for their entry deci-
sion. The expected payoff of the principal is given by

�P (z̄, e1, ..., en | ((ym,πm))m=1,...,n)=
n∑

m=1

(
n

m

)
G(z̄)m(1 − G(z̄))n−m

[
mem −

m∑
k=1

ym
k

]
.

Our next result identifies two important characteristics of optimal contests.

Proposition 8. Suppose efforts are perfectly observed. Take any contest ((ym, πm))m=1,...,n that 
implements some (z̄, e1, ..., en). Then, there exists a contest ((ŷm, π̂m))m=1,...,n that yields a 
weakly higher expected payoff to the principal and implements (z̄, ê1, ..., ên) such that, for each 
m = 1, ..., n,
19



I. Letina, S. Liu and N. Netzer Journal of Economic Theory 213 (2023) 105616
(i) the prize profile satisfies ŷm
1 = . . . = ŷm

m−1 ≥ ŷm
m , and

(ii) the agents are indifferent between choosing the effort level êm and zero.

The proposition implies that the principal can without loss of generality restrict attention to 
contests which satisfy the conditions (i) and (ii). Such contests have m − 1 identical prizes, 
for each number of entrants m, which shows the robustness of our previous result. There is a 
difference to the case of a fixed number of agents, though. In the model without endogenous 
entry, the lowest prize in the optimal contest is always zero, the agents are indifferent between 
the equilibrium effort and an effort of zero, and consequently their expected payoff is zero. With 
endogenous entry this is not optimal – the principal has to leave some rents to the agents in order 
to incentivize costly entry. There are two ways in which the principal could do this, either by 
increasing the identical positive prizes but leaving the zero prize unchanged, or by increasing all 
prizes simultaneously, so that the agents are still indifferent between the equilibrium effort and 
an effort of zero. Condition (ii) reveals that the principal optimally uses the latter approach. This 
provides more insurance to the risk-averse agents who are harmed by the possibility of receiving 
the low prize.

4.3. Risk-loving agents

In our main model, we assumed that agents are either risk-neutral or risk-averse. This is in line 
with most of the contest theory literature. However, our approach can be equally well applied to 
contests with risk-loving agents.

Suppose that u is strictly convex (while keeping all other assumptions). For any prize sum 
x > 0, we define the effort level ex = c−1 (u(x)/n). As the next result shows, assuming risk-
loving agents changes our result on the optimal prize profile, which becomes winner-take-all, 
but leaves our result on the intermediate level of precision of the CSF unchanged.

Proposition 9. Fix an arbitrary observational structure (S, η). For any fixed prize sum x > 0, 
a contest (y, π) maximizes the principal’s payoff if the prize profile is y = (x, 0, ..., 0) and the 
CSF satisfies, for each i ∈ I ,

(i) p1
i

(
ex, ex

−i

)= 1
n

, and

(ii) p1
i (ei , ex

−i ) ≤ c(ei )
u(x)

, ∀ei 	= ex .

When the agents are risk-averse, the principal wants to provide the maximal degree of insur-
ance that is still compatible with incentives to provide effort, and this is achieved with n − 1
equal prizes. With risk-loving preferences, by contrast, the principal wants to provide the max-
imal degree of risk, as risk creates value for the agents, and this is achieved by allocating the 
entire budget to a single positive prize. The shape of the optimal CSF is driven by a different 
consideration. The competitiveness of the CSF must be chosen with the goal of inducing the 
highest possible pure strategy effort equilibrium, and this gives rise to an intermediate degree of 
competitiveness – or heat as Fang et al. (2020) call it – just like before. It can be achieved by 
appropriately choosing a cap in an all-pay contest, but other CSFs are also optimal.

Note that Proposition 9 holds for any exogenously fixed prize sum x > 0. The principal can 
then try to find the optimal prize sum by solving

max nc−1
(

u(x)
)

− x.

x∈R+ n
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Note, however, that a solution to this problem may not exist, because both c and u are strictly 
convex. Depending on their relative convexity, the objective function of the principal may not 
have a maximum. Of course, if the principal was budget-constrained, the optimal prize sum 
would then be equal to the maximal budget.

5. Related literature

A contest is described by two dimensions: the prize profile and the CSF. The contest design 
literature has typically treated the design of these two dimensions separately. We will first discuss 
existing results on the optimal prize profile,14 and then existing results on the optimal CSF.

For the class of Tullock CSFs, Clark and Riis (1998) show that, if a symmetric pure-strategy 
equilibrium exists for a winner-take-all (WTA) prize structure, then WTA is optimal. More gen-
erally, Schweinzer and Segev (2012) argue that prizes should be concentrated on the top as much 
as possible so that a pure-strategy equilibrium still exists, always under the assumption of risk-
neutral agents. Fu et al. (2015) focus on entry into Tullock contests and also show that a single 
prize can be optimal. Feng and Lu (2018) study a multi-battle Tullock contest and show that the 
optimal prize profile depends on the randomness of the CSF. In particular, when randomness is 
significant, WTA is optimal.

For Lazear-Rosen tournaments, Drugov and Ryvkin (2020b) characterize the optimal prize 
profile and show that the distribution of noise plays a crucial role. For light-tailed shocks, WTA 
is optimal, while with heavy-tailed shocks, more equal prize-sharing becomes optimal. For large 
Lazear-Rosen tournaments, Morgan et al. (2022) show that when the distribution of noise is 
optimally chosen (see below), any number of equal positive prizes is optimal.

For the class of all-pay CSFs, Fang et al. (2020) show that it is optimal to give equal positive 
prizes to all agents but one, who receives a zero prize. More generally, their message is that 
making an all-pay contest less competitive, by decreasing the dispersion in prizes, increases the 
effort that agents exert. When agents are heterogeneous in an all-pay contest, finding the optimal 
prize vector becomes difficult. Xiao (2016) shows that a WTA prize profile is in general not 
optimal. By studying large all-pay contests, Olszewski and Siegel (2020) are able to characterize 
the optimal prize profile under very general conditions and show that prize sharing is optimal in 
general. When agents have heterogeneous private types, Moldovanu and Sela (2001) show that 
WTA is optimal for weakly concave cost functions, but that multiple prizes can be optimal for 
convex cost functions.

In some settings, the principal can also assign punishments in addition to prizes. Punishments 
can be effective tools for incentivizing effort in all-pay contests, as shown by Moldovanu et al. 
(2012), Liu et al. (2018) and Liu and Lu (2021). Similar results for Tullock contests and Lazear-
Rosen tournaments can be found in Sela (2020) and Akerlof and Holden (2012), respectively.

Most of the papers in this literature assume risk-neutral agents. Risk-aversion makes more 
equal prize sharing better from the principal’s perspective, because it reduces the amount of 
risk to which the agents are exposed. This was shown by Glazer and Hassin (1988) for all-pay 
contests, Fu et al. (2021a) for Tullock contests, and Drugov and Ryvkin (2021) for Lazear-Rosen 
tournaments.

Instead of characterizing the optimal prize profile, several papers consider how changes in 
the CSF affect equilibrium effort, for given prizes. For Tullock contests, Fu et al. (2015) show 

14 For a survey on optimal prizes in contests see Sisak (2009).
21



I. Letina, S. Liu and N. Netzer Journal of Economic Theory 213 (2023) 105616
that increasing randomness leads to more entry into the contest, at the cost of potentially lower 
effort by the agents who enter. The optimal level of randomness trades off these effects. For two 
agents in a Tullock contest, Wang (2010) shows that increasing randomness can be an optimal re-
sponse to more heterogeneous agents. Drugov and Ryvkin (2020a) show that, as a Lazear-Rosen 
tournament becomes more noisy, equilibrium effort decreases. Morgan et al. (2022) analyze large 
Lazear-Rosen tournaments where noise is a random variable from the location-scale family. They 
vary the scale parameter (the randomness of the contest) and find that intermediate levels of ran-
domness are optimal. Olszewski and Siegel (2019) model college admissions as a large all-pay 
contest and show how treating students with similar results equally, in essence making the all-pay 
contest more random, can improve outcomes.

The contest theory literature has also developed foundations for various functional forms of 
the CSF (for a comprehensive survey, see Jia et al., 2013). Our results contribute to this literature 
by characterizing the family of CSFs that can implement the optimal outcome, with perfect or 
imperfect observability of effort.

The main contribution of our paper is to study jointly optimal choice of the prize profile and 
the CSF. More recently, Zhang (2021) has revisited the contest design problem with incomplete 
information. Like us, she also allows the principal to choose both the prize profile and the CSF. 
She provides a necessary and sufficient condition for WTA to be optimal and characterizes the 
optimal prize profile when this condition fails. The main difference between our papers is that 
Zhang (2021) focuses on risk-neutral agents with perfect observability of effort and private types, 
while we consider general risk attitudes and imperfect observability of effort, but without private 
types.

6. Conclusion

In this paper, we provide a framework which enables us to study the optimal design of contests 
without being restricted to a single class of contests or a particular observational structure. We 
provide easily verifiable sufficient conditions for a contest, described by a prize profile and a 
contest success function, to be optimal given an arbitrary observational structure. We apply these 
conditions to various settings. With perfect observability of effort, an appropriately chosen nested 
Tullock contest is optimal. When efforts are imperfectly observed, we derive an upper bound on 
the level of noise such that an all-pay contest with a cap is optimal. We also show how our tools 
can be used in cases where the agents are heterogeneous in their abilities, entry into the contest 
is costly, and when the agents have risk-loving preferences.

Our general message is that optimal contests exhibit a relatively small degree of competitive-
ness, embodied by a minimally competitive prize profile and an imperfectly discriminating CSF. 
The optimal degree of competition is achieved when a pure-strategy equilibrium emerges. Re-
ducing competitiveness beyond that point would decrease the efforts that the principal can elicit, 
and increasing competitiveness would induce wasteful mixing in equilibrium.

We conclude with a discussion of three important questions for future research. First, we have 
focused on the optimal design of contests when the principal’s objective is the maximization 
of total effort. However, contest mechanisms are also used for other purposes. One important 
application is to incentivize development of innovations. Innovation contests have been used 
both by governments (for example the 2012 EU Vaccine Prize) and by private firms (such as the 
2006 Netflix Prize). In innovation contests, the principal is usually only interested in the best 
innovation and not in the total effort that the agents have exerted. For this reason, the literature 
studying innovation contests usually assumes that the objective of the principal is to maximize 
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the highest realization of the agents’ outputs.15 In future work, our framework could be extended 
to this setting by adjusting the principal’s payoff function appropriately.

Second, we do not examine the number of equilibria in optimal contests. If other equilibria 
exist, there is a danger that the agents will coordinate on suboptimal equilibria, especially if they 
generate higher payoffs to the agents. We do know that the equilibrium is unique for some optimal 
contests. For example, with perfect observability of effort, both a two-agent Tullock contest and 
an n-agent all-pay contest with a cap have a unique equilibrium.16 We do not know whether the 
equilibrium is unique in the optimal Tullock contest when there are more than two agents. To the 
best of our knowledge, the only paper investigating uniqueness in multi-prize Tullock contests is 
Fu et al. (2021b), but they restrict attention to contests that are less precise than what would be 
optimal, so we cannot rely on their results.

Third, we have mostly focused on observational structures for which the principal can im-
plement the same outcome as in the optimal contest with perfect observability of efforts. As 
we have discussed earlier, when the observability of efforts is very limited, implementing this 
outcome will no longer be possible. The general characterization of optimal contests in those 
circumstances remains an open question. We provide the characterization for a truth-or-noise 
observational structure. In this setting, we show that optimal contests still feature n − 1 equal 
positive prizes, a single zero prize, and a CSF with an intermediate degree of competitiveness. 
However, based on the intuition gained from our results, we conjecture that there are also obser-
vational structures where optimal contests feature more top-heavy prize structures. This could be 
the case if the optimal “heat” cannot be generated via the CSF due to observational noise, but 
competitiveness can be increased via the other channel – the prize vector. Understanding which 
observational structures lead to flat prizes and which to top-heavy ones is an interesting avenue 
for future research.

Data availability

No data was used for the research described in the article.

Appendix A. Proofs

A.1. Proof of Proposition 1

Fix an arbitrary observational structure (S, η) and suppose that a contest (y, π) with prize 
profile y = y∗ satisfies conditions (i) and (ii) in the proposition. We first claim that it implements 
the effort profile (e∗, ..., e∗). If agent i exerts effort ei when all other agents exert e∗, his payoff 
his

�i(ei, e
∗−i | (y,π)) = p−n

i (ei, e
∗−i )u

(
x∗

n − 1

)
− c(ei).

From condition (i) and the definition of e∗ it follows that �i(e
∗, e∗−i | (y, π)) = 0. From condi-

tion (ii) it follows that

15 Classical references are Taylor (1995) and Che and Gale (2003), while more recent examples are Erkal and Xiao 
(2019), Lemus and Temnyalov (2021) and Benkert and Letina (2020). For a similar objective in prediction contests see 
Lemus and Marshall (2021). Another possible objective of contest design is the selection of best agents. For examples of 
such selection contests see Meyer (1991), and Fang and Noe (2022) for a more recent contribution.
16 See Ewerhart (2017) and Letina et al. (2020).
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�i(ei, e
∗−i | (y,π)) ≤ c(ei)

u(x∗/(n − 1))
u

(
x∗

n − 1

)
− c(ei) = 0

for all ei 	= e∗, which proves the claim.
Now suppose by contradiction that (y, π) is not optimal, i.e., there exists a contest (ỹ, π̃ ) that 

implements some strategy profile σ and

�P (σ | (ỹ, π̃)) = Eσ

[
n∑

i=1

ei

]
−

n∑
i=1

ỹi

> �P ((e∗, . . . , e∗) | (y,π)) = ne∗ − x∗.

Construct a contest (ỹ, π̂ ) for a setting with perfect observation of efforts by defining

π̂ k
i (e) = Eηe

[
π̃ k

i (s)
]

for all i, k ∈ I and all e ∈ E. It follows that the induced CSF p̂ of the contest (ỹ, π̂) with perfect 
observation is identical to the induced CSF p̃ of the contest (ỹ, π̃ ) with the original observational 
structure (S, η). Since the prize profiles are also identical, it follows that (ỹ, π̂) implements σ
under perfect observation and achieves a payoff for the principal strictly larger than ne∗ − x∗. 
This is a contradiction to the following Lemma 1 for the setting with perfect observability of 
efforts, which is due to Letina et al. (2020) and which we state without proof.17

Lemma 1 (Letina et al., 2020). Suppose efforts are perfectly observed. Then, a contest is optimal 
if and only if it satisfies conditions (i) and (ii):

(i) The prizes satisfy y∗
n = 0 and 

∑n
k=1 y∗

k = x∗, where x∗ is given by

u′
(

x∗

n − 1

)
= c′

(
c−1

(
n − 1

n
u

(
x∗

n − 1

)))
.

If the agents are risk-averse, then the prize profile is unique and given by

y∗ = (x∗/(n − 1), . . . , x∗/(n − 1),0).

(ii) The contest implements (e∗, . . . , e∗), where e∗ is given by

e∗ = c−1
(

n − 1

n
u

(
x∗

n − 1

))
.

We conclude that (y, π) must be optimal for the observational structure (S, η). �

A.2. Proof of Proposition 2

Consider a contest with prize profile y∗ = (x∗/(n − 1), ..., x∗/(n − 1), 0) and allocation rule 
π of the nested Tullock form (3). We will show that, for an appropriate choice of f , the effort 
profile (e∗, . . . , e∗) is an equilibrium. The proof proceeds in three steps. In Step 1, we derive the 
agents’ payoff function in the nested contest. Step 2 introduces the specific value r∗(n) stated 

17 The result in Letina et al. (2020) is more general as it allows for a possibly binding budget constraint of the principal.
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in the proposition. In Step 3, we then complete the proof that the contest indeed implements the 
desired effort profile.

Step 1. Let p(ei) denote the probability that agent i wins none of the n − 1 positive prizes, 
given that all other agents exert effort e∗. Furthermore, let u∗ be the utility derived from a positive 
prize. Then, the expected payoff of agent i when all other agents exert e∗ is given by

�i(ei) = [1 − p(ei)]u
∗ − c(ei)

=
[

1 − (n − 1)!f (e∗)n−1∏n−1
k=1 [f (ei) + (n − k)f (e∗)]

]
u∗ − c(ei)

=
[

1 −
n−1∏
k=1

(n − k)f (e∗)
[f (ei) + (n − k)f (e∗)]

]
u∗ − c(ei)

=
[

1 −
n−1∏
k=1

(n − k)f (e∗)
[f (ei) + (n − k)f (e∗)]

](
n

n − 1

)
c(e∗) − c(ei).

Now suppose f (ei) = c(ei)
r for some r ≥ 0. It is easy to see that �i(0) = �i(e

∗) = 0 for any r . 
We will show in the next two steps that �i(ei) ≤ 0 for all ei when r = r∗(n) = (n − 1)/(Hn −
1), where Hn = ∑n

k=1 1/k is the n-th harmonic number. This implies that (e∗, . . . , e∗) is an 
equilibrium.

Step 2. Consider any ei > 0 (we already know the value of �i for ei = 0). To determine the 
sign of �i(ei), we can equivalently examine the sign of

�i(ei)

[
n − 1

nc(e∗)

]
=
[

1 −
n−1∏
k=1

(n − k)c(e∗)r

[c(ei)r + (n − k)c(e∗)r ]

]
−
(

n − 1

n

)
c(ei)

c(e∗)
.

Make the change of variables y∗ = c(e∗)r and y = c(ei)
r to obtain

F(y|r) :=
[

1 −
n−1∏
k=1

(n − k)y∗

[y + (n − k)y∗]

]
− n − 1

n

(
y

y∗

)1

r .

After the additional variable substitution x = y∗/y we obtain

F(x|r) :=
[

1 −
n−1∏
k=1

(n − k)x

[1 + (n − k)x]

]
− n − 1

n

(
1

x

)1

r .

Showing that F(x|r) ≤ 0 for all x > 0, x 	= 1, is then sufficient to ensure that the contest with 
parameter r implements the optimum.

Fix any x and let us look for r(x) such that F(x|r(x)) = 0. Since F is strictly increasing in 
r whenever x ∈ (0, 1), we obtain that F(x|r) ≤ 0 for any fixed x ∈ (0, 1) whenever r ≤ r(x), so 
r(x) gives an upper bound on the possible values of r . Similarly, since F is strictly decreasing in 
r whenever x ∈ (1, ∞), we obtain that F(x|r) ≤ 0 for any fixed x ∈ (1, ∞) whenever r ≥ r(x), 
so r(x) gives a lower bound on the possible values of r . Thus it is sufficient to find a value r∗
such that r(x) ≥ r∗ for all x ∈ (0, 1) and r(x) ≤ r∗ for all x ∈ (1, ∞).
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Rewriting the equation F(x|r(x)) = 0, we have

[
1 −

n−1∏
k=1

(n − k)x

[1 + (n − k)x]

]
= n − 1

n

(
1

x

) 1

r(x)

log

[
1 −

n−1∏
k=1

(n − k)x

[1 + (n − k)x]

]
= log

(
n − 1

n

)
− 1

r(x)
log(x)

1

r(x)
log(x) = log

(
n − 1

n

)
− log

[
1 − (n − 1)!xn−1∏n−1

k=1 [1 + (n − k)x]

]

1

r(x)
log(x) = log

[
n − 1

n

∏n−1
k=1 [1 + (n − k)x]∏n−1

k=1 [1 + (n − k)x] − (n − 1)!xn−1

]

r(x) = log(x)

log

[
n − 1

n

∏n−1
k=1 [1 + (n − k)x]∏n−1

k=1 [1 + (n − k)x] − (n − 1)!xn−1

] .

Denote

g(x) = n − 1

n

∏n−1
k=1 [1 + (n − k)x]∏n−1

k=1 [1 + (n − k)x] − (n − 1)!xn−1

so that

r(x) = log(x)

log(g(x))
.

Note that g(x) > 0 for any x > 0. We will first show that limx↗1 r(x) = limx↘1 r(x) = r∗(n) =
(n − 1)/(Hn − 1). Note that for x = 1 both the denominator and the numerator of r(x) equal 
zero. Hence we use l’Hôpital’s rule. Observe that

(log(g(x)))′ = g′(x)

g(x)

=

(
∂

∂x

∏n−1
k=1 [1 + (n − k)x]

)(∏n−1
k=1 [1 + (n − k)x] − (n − 1)!xn−1

)
(∏n−1

k=1 [1 + (n − k)x] − (n − 1)!xn−1
)∏n−1

k=1 [1 + (n − k)x]

−
(∏n−1

k=1 [1 + (n − k)x]
) ∂

∂x

(∏n−1
k=1 [1 + (n − k)x] − (n − 1)!xn−1

)
(∏n−1

k=1 [1 + (n − k)x] − (n − 1)!xn−1
)∏n−1

k=1 [1 + (n − k)x]

=
(∏n−1

k=1 [1 + (n − k)x]
) ∂

∂x

(
(n − 1)!xn−1

)
(∏n−1

k=1 [1 + (n − k)x] − (n − 1)!xn−1
)∏n−1

k=1 [1 + (n − k)x]

−
(
(n − 1)!xn−1

)( ∂

∂x

∏n−1
k=1 [1 + (n − k)x]

)
(∏n−1

k=1 [1 + (n − k)x] − (n − 1)!xn−1
)∏n−1

k=1 [1 + (n − k)x]
26



I. Letina, S. Liu and N. Netzer Journal of Economic Theory 213 (2023) 105616
=
(∏n−1

k=1 [1 + (n − k)x]
)

(n − 1)
(
(n − 1)!xn−2

)
(∏n−1

k=1 [1 + (n − k)x] − (n − 1)!xn−1
)∏n−1

k=1 [1 + (n − k)x]

−
(
(n − 1)!xn−1

)(∑n−1
k=1(n − k)

∏
j 	=k [1 + (n − j)x]

)
(∏n−1

k=1 [1 + (n − k)x] − (n − 1)!xn−1
)∏n−1

k=1 [1 + (n − k)x]
.

We evaluate this at x = 1, that is,

(log(g(x)))′
∣∣
x=1 =

(∏n−1
k=1 [1 + (n − k)]

)
(n − 1)(n − 1)!(∏n−1

k=1 [1 + (n − k)] − (n − 1)!
)∏n−1

k=1 [1 + (n − k)]

−
(n − 1)!

(∑n−1
k=1(n − k)

∏
j 	=k [1 + (n − j)]

)
(∏n−1

k=1 [1 + (n − k)] − (n − 1)!
)∏n−1

k=1 [1 + (n − k)]

= n!(n − 1)(n − 1)!
(n! − (n − 1)!) n!

−
(n − 1)!

(∑n−1
k=1(n − k)

∏
j 	=k [1 + (n − j)]

)
(n! − (n − 1)!) n!

= 1 −
(∑n−1

k=1(n − k)
∏

j 	=k [1 + (n − j)]
)

(n − 1) n!

= 1 −
n!
(∑n−1

k=1
n − k

n − k + 1

)
(n − 1) n!

=
n − 1 −

(∑n−1
k=1

n − k

n − k + 1

)
n − 1

=
1 +∑n−1

k=1
n − k + 1

n − k + 1
−∑n−1

k=1
n − k

n − k + 1
− 1

n − 1

=
1 +∑n−1

k=1
1

n − k + 1
− 1

n − 1

= Hn − 1

n − 1
.

Thus we have

lim
x↗1

r(x) = lim
x↘1

r(x) = 1/x

(log(g(x)))′

∣∣∣∣
x=1

= n − 1

Hn − 1
.

To complete the proof of Proposition 2, it is now sufficient to show that r(x) is weakly monoton-
ically decreasing on (0, 1) and on (1, ∞). We will do this in the next step.
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Step 3. To show monotonicity of r(x), we will apply a suitable version of the l’Hôpital mono-
tone rule. Proposition 1.1 in Pinelis (2002) (together with Corollary 1.2 and Remark 1.3) implies 
that r(x) = log(x)/ log(g(x)) is weakly decreasing on (0, 1) and (1, ∞) if

(log(x))′

(log(g(x)))′
= g(x)

xg′(x)

is weakly decreasing.18 We will thus show that(
g(x)

xg′(x)

)′
= [g′(x)x − g(x)]g′(x) − xg(x)g′′(x)

(xg′(x))2 ≤ 0.

For this, it is sufficient to show the following three conditions:

(a) g′(x) > 0,
(b) g′′(x) ≥ 0,
(c) g′(x)x − g(x) ≤ 0.

We will verify these conditions in the following three lemmas. To do this, consider the function 
g. We can write

n−1∏
k=1

[1 + (n − k)x] = (n − 1)!xn−1 + an−2x
n−2 + an−3x

n−3 + · · · + a1x + 1

= (n − 1)!xn−1 + γ (x),

where a1, . . . , an−2 are strictly positive coefficients (that depend on n), so that γ is a polynomial 
of degree n − 2 which is strictly positive for all x > 0.19 We can then rewrite

g(x) = n − 1

n

(n − 1)!xn−1 + γ (x)

γ (x)
.

Lemma 2. Condition g′(x) > 0 is satisfied.

Proof. Observe that

g′(x) = n − 1

n

(n − 1)(n − 1)!xn−2γ (x) − (n − 1)!xn−1γ ′(x)

γ (x)2

= n − 1

n

(n − 1)!xn−2[(n − 1)γ (x) − xγ ′(x)]
γ (x)2 ,

and, since

(n − 1)γ (x) = (n − 1)an−2x
n−2 + (n − 1)an−3x

n−3 + . . . + (n − 1)a1x + n − 1 and

xγ ′(x) = (n − 2)an−2x
n−2 + (n − 3)an−3x

n−3 + . . . + a1x,

it follows that (n − 1)γ (x) − xγ ′(x) > 0, which implies that g′(x) > 0. �
18 Proposition 1.1 in Pinelis (2002) is applicable because log(x) and log(g(x)) are differentiable on the respective 
intervals and limx→1 log(x) = limx→1 log(g(x)) = 0 holds. The remaining prerequisite (log(g(x)))′ = g′(x)/g(x) > 0
also holds, because g(x) > 0 and g′(x) > 0 according to Lemma 2 below.
19 To avoid confusion, the formula should be read as γ (x) = 1 for n = 2 and as γ (x) = a1x for n = 3.
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Lemma 3. Condition g′′(x) ≥ 0 is satisfied.

Proof. Observe that

g′′(x) = (n − 1)(n − 1)!
n

[
(n − 1)xn−2γ (x) − xn−1γ ′(x)

γ (x)2

]′
,

so that g′′(x) ≥ 0 is equivalent to

0 ≤
[
(n − 1)xn−2γ (x) − xn−1γ ′(x)

γ (x)2

]′

= [(n−2)(n−1)xn−3γ (x)+(n − 1)xn−2γ ′(x) − (n − 1)xn−2γ ′(x) − xn−1γ ′′(x)]γ (x)2

γ (x)4

− [(n − 1)xn−2γ (x) − xn−1γ ′(x)]2γ (x)γ ′(x)

γ (x)4

= [(n − 2)(n − 1)xn−3γ (x) − xn−1γ ′′(x)]γ (x)2

γ (x)4

− [(n − 1)xn−2γ (x) − xn−1γ ′(x)]2γ (x)γ ′(x)

γ (x)4

= γ (x)xn−3

γ (x)4

[
(n−2)(n−1)γ (x)2 − x2γ ′′(x)γ (x) − 2(n − 1)xγ (x)γ ′(x)+2x2γ ′(x)2

]
.

The expression in the square bracket is a polynomial of degree (2n − 4). We will show that all 
coefficients of this polynomial are positive, which implies that the polynomial, and hence also 
g′′(x), is non-negative.

Using the auxiliary definitions a0 = 1 and aκ = 0 for κ < 0, the coefficient multiplying x2n−j

in this polynomial, for any 4 ≤ j ≤ 2n, is given by

j−2∑
k=2

(n − 2)(n − 1)an−kan−j+k −
j−2∑
k=2

(n − k)(n − k − 1)an−kan−j+k

−
j−2∑
k=2

2(n − 1)(n − k)an−kan−j+k +
j−2∑
k=2

2(n − k)(n − j + k)an−kan−j+k

=
j−2∑
k=2

(n2 − 3n + 2)an−kan−j+k −
j−2∑
k=2

(n2 − 2nk − n + k2 + k)an−kan−j+k

−
j−2∑
k=2

2(n2 − nk − n + k)an−kan−j+k +
j−2∑
k=2

2(n2 − nj + jk − k2)an−kan−j+k

=
j−2∑
k=2

(2 + 4nk − 3k2 − 3k − 2nj + 2jk)an−kan−j+k.

Let ϕ(n, j, k) = 2 + 4nk − 3k2 − 3k − 2nj + 2jk. We will show in several steps that ∑j−2
k=2 ϕ(n, j, k)an−kan−j+k ≥ 0. For n = 2 and n = 3, this condition can easily be verified di-

rectly. Hence we suppose that n > 3 from now on.
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Observe that for any k there is k′ = j − k such that an−kan−j+k = an−k′an−j+k′ . Hence we 
first consider the case where j is odd, so that we can write

j−2∑
k=2

ϕ(n, j, k)an−kan−j+k =
j−1

2∑
k=2

[ϕ(n, j, k) + ϕ(n, j, j − k)]an−kan−j+k.

Since ϕ(n, j, k) + ϕ(n, j, j − k) is an integer, we can think of this expression as a long 
sum where each of the terms an−kan−j+k appears exactly |ϕ(n, j, k) + ϕ(n, j, j − k)| times, 
added or subtracted depending on the sign of ϕ(n, j, k) + ϕ(n, j, j − k). Now note that ∑(j−1)/2

k=2 [ϕ(n, j, k) + ϕ(n, j, j − k)] = 0 holds. This follows because we can write

j−1
2∑

k=2

[ϕ(n, j, k) + ϕ(n, j, j − k)]

=
j−2∑
k=2

ϕ(n, j, k)

=
j−2∑
k=2

(2 − 2nj) + (4n − 3 + 2j)

j−2∑
k=2

k − 3
j−2∑
k=2

k2

= (j − 3)(2 − 2nj) + (4n − 3 + 2j)
j (j − 3)

2
− 3

(j − 3)(2j2 − 3j + 4)

6

= (j − 3)

(
2 − 2nj + 2nj − 3j

2
+ j2 − j2 + 3j

2
− 2

)
= 0.

Thus, for each instance where a term an−k′an−j+k′ is subtracted in the long sum, we can find 
a term an−k′′an−j+k′′ which is added. We claim that the respective terms which are added are 
weakly larger than the terms which are subtracted. This claim follows once we show that both 
ϕ(n, j, k) + ϕ(n, j, j − k) and an−kan−j+k are weakly increasing in k within the range of the 
sum. In that case, the terms which are subtracted are those for small k and the terms which are 
added are those for large k, and the latter are weakly larger. The same argument in fact applies 
when j is even, so that we can write

j−2∑
k=2

ϕ(n, j, k)an−kan−j+k

=
j−2

2∑
k=2

[ϕ(n, j, k) + ϕ(n, j, j − k)]an−kan−j+k + ϕ(n, j, j/2)a2
n−j/2.

Importantly, for the last term we have

ϕ(n, j, j/2) = 2 − 2nj − 3

(
j

2

)2

+ j

2
(4n − 3 + 2j)

= 2 − j2 3 − j
3 + j2
4 2
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= 2 + j

(
j

4
− 3

2

)
> 0,

so that the last and largest term a2
n−j/2 = an−j/2an−j/2 is indeed also added.

We first show that ϕ(n, j, k) + ϕ(n, j, j − k) is weakly increasing in k in the relevant range. 
We have

ϕ(n, j, k) + ϕ(n, j, j − k)

= (2 − 2nj − 3k2 + k(4n − 3 + 2j)) + (2 − 2nj − 3(j − k)2 + (j − k)(4n − 3 + 2j))

= 4 − 4nj − 3(2k2 + j2 − 2jk) + j (4n − 3 + 2j).

Treating k as a real variable, we obtain

∂

∂k
[ϕ(n, j, k) + ϕ(n, j, j − k)] = −3(4k − 2j)

= −6(2k − j) > 0

for all k < j/2, so the claim follows.
We now show that an−kan−j+k is weakly increasing in k in the relevant range. Formally, we 

show that an−kan−j+k ≤ an−k−1an−j+k+1 for any k < j/2. Observe that we can write

a1 =
n−1∑
k1=1

(n − k1),

a2 =
n−2∑
k2=1

n−1∑
k1=k2+1

(n − k2)(n − k1),

...

aj =
n−j∑
kj =1

n−j+1∑
kj−1=kj +1

· · ·
n−1∑

k1=k2+1

(n − kj )(n − kj−1) . . . (n − k1).

Intuitively, each summand in the definition of aj is the product of j different elements cho-
sen from the set {(n − 1), (n − 2), . . . , 1}, and the nested summation goes over all the different 
possibilities in which these j elements can be chosen. Using simplified notation for the nested 
summation, we can thus write (where α, β , λ, and η take the role of the indices of summation, 
like k in the expression above):

an−k =
∑

(n − αn−k)(n − αn−k−1) . . . (n − α1),

an−j+k =
∑

(n − βn−j+k)(n − βn−j+k−1) . . . (n − β1),

an−k−1 =
∑

(n − λn−k−1)(n − λn−k−2) . . . (n − λ1),

an−j+k+1 =
∑

(n − ηn−j+k+1)(n − ηn−j+k) . . . (n − η1).

Rewriting the inequality an−kan−j+k ≤ an−k−1an−j+k+1 using this notation, we obtain
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∑
(n − αn−k)(n − αn−k−1) . . . (n − α1)(n − βn−j+k)(n − βn−j+k−1) . . . (n − β1)

≤
∑

(n − λn−k−1)(n − λn−k−2) . . . (n − λ1)(n − ηn−j+k+1)(n − ηn−j+k) . . . (n − η1).

Observe that each summand of the LHS sum is the product of (n − k) + (n − j + k) = 2n − j

elements, all of them chosen from the set {(n − 1), (n − 2), . . . , 1}. The first n − k elements are 
all different from each other, and the last n − j + k elements are all different from each other. 
Thus, since n − k > n − j + k when k < j/2, in each summand at most n − j + k elements can 
appear twice. Furthermore, the LHS sum goes over all the different combinations that satisfy this 
property. Similarly, each summand of the RHS sum is the product of (n − k − 1) + (n − j +
k + 1) = 2n − j elements, all of them chosen from the same set {(n − 1), (n − 2), . . . , 1}. The 
first n − k − 1 elements are all different from each other, and the last n − j + k + 1 elements are 
all different from each other. Thus, (weakly) more than n − j + k elements can appear twice in 
these summands.20 Since the RHS sum goes over all the different combinations that satisfy this 
property, for each summand on the LHS there exists an equal summand on the RHS. This shows 
that the inequality indeed holds. �
Lemma 4. Condition g′(x)x − g(x) ≤ 0 is satisfied.

Proof. We have

g′(x)x − g(x) = n − 1

n

[
(n − 1)!xn−1[(n − 1)γ (x) − xγ ′(x)]

γ (x)2 − (n − 1)!xn−1 + γ (x)

γ (x)

]
,

and therefore g′(x)x − g(x) ≤ 0 if and only if

0 ≥ (n − 1)!xn−1[(n − 1)γ (x) − xγ ′(x)] − (n − 1)!xn−1γ (x) − γ (x)2

= (n − 1)!xn−1(n − 2)γ (x) − (n − 1)!xnγ ′(x) − γ (x)2

= (n − 1)![(n − 2)an−2x
2n−3 + (n − 2)an−3x

2n−4 + · · · + (n − 2)a1x
n + (n − 2)xn−1

− (n − 2)an−2x
2n−3 − (n − 3)an−3x

2n−4 − · · · − a1x
n] − γ (x)2

= (n − 1)![an−3x
2n−4 + 2an−4x

2n−5 + · · · + (n − 3)a1x
n + (n − 2)xn−1] − γ (x)2

= (n − 1)![an−3x
2n−4 + 2an−4x

2n−5 + · · · + (n − 3)a1x
n + (n − 2)xn−1]

−
n+1∑
j=4

j−2∑
k=2

an−kan−j+kx
2n−j − ρ,

where ρ ≥ 0 is some positive remainder of γ (x)2. To show g′(x)x − g(x) ≤ 0, it is therefore 
sufficient to ignore ρ and show that the overall coefficient on x2n−j in the last expression is not 
positive. That is, it is sufficient to show that, for all j ∈ {4, . . . , n + 1},

(n − 1)!(j − 3)an−j+1 −
j−2∑
k=2

an−kan−j+k ≤ 0.

20 The inequality n − k − 1 ≥ n − j + k + 1 can be rearranged to k ≤ j/2 − 1, which follows from k < j/2, except if j
is odd and k = (j − 1)/2. Thus, typically, up to n − j + k + 1 elements can appear twice. If j is odd and k = (j − 1)/2, 
up to n − k − 1 elements can appear twice, which is identical to n − j + k in that case.
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Observe that the sum has exactly (j − 3) elements. Then, it is sufficient to show that, for all 
k ∈ {2, . . . , j − 2},

(n − 1)!an−j+1 ≤ an−kan−j+k. (5)

To demonstrate condition (5), we will first write the values of the coefficients aj in a different 
way. Instead of summing over all possibilities in which j different elements from the set {(n −
1), (n −2), . . . , 1} can be chosen, we can sum over the n − j −1 elements not chosen, and divide 
the factorial (n − 1)! by the product of these elements. This yields

an−2 =
n−1∑
k1=1

(n − 1)!
n − k1

,

an−3 =
n−2∑
k2=1

n−1∑
k1=k2+1

(n − 1)!
(n − k2)(n − k1)

,

...

an−j =
n−j+1∑
kj−1=1

n−j+2∑
kj−2=kj−1+1

· · ·
n−1∑

k1=k2+1

(n − 1)!
(n − kj−1)(n − kj−2) . . . (n − k1)

,

...

a1 =
2∑

kn−2=1

3∑
kn−3=kn−2+1

· · ·
n−1∑

k1=k2+1

(n − 1)!
(n − kn−2)(n − kn−3) . . . (n − k1)

.

Rewriting condition (5), we then have

n−j+2∑
λj−2=1

n−j+3∑
λj−3=λj−2+1

· · ·
n−1∑

λ1=λ2+1

((n − 1)!)2

(n − λj−2)(n − λj−3) . . . (n − λ1)

≤
⎡
⎣n−k+1∑

αk−1=1

n−k+2∑
αk−2=αk−1+1

· · ·
n−1∑

α1=α2+1

(n − 1)!
(n − αk−1)(n − αk−2) . . . (n − α1)

⎤
⎦

×
⎡
⎣n−j+k+1∑

βj−k−1=1

n−j+k+2∑
βj−k−2=βj−k−1+1

· · ·
n−1∑

β1=β2+1

(n − 1)!
(n − βj−k−1)(n − βj−k−2) . . . (n − β1)

⎤
⎦ .

Observe that for each summand on the LHS, the denominator is a product of j − 2 different 
elements from the set {(n − 1), (n − 2), . . . , 1}. In fact, the LHS sum goes over all the different 
possibilities in which these j − 2 elements can be chosen. On the RHS, after multiplication, the 
denominator of each summand is a product of (k − 1) + (j − k − 1) = j − 2 elements from the 
same set, where replication of some elements may be possible (but is not necessary). Since the 
RHS sum goes over all these different possibilities, for each summand on the LHS there exists 
an equal summand on the RHS. This shows that the inequality holds. � �
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A.3. Comparative statics of r∗(n)

Claim 1: r∗(n + 1) > r∗(n). Consider any n ≥ 2. By definition of r∗(n) we have

r∗(n) = n − 1

Hn − 1
= (n − 1)(Hn+1 − 1)

(Hn − 1)(Hn+1 − 1)
,

r∗(n + 1) = n

Hn+1 − 1
= n(Hn − 1)

(Hn+1 − 1)(Hn − 1)
.

Since Hn − 1 > 0 for any n ≥ 2, r∗(n + 1) > r∗(n) holds if and only if

n(Hn − 1) − (n − 1)(Hn+1 − 1) > 0.

We have

n(Hn − 1) − (n − 1)(Hn+1 − 1) = n(Hn − Hn+1) + Hn+1 − 1

= − n

n + 1
+

n+1∑
k=2

1

k

=
n+1∑
k=2

(
1

k
− 1

n + 1

)
> 0.

Claim 2: limn→∞ r∗(n) = ∞.

lim
n→∞ r∗(n) = lim

n→∞
n − 1

Hn − 1

= lim
n→∞

n − (n − 1)

(Hn+1 − 1) − (Hn − 1)

= lim
n→∞

1

1/(n + 1)

= ∞,

where the second equality follows from the Stolz-Cesàro Theorem.

A.4. Proof of Proposition 3

Consider a contest with prize profile y = y∗ and an all-pay allocation rule π with a cap at 
s̄ = e∗ + ε. Note that when an agent chooses any effort level ei ≥ e∗, the value of his signal 
will be at or above the cap s̄ with probability one. Therefore, when agent i exerts effort ei while 
all other agents j 	= i choose effort e∗, the probability that agent i will get one of the identical 
positive prizes is given by

p−n
i (ei, e

∗−i ) = (
1 − Pr

(
ei + εi < e∗ + ε

)) · n − 1

n

= (
1 − F−(ε + e∗ − ei)

) · n − 1

n
.

Since F−(x) = 0 for all x ≤ ε, we have, for all ei ≥ e∗,
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p−n
i (ei, e

∗−i ) = n − 1

n
= c(e∗)

u (x∗/(n − 1))
≤ c(ei)

u (x∗/(n − 1))
.

Hence condition (i) in Proposition 1 is satisfied, and condition (ii) is satisfied for all ei > e∗. 
Furthermore, the inequality condition (4) implies that, for all ei ∈ [0, e∗),

p−n
i (ei, e

∗−i ) ≤ n − 1

n
· c(ei)

c(e∗)
= c(e∗)

u (x∗/(n − 1))
· c(ei)

c(e∗)
= c(ei)

u (x∗/(n − 1))
.

Therefore, condition (ii) is also satisfied for all ei < e∗. It follows from Proposition 1 that the 
proposed contest is optimal. �

A.5. Proof of Corollary 1

With the uniform distribution given in the corollary, we have F− = F and condition (4) be-
comes

Q(e) ≡ min{e∗ − e,�}
�

− 1 + c(e)

c(e∗)
≥ 0 ∀e ∈ [0, e∗].

Q(e) is continuous, satisfies Q(0) = Q(e∗) = 0, and Q(e) > 0 for all e ∈ (0, e∗ −�). Moreover, 
we have for all e ∈ (e∗ − �, e∗),

Q′(e) = − 1

�
+ c′(e)

c(e∗)
≤ − 1

�
+ c′(e∗)

c(e∗)
≤ 0,

where the first inequality follows from convexity of c and the second inequality follows from the 
assumption � ≤ c(e∗)/c′(e∗). Therefore, on the interval [0, e∗], the function Q(e) is first positive 
and then decreases (weakly) towards zero. It follows that Q(e) ≥ 0 holds for all e ∈ [0, e∗]. �

A.6. Examples of imperfect effort observation

A.6.1. Example 3
Suppose the condition σ 2

1 + σ 2
2 − 2σ12 ≤ 2/(πβ2) is satisfied. Consider a contest with prize 

profile y∗ = (x∗, 0) in which the positive prize x∗ is given to agent 1 if and only if rs1/s2 ≥ 1, 
where r ∼ lnN [νr , σ 2

r ] is distributed log-normally with parameters

νr = ν2 − ν1 and σ 2
r = 2

πβ2 − (σ 2
1 + σ 2

2 − 2σ12).

This allows for σ 2
r = 0, by which we mean that r is degenerate and takes the value eνr with 

probability one. Formally, the principal sets

π1
1 (s) = Pr

[
rs1

s2
≥ 1

]
,

and π1
2 (s) = 1 − π1

1 (s). Given any effort profile e, the probability that agent 1 wins the positive 
prize is then given by

p1
1(e) = Pr

[
rr1e1

r2e2
≥ 1

]
= Pr

[
r2

rr1
≤ e1

e2

]
.

Since r1, r2 and r are all log-normally distributed, it follows that r2/(rr1) is also log-normal, 
with location ν = ν2 − ν1 − νr = 0 and scale σ 2 = σ 2 + σ 2 − σ12 + σ 2 = 2/(πβ2). The cdf 
1 2 r
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of the log-normal distribution is given by F(x) = � ((logx − ν)/σ ), where � is the cdf of the 
standard normal distribution. Thus we can write

p1
1(e) = �

(
log(e1/e2)β

√
π

2

)
.

For the probability that agent 2 wins the prize we obtain

p1
2(e) = 1 − p1

1(e) = 1 − �

(
log(e1/e2)β

√
π

2

)

= �

(
− log(e1/e2)β

√
π

2

)

= �

(
log(e2/e1)β

√
π

2

)
.

It follows immediately that p1
i (e

∗, e∗) = 1/2, which is condition (i) in Proposition 1. We will 
now establish that

p1
i (ei, e

∗) ≤ c(ei)

u(x∗)
= c(ei)

2c(e∗)
= 1

2

( ei

e∗
)β

,

for all ei 	= e∗, which is condition (ii) in Proposition 1, and where the first equality follows by 
definition of e∗. After the change of variables x = log(ei/e

∗)β
√

π/2, this inequality becomes 
the requirement that

�(x) ≤ 1

2
ex

√
2/π (6)

for all x ∈ R. Inequality (6) is satisfied for x = 0, where LHS and RHS both take a value of 
1/2. Furthermore, the LHS function and the RHS function are tangent at x = 0, because their 
derivatives are both equal to 1/

√
2π at this point. It then follows immediately that inequality (6)

is also satisfied for all x > 0, because the LHS is strictly concave in x in this range, while the 
RHS is strictly convex. We now consider the remaining case where x < 0. We use the fact that 
�(x) = erfc(−x/

√
2)/2, where

erfc(y) = 2√
π

∞∫
y

e−t2
dt

is the complementary error function (see e.g. Chang et al., 2011). After the change of variables 
y = −x/

√
2 we thus need to verify

erfc(y) ≤ e−2y/
√

π (7)

for all y > 0. Inequality (7) is satisfied for y = 0, where LHS and RHS both take a value of 1. 
Now observe that the derivative of the LHS with respect to y is given by −2e−y2

/
√

π , while the 
derivative of the RHS is −2e−2y/

√
π/

√
π . The condition that the former is weakly smaller than 

the latter can be rearranged to y ≤ 2/
√

π , which implies that (7) is satisfied for 0 < y ≤ 2/
√

π . 
For larger values of y, we can use a Chernoff bound for the complementary error function. 
Theorem 1 in Chang et al. (2011) implies that

erfc(y) ≤ e−y2

for all y ≥ 0. The inequality e−y2 ≤ e−2y/
√

π can be rearranged to y ≥ 2/
√

π . This implies that 
(7) is satisfied also for y > 2/

√
π .
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A.6.2. Example 4
Consider a contest with prize profile y∗ = (x∗, 0) in which the positive prize x∗ is given 

to agent 1 if and only if s + r ≥ 0, where r ∼ U[−c(e∗)/c′(e∗), c(e∗)/c′(e∗)] is distributed 
uniformly. Formally, the principal sets

π1
1 (s) = Pr [r + s ≥ 0] ,

and π1
2 (s) = 1 − π1

1 (s). Observe that c(e∗)/c′(e∗) < e∗ holds due to strict convexity of c and 
c(0) = 0. We can then write the probability that agent 1 wins the positive prize, holding the 
effort e2 = e∗ fixed, as a piecewise function

p1
1(e1, e

∗) =

⎧⎪⎪⎨
⎪⎪⎩

1 if e1 > e∗ + c(e∗)
c′(e∗) ,

1
2 + 1

2
c′(e∗)
c(e∗) (e1 − e∗) if e∗ − c(e∗)

c′(e∗) ≤ e1 ≤ e∗ + c(e∗)
c′(e∗) ,

0 if e1 < e∗ − c(e∗)
c′(e∗) .

It follows immediately that p1
1(e

∗, e∗) = p1
2(e

∗, e∗) = 1/2, which is condition (i) in Proposi-
tion 1. We will now establish condition (ii) in Proposition 1, first for agent i = 1. It is trivially 
satisfied for any e1 < e∗ − c(e∗)/c′(e∗). Next, consider any e1 with e∗ − c(e∗)/c′(e∗) ≤ e1 ≤
e∗ + c(e∗)/c′(e∗). Condition (ii) can then be rearranged to

e1 − c(e1)

c′(e∗)
≤ e∗ − c(e∗)

c′(e∗)
.

The LHS is strictly concave and reaches its unique maximum at e1 = e∗, where it equals 
the constant RHS. Hence the inequality holds. The fact that condition (ii) also holds for any 
e1 > e∗ + c(e∗)/c′(e∗) follows because it holds for e1 = e∗ + c(e∗)/c′(e∗), from the previous 
argument, where we already have p1

1(e1, e∗) = 1. The argument for agent 2 is symmetric.

A.7. Proof of Proposition 4

Fix a total prize sum x and define the effort level e(ω, x) = c−1 (ωu(x/(n − 1))(n − 1)/n). 
If the principal could use a contest (y, π) with 

∑n
k=1 yk = x to implement the pure strategy 

profile (e(ω, x), ..., e(ω, x)), her expected payoff would be ne(ω, x) − x. We will first prove 
that, under the truth-or-noise observational structure, ne(ω, x) − x constitutes an upper bound 
on the principal’s payoff in any contest with a total prize sum x.

Take any contest (y, π) with 
∑n

k=1 yk = x. Suppose that this contest implements some strat-
egy profile σ . Then, implementing σ requires that

Eσ

[
n∑

k=1

pk
i (e)u(yk) − c(ei)

]
≥ Eσ−i

[
n∑

k=1

pk
i (0, e−i )

]
u(yk) (8)

for all i ∈ I . Now, recall that with probability 1 −ω, the signal s will be generated by a probability 
measure η̂ ∈ �E that is independent of effort. Hence, given an effort profile e, the probability 
that agent i wins prize yk can be calculated as

pk
i (e) = ωπk

i (e) + (1 − ω)Eη̂

[
πk

i (s)
]
. (9)

Using (9) and that y1 ≥ . . . ≥ yn, we obtain the following implication of condition (8):
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ω

[
Eσ

[
n∑

k=1

πk
i (e)u(yk)

]
− u(yn)

]
≥ Eσi

[c(ei)], (10)

for all i ∈ I . Summing up (10) over all i ∈ I , we obtain

ω

[
n−1∑
k=1

u(yk) − (n − 1)u(yn)

]
≥

n∑
i=1

Eσi
[c(ei)]. (11)

Since 
∑n

k=1 yk = x, u is concave and c is convex, (11) further implies

c

(
1

n

n∑
i=1

Eσi
[ei]

)
≤ ω

n − 1

n
u

(
x

n − 1

)
= c(e(ω,x)). (12)

Because c is strictly increasing, we finally have

n∑
i=1

Eσi
[ei] − x ≤ ne(ω,x) − x.

That is, for a fixed total prize sum x, the expected payoff of the principal can never exceed 
ne(ω, x) − x, which is the upper bound that we mentioned before.

By construction, xω is the unique solution to the following payoff-maximization problem of 
the principal:

max
x≥0

ne(ω,x) − x.

Hence, neω − xω constitutes an upper bound for the principal’s payoff in any contest. It is clear 
that a contest satisfying the conditions of the proposition will be able to implement the pure 
strategy effort profile (eω, . . . , eω) and yields the expected payoff neω − xω to the principal. 
Therefore, such a contest must be optimal. �

A.8. Proof of Proposition 5

The optimal prize sum x∗
n is defined by the first-order condition

u′
(

x∗
n

n − 1

)
= c′

(
c−1

(
n − 1

n
u

(
x∗
n

n − 1

)))
. (13)

Holding x∗
n/(n − 1) fixed, the LHS of (13) is constant and the RHS is strictly increasing in n. 

Furthermore, the LHS is weakly decreasing and the RHS is strictly increasing in x∗
n/(n − 1). It 

thus follows that x∗
n/(n −1) must be strictly decreasing in n. It also holds that x∗

n/(n −1) > xFB . 
By contradiction, from x∗

n/(n − 1) ≤ xFB we would obtain

u′(xFB) ≤ u′
(

x∗
n

n − 1

)

= c′
(

c−1
(

n − 1

n
u

(
x∗
n

n − 1

)))

< c′
(

c−1
(

u

(
x∗
n

n − 1

)))

≤ c′ (c−1
(
u
(
xFB

)))
= u′(xFB).
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It thus follows that limn→∞ x∗
n/(n − 1) exists. We claim that limn→∞ x∗

n/(n − 1) = xFB . By 
contradiction, if limn→∞ x∗

n/(n − 1) = x̄ > xFB , then the LHS of (13) converges to u′(x̄) and 
the RHS converges to c′(c−1(u(x̄))). From u′ (xFB

)= c′ (c−1
(
u
(
xFB

)))
together with x̄ > xFB

we conclude that u′ (x̄) < c′ (c−1 (u (x̄))
)
, and hence (13) must be violated for sufficiently large 

n. It now follows that

lim
n→∞ e∗

n = lim
n→∞ c−1

(
n − 1

n
u

(
x∗
n

n − 1

))
= c−1

(
u
(
xFB

))
= eFB.

It also follows that

lim
n→∞�∗

n = lim
n→∞

(
e∗
n − x∗

n

n

)
= lim

n→∞

(
e∗
n − x∗

n

n − 1

)
= eFB − xFB = �FB,

which completes the proof. �

A.9. Proof of Proposition 6

We first derive three lemmas which hold under cost heterogeneity for any number n of agents. 
Since we assume perfect observability of efforts, we do not make a distinction between the 
allocation rule π and the CSF p. We use the notation π throughout.

Lemma 5. For any contest (y, π) that implements a strategy profile σ , there exists a contest 
(y, π̂ ) that implements the pure-strategy profile ē = (ē1, . . . , ēn) where ēi = Eσ [ei] ∀i ∈ I .

Proof. Suppose (y, π) implements σ . Define an allocation rule π̂ as follows:

π̂ k
i (ẽ) =

⎧⎪⎨
⎪⎩
Eσ

[
πk

i (e)
]

if ẽ = ē,

Eσ

[
πk

i (0, e−j )
]

if ẽj 	= ēj and ẽ
 = ē
 ∀
 	= j,

πk
i (ẽ) otherwise,

for all i, k ∈ I . We now show that, in the contest (y, π̂), for each agent i ∈ I it is a best response 
to play ēi when the remaining agents are playing ē−i , which implies that (y, π̂) implements ē. 
This claim holds because, for any i ∈ I and ∀e′

i 	= ēi ,

�i(ē | (y, π̂)) =
n∑

k=1

π̂ k
i (ē)u(yk) − ci(ēi)

=
n∑

k=1

Eσ

[
πk

i (e)u(yk)
]
− ci (Eσ [ei])

≥
n∑

k=1

Eσ

[
πk

i (e)u(yk)
]
−Eσ [ci(ei)]

≥
n∑

k=1

Eσ

[
πk

i (0, e−i )u(yk)
]

≥
n∑

Eσ

[
πk

i (0, e−i )u(yk)
]
− ci(e

′
i )
k=1
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=
n∑

k=1

π̂ k
i (e′

i , ē−i )u(yk) − ci(e
′
i )

= �i(e
′
i , ē−i | (y, π̂)),

where the first inequality follows the convexity of ci and the second inequality follows from the 
fact that (y, π) implements σ . �

Since the principal is indifferent between the mixed-strategy effort profile σ and its pure-
strategy expectation ē, holding fixed the prize profile y, we can without loss of generality restrict 
attention to contests which implement a possibly asymmetric pure effort profile.21 For any such 
contest, we obtain the following result.

Lemma 6. If a contest (y, π) implements a pure-strategy effort profile ē, it holds that

1

n − 1

n∑
i=1

ci(ēi ) ≤ u

(
x

n − 1

)
,

where x =∑n
k=1 yk .

Proof. Since (y, π) implements ē, for each i ∈ I it must hold that

ci(ēi ) ≤
n∑

k=1

πk
i (ēi , ē−i )u(yk) −

n∑
k=1

πk
i (0, ē−i )u(yk).

Summing over all i ∈ I , we obtain

n∑
i=1

ci(ēi ) ≤
n∑

i=1

n∑
k=1

πk
i (ēi , ē−i )u(yk) −

n∑
i=1

n∑
k=1

πk
i (0, ē−i )u(yk)

=
n∑

i=1

n∑
k=1

πk
i (0, ē−1)u(yk) −

n∑
i=1

n∑
k=1

πk
i (0, ē−i )u(yk)

=
n∑

i=2

n∑
k=1

[
πk

i (0, ē−1) − πk
i (0, ē−i )

]
u(yk)

≤
n∑

i=2

n∑
k=1

πk
i (0, ē−1)u(yk)

≤
n∑

i=2

u

(
n∑

k=1

πk
i (0, ē−1)yk

)

≤ (n − 1)u

(
x

n − 1

)
where the first equality holds because the sum of all agents’ expected utilities from the prizes 
is the same for all effort profiles (due to π being a doubly stochastic matrix for all e), the third 

21 Lemma 5 generalizes Lemma 4 in Letina et al. (2020) to arbitrary costs functions, but restricted to the class of 
contests, while Letina et al. (2020) consider arbitrary incentive contracts.
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inequality follows from concavity of u, and the fourth inequality follows from concavity of u
together with the fact that 

∑n
i=2

∑n
k=1 πk

i (0, ē−1)yk ≤∑n
k=1 yk = x. �

Our next result shows that we can restrict attention to contests in which the smallest prize is 
zero.

Lemma 7. For any contest (y, π) that implements a pure-strategy effort profile ē, there exists a 
contest (ỹ, π̃ ) with ỹ = (ỹ1, . . . , ỹn−1, ỹn) = (y1, . . . , yn−1, 0) that also implements ē.

Proof. Suppose that (y, π) implements ē. Then, in particular,

n∑
k=1

πk
i (ē)u(yk) − ci(ēi) ≥

n∑
k=1

πk
i (0, ē−i )u(yk) ≥ u(yn) ∀i ∈ I. (14)

Now consider another contest (ỹ, π̃ ) with ỹ = (ỹ1, . . . , ỹn−1, ỹn) = (y1, . . . , yn−1, 0) and any 
allocation rule π̃ such that π̃ k

i (ē) = πk
i (ē) for all i, k ∈ I , and π̃n

i (ei , ē−i ) = 1 whenever ei 	= ēi . 
By construction, we have for all i ∈ I ,

n∑
k=1

π̃ k
i (ē)u(ỹk) − ci(ēi) =

n−1∑
k=1

πk
i (ē)u(yk) − ci(ēi )

≥ [1 − πn
i (ē)]u(yn)

≥ 0

= u(ỹn),

where the first inequality follows from (14). Hence, (ỹ, π̃ ) also implements ē. �
From now on we consider the special case of n = 2. It follows from Lemma 6 that any 

contest (y, π) with y = (x, 0) that implements a pure-strategy effort profile ē must satisfy 
c1(ē1) + c2(ē2) ≤ u(x). Since restricting attention to such contests is without loss of general-
ity by Lemmas 5 and 7, the problem

max
x,e1,e2≥0

e1 + e2 − x s.t. c1(e1) + c2(e2) ≤ u(x)

describes an upper bound on the payoff that the principal can achieve. Obviously, any solution 
(x∗, e∗

1, e∗
2) to this problem must satisfy the constraint with equality, and it must be strictly pos-

itive. We complete the proof by showing that the contest described in the proposition achieves 
that bound, by implementing the effort profile (e∗

1, e
∗
2) using prize x∗.

Lemma 8. Suppose n = 2. The contest (y∗, π∗) implements the effort profile (e∗
1, e

∗
2).

Proof. Consider a tuple (x∗, e∗
1, e∗

2) as described in the proposition. Using a Tullock CSF with 
individual-specific impact functions fi(ei) = ci(ei)

ri /ci(e
∗
i )

ri−1 for any ri > 1, it follows that 
the probability that agent i wins the prize x∗ when the effort profile is e = (ei, ej ) is

π1
i (ei, ej ) = ci(ei)

ri /ci(e
∗
i )

ri−1

c (e )ri /c (e∗)ri−1 + c (e )rj /c (e∗)rj −1

i i i i j j j j
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= ci(ei)
ri cj (e

∗
j )

rj −1

ci(ei)ri cj (e
∗
j )

rj −1 + cj (ej )
rj ci(e

∗
i )

ri−1

= 1 − cj (ej )
rj ci(e

∗
i )

ri−1

ci(ei)ri cj (e
∗
j )

rj −1 + cj (ej )
rj ci(e

∗
i )

ri−1
.

To simplify notation, let ci = ci(ei) and c∗
i = ci(e

∗
i ). Then we can write agent i’s optimization 

problem as maxci≥0 U(ci, c∗
j ), where Ui(ci, c∗

j ) = π1
i (ci , c∗

j )u(x∗) − ci . We obtain after some 
simplifications

∂Ui(ci, c
∗
j )

∂ci

= ri

[
(c∗

i )
ri−1c∗

j c
ri−1
i

(c
ri
i + (c∗

i )
ri−1c∗

j )
2

]
u(x∗) − 1 (15)

and

∂2Ui(ci, c
∗
j )

∂c2
i

= riu(x∗)(c∗
i )

ri−1c∗
j

(c
ri
i + (c∗

i )
ri−1c∗

j )
3

[
(ri − 1)c

ri−2
i (c

ri
i + (c∗

i )
ri−1c∗

j ) − 2ric
2(ri−1)
i

]
. (16)

We immediately obtain Ui(0, c∗
j ) = 0 and ∂Ui(0, c∗

j )/∂ci < 0, so that ci = 0 is a local maximum. 
Using that c∗

i + c∗
j = u(x∗), it also follows immediately that Ui(c

∗
i , c

∗
j ) = 0. Now let ri = 1 +

c∗
i /c

∗
j ≡ r∗

i . From (15) we obtain

∂Ui(c
∗
i , c

∗
j )

∂ci

=
(

c∗
i + c∗

j

c∗
j

)[
(c∗

i )
2(r∗

i −1)c∗
j

(c∗
i )

2(r∗
i −1)(c∗

i + c∗
j )

2

]
(c∗

i + c∗
j ) − 1 = 0, (17)

so that the first-order condition is satisfied at ci = c∗
i . By (16), the sign of ∂2Ui/∂c2

i is equal to 

the sign of (ri − 1)c
ri−2
i (c

ri
i + (c∗

i )
ri−1c∗

j ) − 2ric
2(ri−1)
i , which for ri = r∗

i can be rearranged to

c
r∗
i −2

i (c∗
i )

r∗
i − (r∗

i + 1)c
2(r∗

i −1)

i . (18)

Using (18) we thus obtain that ∂2Ui/∂c2
i ≤ 0 if and only if

c
r∗
i

i ≥
(

1

r∗
i + 1

)
(c∗

i )
r∗
i .

It follows that ci = c∗
i is also a local maximum. Furthermore, the sign of ∂2Ui/∂c2

i changes only 
once as ci increases from 0 to ∞, and hence both ci = 0 and ci = c∗

i are global maxima of 
the function Ui(ci, c∗

j ). Therefore, c∗
i is a best response of agent i to c∗

j , which implies that the 
contest implements (e∗

1, e
∗
2). � �

A.10. Proof of Proposition 7

Since we assume perfect observability of efforts, we do not make a distinction between the 
allocation rule π and the CSF p. We use the notation π throughout. We first state some additional 
properties that hold for any given profile of effort cost functions (c1, . . . , cn). By Lemmas 5 and 
7, we can restrict attention to the implementation of pure-strategy effort profiles by contests with 
yn = 0. This allows us to show that the principal’s optimization problem has a solution.

Lemma 9. An optimal contest exists.
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Proof. When optimizing over contests that implement a pure-strategy effort profile e and have 
yn = 0, it is without loss of generality to assume that an agent who deviates unilaterally from e
obtains yn = 0 with probability one, which is the harshest possible punishment. Thus constraint 
(IC-A) can be written as

n∑
k=1

πk
i (e)u(yk) − ci(ei) ≥ 0 ∀i ∈ I. (19)

The principal therefore maximizes 
∑n

i=1 ei −∑n
i=1 yi by choosing e = (e1, . . . , en) ∈ Rn+, y =

(y1, . . . , yn) ∈ Rn+ and π(e) = (πk
i (e))i,k∈I ∈ [0, 1]n2

for the given e, subject to (19) and the 
constraints that yn = 0 and π(e) is a doubly stochastic matrix. The allocation probabilities after 
multilateral deviations from e can be chosen arbitrarily. Using notation x =∑n

k=1 yk , constraint 
(19) implies ei ≤ c−1

i (u(x)) for all i ∈ I . This implies 
∑n

i=1 ei −∑n
i=1 yi ≤∑n

i=1 c−1
i (u(x)) −x. 

Since u is weakly concave and each ci is strictly convex with limei→∞ c′
i (ei) = ∞, there exists 

X > 0 such that 
∑n

i=1 c−1
i (u(x)) − x < 0 whenever x > X, so that a contest with x > X cannot 

be optimal. It is therefore without loss to impose yi ∈ [0, X] and ei ∈ [0, c−1
i (u(X))] for all i ∈ I . 

Continuity of u and each ci then implies that the constraint set is compact. Since the principal’s 
objective is continuous, a solution exists. �

The next result provides a lower bound on maximal profits. Fix any T > 0 and define

� = max
x∈[0,T ]

[
c−1

1 (u(x)) − x
]
,

which exists and satisfies � > 0 due to our assumptions on c1 and u.

Lemma 10. There exists a contest (y, π) that implements a pure-strategy effort profile e such 
that �P (e | (y, π)) = �.

Proof. Let x∗ = arg maxx∈[0,T ]
[
c−1

1 (u(x)) − x
]

and e∗
1 = c−1

1 (u(x∗)). Consider a contest with 

prize profile y = (x∗, 0, . . . , 0). If the effort profile e is such that e1 = e∗
1 , then agent 1 receives the 

prize x∗ while all other agents receive a zero prize. For any other effort profile, agent 2 receives 
x∗ and all other agents receive a zero prize. It follows that this contest implements (e∗

1, 0, . . . , 0)

and yields the payoff e∗
1 − x∗ = � to the principal. �

The next result states that it is without loss to focus on the implementation of effort profiles 
that are not too heterogeneous relative to the cost functions. The proof proceeds like the proof of 
Lemma 5 in Letina et al. (2020) and is therefore omitted.

Lemma 11. For any contest (y, π) that implements a pure-strategy effort profile ē such that

1

n

n∑
i=1

ci(ēi) > ck

(
1

n

n∑
i=1

ēi

)
∀k ∈ I,

there exists a contest (y′, π ′) that implements the pure-strategy effort profile ê given by ê1 =
. . . = ên = 1 ∑n

ēi , and yields the same expected payoff to the principal.

n i=1
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Now consider a sequence (cm
1 , . . . , cm

n )m∈N such that (cm
1 , . . . , cm

n ) → (c, . . . , c) uniformly. 
Let (ēm, (ym, πm))m∈N be a corresponding sequence of optimal solutions, i.e., (ym, πm) im-
plements ēm = (ēm

1 , . . . , ēm
n ) and solves the principal’s problem when the cost functions are 

(cm
1 , . . . , cm

n ). Given the above results, we can assume that �P (ēm | (ym, πm)) ≥ �m > 0, where 
�m = maxx∈[0,T ]

[
(cm

1 )−1(u(x)) − x
]
. We can also assume that

1

n

n∑
i=1

cm
i (ēm

i ) ≤ max
k∈I

cm
k

(
1

n

n∑
i=1

ēm
i

)
. (20)

We will write êm = (1/n) 
∑n

i=1 ēm
i for the average effort and xm =∑n

i=1 ym
i for the total budget 

of the contest at step m in the sequence. We first show that the total budget must be bounded.

Lemma 12. There exists B ∈ R such that xm ≤ B for all m.

Proof. Since (ym, πm) implements ēm, we must have

�P (ēm | (ym,πm)) ≤
[

n∑
i=1

(cm
i )−1(u(xm))

]
− xm.

Using Theorem 2 in Barvinek et al. (1991), it can be shown that (cm
i )−1 converges uniformly to 

c−1 for all i.22 Thus, for every ε > 0 there exists m′ ∈N such that for all m ≥ m′ and all i,

|(cm
i )−1(u(xm)) − c−1(u(xm))| < ε/n,

which implies 
∑n

i=1 |(cm
i )−1(u(xm)) − c−1(u(xm))| < ε, and therefore∣∣∣∣∣

(
n∑

i=1

(cm
i )−1(u(xm))

)
− xm −

(
nc−1(u(xm)) − xm

)∣∣∣∣∣< ε. (21)

Since u is weakly concave and c is strictly convex with limei→∞ c′(ei) = ∞, there exists 
B̃ > 0 such that nc−1(u(x)) − x < −ε for all x > B̃ . Therefore, if for any m ≥ m′ it was 
the case that xm > B̃ , inequality (21) would imply that 

(∑n
i=1(c

m
i )−1(u(xm))

) − xm < 0, 
which in turn implies �P (ēm | (ym, πm)) < 0. This is in contradiction to the assumption that 
�P (ēm | (ym, πm)) ≥ �m > 0. Hence we know that xm ≤ B̃ for all m ≥ m′. Now simply let 
B = max{x1, . . . , xm′−1, B̃}. �

For the remainder of the proof, we fix any B ∈ R such that xm ≤ B for all m.

Lemma 13. The sequence

κm = max
k∈I

cm
k (ēm

k ) − 1

n

n∑
i=1

cm
i (ēm

i )

converges to zero as m → ∞.

22 The theorem is directly applicable and implies our claim after we extend the functions c and cm
i

to R by defining 
cm(e) = c(e) = e for all e < 0.

i
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Proof. For every m ∈N , let

δm = max
k∈I

cm
k (êm) − 1

n

n∑
i=1

cm
i (ēm

i ) and ψm = max
i∈I

cm
i (ēm

i ) − max
k∈I

cm
k (êm),

and hence κm = δm + ψm. We will show that limm→∞ δm = limm→∞ ψm = 0, which immedi-
ately implies that limm→∞ κm = 0. For the sequence δm, note that

δm =
[

max
k∈I

cm
k (êm) − c(êm)

]
+
[

1

n

n∑
i=1

c(ēm
i ) − 1

n

n∑
i=1

cm
i (ēm

i )

]

+
[
c(êm) − 1

n

n∑
i=1

c(ēm
i )

]
.

By uniform convergence of cm
i to c, ∀i ∈ I , we have

lim
m→∞(cm

i (êm) − c(êm)) = 0 and lim
m→∞(cm

i (ēm
i ) − c(ēm

i )) = 0 ∀i ∈ I, (22)

and thus

lim
m→∞ max

k∈I
(cm

k (êm) − c(êm)) = 0 and lim
m→∞

(
1

n

n∑
i=1

cm
i (ēm

i ) − 1

n

n∑
i=1

c(ēm
i )

)
= 0.

In addition, by convexity of c we have c(êm) − 1
n

∑n
i=1 c(ēm

i ) ≤ 0 for all m ∈ N , and by condition 
(20) we have δm ≥ 0 for all m ∈N . Hence, we must also have

lim
m→∞

(
c(êm) − 1

n

n∑
i=1

c(ēm
i )

)
= 0, (23)

as otherwise for some large m we would have δm < 0, a contradiction. This concludes that 
limm→∞ δm = 0. For the sequence ψm, we have

ψm = max
k∈I

(c(êm) − cm
k (êm)) + max

i∈I

[
cm
i (ēm

i ) − c(ēm
i ) + c(ēm

i ) − c(êm)
]
.

Hence, by (22), a sufficient condition for limm→∞ ψm = 0 is

lim
m→∞(c(ēm

i ) − c(êm)) = 0 ∀i ∈ I. (24)

To establish (24), we first claim that there exists ẽ > 0 such that ēm
i ∈ [0, ẽ] for all i ∈ I and all 

m ∈ N . The fact that (ym, πm) implements ēm implies cm
i (ēm

i ) ≤ u(B) for all i ∈ I . Now fix any 
ũ > u(B). By uniform convergence of each cm

i to c it follows that there exists m′ ∈ N such that 
for all m ≥ m′,∣∣cm

i (ēm
i ) − c(ēm

i )
∣∣≤ ũ − u(B) ∀i ∈ I,

which then implies c(ēm
i ) ≤ ũ and therefore ēm

i ≤ c−1(ũ). Now just define ẽ as the maxi-
mum among c−1(ũ) and the finite number of values ēm

i for all i ∈ I and m < m′. We next 
claim that limm→∞(ēm

i − êm) = 0 holds for all i ∈ I . By contradiction, assume there ex-
ists i ∈ I and ε > 0 such that for all m′ ∈ N there exists m ≥ m′ so that |ēm

i − êm| ≥ ε. 
Define Ei = {(e1, . . . , en) ∈ [0, ẽ]n | |ei − 1 ∑n

ej | ≥ ε}. The set Ei is compact and the 

n j=1
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function χ(e) = 1
n

∑n
j=1 c(ej ) − c

(
1
n

∑n
j=1 ej

)
is continuous on Ei , with χ(e) > 0 due to 

strict convexity of c and ε > 0. Hence ε̃ = mine∈Ei
χ(e) exists and satisfies ε̃ > 0. We have 

thus shown that there exists ε̃ > 0 such that for all m′ ∈ N there exists m ≥ m′ so that 
χ(ēm) = −(c(êm) − 1

n

∑n
i=1 c(ēm

i )) ≥ ε̃, contradicting (23). Finally, (24) now follows imme-
diately because ēm

i ∈ [0, ẽ] and êm ∈ [0, ẽ] and c is continuous on [0, ẽ]. �
Next we show that the sum of effort costs is bounded away from zero for large m.

Lemma 14. There exist m′ ∈ N and c > 0 such that 
∑n

i=1 cm
i (ēm

i ) ≥ c for all m ≥ m′.

Proof. Let �m = maxx∈[0,T ] �m
1 (x) with �m

1 (x) = (cm
1 )−1(u(x)) − x be the lower profit bound 

for the cost functions (cm
1 , . . . , cm

n ) as defined earlier. Hence �P (ēm | (ym, πm)) ≥ �m holds 
for all m ∈N . Similarly, let �∞ = maxx∈[0,T ] �1(x) with �1(x) = c−1(u(x)) − x be the bound 
when the cost functions are (c, . . . , c). We first claim that limm→∞ �m = �∞. The claim follows 
immediately once we show that �m

1 converges uniformly to �1 on [0, T ]. Again using Theorem 
2 in Barvinek et al. (1991), it can be shown that (cm

1 )−1 converges uniformly to c−1 on [0, u(T )]. 
Thus for every ε > 0 there exists m′′ ∈N such that for all m ≥ m′′,

|�m
1 (x) − �1(x)| = |(cm

1 )−1(u(x)) − c−1(u(x))| < ε

for all x ∈ [0, T ], which establishes uniform convergence. Now fix any ε with 0 < ε < �∞ and 
define �̃ = �∞ − ε > 0. Hence there exists m′′′ ∈N such that for all m ≥ m′′′,

n∑
i=1

ēm
i ≥ �P (ēm | (ym,πm)) ≥ �m ≥ �̃ > 0.

Define

cm = min
e∈E

n∑
i=1

cm
i (ei) s.t.

n∑
i=1

ei = �̃.

We then obtain that 
∑n

i=1 cm
i (ēm

i ) ≥ cm for all m ≥ m′′′. Similarly, define

c∞ = min
e∈E

n∑
i=1

c(ei) s.t.
n∑

i=1

ei = �̃,

noting that c∞ > 0. It again follows from uniform convergence of cm
i to c for each i ∈ I that 

limm→∞ cm = c∞. Fix any ε′ such that 0 < ε′ < c∞ and define c = c∞ − ε′ > 0. It follows that 
there exists m′ ∈N such that for all m ≥ m′,

n∑
i=1

cm
i (ēm

i ) ≥ cm ≥ c,

which completes the proof. �
We can now combine Lemmas 13 and 14 to obtain the following result.

Lemma 15. There exists m ∈ N such that for all m ≥ m,

max
k∈I

cm
k (ēm

k ) ≤ 1

n − 1

n∑
cm
i (ēm

i ).
i=1
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Proof. By Lemma 14, there exist m′ ∈ N and c > 0 such that 
∑n

i=1 cm
i (ēm

i ) ≥ c for all m ≥ m′. 
In addition, from the limiting statement about κm in Lemma 13 we can conclude that there exists 
m′′ ∈ N such that for all m ≥ m′′,

max
k∈I

cm
k (ēm

k ) − 1

n

n∑
i=1

cm
i (ēm

i ) ≤ c

n(n − 1)
.

Thus for all m ≥ m = max{m′, m′′} we obtain

max
k∈I

cm
k (ēm

k ) − 1

n − 1

n∑
i=1

cm
i (ēm

i ) = max
k∈I

cm
k (ēm

k ) − 1

n

n∑
i=1

cm
i (ēm

i ) − 1

n(n − 1)

n∑
i=1

cm
i (ēm

i )

≤ c

n(n − 1)
− 1

n(n − 1)

n∑
i=1

cm
i (ēm

i )

≤ 0. �
Now consider any fixed m ≥ m, with m from Lemma 15. Combined with Lemma 6 we can 

conclude that the contest (ym, πm) and the effort profile ēm satisfy

max
k∈I

cm
k (ēm

k ) ≤ u

(
xm

n − 1

)
. (25)

We now show that ēm can also be implemented in a contest with the same prize budget and n − 1
identical prizes, given the cost functions (cm

1 , . . . , cm
n ).

Lemma 16. Fix any m ≥ m. There exists a contest (y, π) which implements ēm and has the prize 
profile y = (xm/(n − 1), . . . , xm/(n − 1), 0).

Proof. We construct the allocation rule π as follows. If e = ēm, the zero prize is given to agent i
with probability pi ≥ 0, while all other agents obtain one of the identical positive prizes. Below 
we will determine the values pi such that 

∑n
i=1 pi = 1. If e = (ei, ēm

−i ) with ei 	= ēm
i for some 

i ∈ I , the deviating agent i obtains the zero prize for sure and all other agents obtain one of the 
identical positive prizes. For all other effort profiles e, the allocation of the prizes can be chosen 
arbitrarily. First define p̃i implicitly by

(1 − p̃i)u

(
xm

n − 1

)
= cm

i (ēm
i ).

Since the LHS of this equation describes the expected payoff of agent i who expects to obtain the 
zero prize with probability p̃i , it follows that the contest (y, π) indeed implements ēm if pi ≤ p̃i

holds for all i ∈ I . The fact that cm
i (ēm

i ) ≤ u(xm/(n − 1)) for all i ∈ I due to (25) guarantees 
p̃i ≥ 0. Lemma 6 also implies that

n∑
i=1

cm
i (ēm

i ) =
n∑

i=1

(1 − p̃i)u

(
xm

n − 1

)
=
(

n −
n∑

i=1

p̃i

)
u

(
xm

n − 1

)
≤ (n − 1)u

(
xm

n − 1

)
,

which guarantees that 
∑n

i=1 p̃i ≥ 1. It is therefore possible to find equilibrium punishment prob-
abilities pi such that 0 ≤ pi ≤ p̃i ∀i ∈ I and 

∑n
pi = 1. �
i=1
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In sum, whenever m ≥ m, we can replace the optimal contest (ym, πm) by a contest with 
n − 1 identical prizes that implements the same effort profile and generates the same payoff for 
the principal. �

A.11. Proof of Proposition 8

Step 1. Take any contest ((ym, πm))m=1,...,n that implements some (z̄, e1, . . . , en). Fix any 
m ∈ {2, ..., n}. Let ȳm = 1

m−1

∑m−1
k=1 ym

k and let êm be such that

m − 1

m
u(ȳm) + 1

m
u(ym

m) − c(êm) = 1

m

m∑
k=1

u(ym
k ) − c(em).

It follows that êm ≥ em, because by concavity we have

m − 1

m
u(ȳm) = m − 1

m
u

(
1

m − 1

m−1∑
k=1

ym
k

)
≥ 1

m

m−1∑
k=1

u(ym
k ).

We now modify (if at all) the contest when there are m active agents. The modified prize 
profile ŷm is given by ŷm

1 = . . . = ŷm
m−1 = ȳm and ŷm

m = ym
m . The (anonymous) allocation rule 

π̂m is as follows. If all agents exert êm, then ŷm
m is randomly and uniformly allocated. If an agent 

unilaterally deviates to some e′ 	= êm, then he gets ŷm
m with probability one. For all other effort 

profiles, the allocation rule can be chosen arbitrarily.
We claim that the modified contest implements (z̄, e1, ..., êm, ...en). To see this, note first that

�m
(
êm, êm

−i | (ŷm, π̂m)
)= m − 1

m
u(ȳm) + 1

m
u(ym

m) − c(êm)

= �m
(
em, em

−i | (ym,πm)
)

≥ u(ym
m)

≥ �m
(
e, êm

−i | (ŷm, π̂m)
)

for all e 	= êm, where the second equality holds by construction and the first inequality follows 
because (ym, πm) implements (em, ..., em). Hence, (ŷm, π̂m) implements (êm, ..., êm). By con-
struction, the expected payoff of the agents remains unchanged (irrespective of the number of 
entrants). Therefore, the condition defining the cutoff z̄ is also unaffected.

The principal gives away the same prize sum and collects weakly higher efforts from the 
agents in the modified contest with m entrants. Therefore, the expected payoff of the principal 
must be weakly higher. Repeating the argument for all m establishes property (i) of the proposi-
tion.

Step 2. Now consider the contest constructed in Step 1, where each prize profile satisfies 
ŷm

1 = . . . = ŷm
m−1 = ȳm ≥ ŷm

m , which has the above defined allocation rule, and which implements 
(z̄, ê1, . . . , ên). Suppose that for some m ∈ {2, ..., n} we have

�m
(
êm, êm

−i | (ŷm, π̂m)
)= m − 1

m
u(ȳm) + 1

m
u(ŷm

m) − c(êm) > u(ŷm
m),

which requires ŷm
m < ȳm. Let ym

L = ŷm
m + ε and ym

H = ȳm − ε/(m − 1) and choose ε such that 
u(ym

L ) = �m
(
êm, êm

−i | (ŷm, π̂m)
)
. It is easy to see that such ε exists and ym

L ≤ ym
H still holds. 

Further, let ẽm be such that
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m − 1

m
u(ym

H ) + 1

m
u(ym

L ) − c(ẽm) = �m
(
êm, êm

−i | (ŷm, π̂m)
)
.

Again by concavity, we have ẽm ≥ êm.
We now modify the contest when there are m active agents. The modified prize profile ỹm is 

given by ỹm
1 = . . . = ỹm

m−1 = ym
H and ỹm

m = ym
L . The allocation rule π̃m is as follows. If all agents 

exert ẽm, then ỹm
m is randomly and uniformly allocated. If an agent unilaterally deviates to some 

e′ 	= ẽm, then he gets ỹm
m with probability one. For all other effort profiles, the allocation rule can 

be chosen arbitrarily. Now observe that

�m
(
ẽm, ẽm

−i | (ỹm, π̃m)
)= m − 1

m
u(ym

H ) + 1

m
u(ym

L ) − c(ẽm)

= �m
(
êm, êm

−i | (ŷm, π̂m)
)

= u(ym
L )

≥ �m
(
e, ẽm

−i | (ỹm, π̃m)
)

for all e 	= ẽm, which implies that (ỹm, π̃m) implements (ẽm, ..., ẽm). The rest of the proof is 
analogous to Step 1. �

A.12. Proof of Proposition 9

We first prove three intermediate results that apply to the case of perfect observability of 
efforts. Thereby, we do not make a distinction between the allocation rule π and the CSF p but 
use the notation π . We prove the proposition for an arbitrary observational structure afterwards.

Lemma 17. Suppose that efforts are perfectly observable. For any contest (y, π) that implements 
a strategy profile σ such that there exists some j ∈ I for which σj is not a Dirac measure, 
there exists a contest (y, π̂) that implements a pure-strategy profile ē and yields a strictly higher 
expected payoff to the principal.

Proof. We will show that there exists an ε > 0 and an allocation rule π̂ such that (y, π̂) im-
plements the pure-strategy profile ē = (ē1, . . . , ēn), where ēi = Eσ [ei] for all agents i 	= j and 
ēj = Eσ [ej ] + ε for agent j . We construct the allocation rule π̂ by letting

π̂ k
i (ẽ) =

⎧⎪⎨
⎪⎩
Eσ

[
πk

i (e)
]

if ẽ = ē,

Eσ

[
πk

i (0, e−j )
]

if ẽj 	= ēj and ẽ
 = ē
 ∀
 	= j,

πk
i (ẽ) otherwise,

for all i, k ∈ I .
We now show that, in the contest (y, π̂), there exists an ε > 0 such that for each agent i ∈ I

it is a best response to play ēi when the remaining agents are playing ē−i , which implies that 
(y, π̂ ) implements ē. This claim holds for each agent i 	= j because, ∀e′

i 	= ēi ,

�i(ē | (y, π̂)) =
n∑

k=1

π̂ k
i (ē)u(yk) − c(ēi)

=
n∑

Eσ

[
πk

i (e)u(yk)
]
− c (Eσ [ei])
k=1
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≥
n∑

k=1

Eσ

[
πk

i (e)u(yk)
]
−Eσ [c(ei)]

≥
n∑

k=1

Eσ

[
πk

i (0, e−i )u(yk)
]

≥
n∑

k=1

Eσ

[
πk

i (0, e−i )u(yk)
]
− c(e′

i )

=
n∑

k=1

π̂ k
i (e′

i , ē−i )u(yk) − c(e′
i )

= �i((e
′
i , ē−i ) | (y, π̂)),

where the first inequality follows the convexity of c and the second inequality follows from the 
fact that (y, π) implements σ . For agent j , c

(
Eσ [ej ]

)
< Eσ [c(ej )] since c is strictly convex and 

σj is not a Dirac measure. Then, there exists some ε > 0 such that

n∑
k=1

Eσ

[
πk

j (e)u(yk)
]
− c

(
Eσ

[
ej

]+ ε
)≥

n∑
k=1

Eσ

[
πk

j (e)u(yk)
]
−Eσ [c(ej )]

from which, analogously to the argument above, it follows that for all e′
j 	= ēj we have �j(ē |

(y, π̂ )) ≥ �j(e
′
j , ē−j | (y, π̂ )). Thus, (y, π̂ ) implements ē, resulting in a strictly higher payoff 

for the principal. �
Lemma 18. Suppose that efforts are perfectly observable. For any contest (y, π) that implements 
a pure-strategy profile ē and in which one of the following conditions is satisfied:

(i) y2 > 0, or
(ii) ēi 	= ēj for some i, j ∈ I ,

there exists a contest (ỹ, π̃) with ỹ2 = 0 that implements a symmetric pure-strategy profile 
(ẽ, . . . , ẽ) and yields a strictly higher expected payoff to the principal.

Proof. Starting from (y, π) that implements ē, we construct (ỹ, π̃ ) as follows. Let the prize 
profile be ỹ = (ỹ1, . . . , ỹn) with ỹ1 =∑n

i=1 yi ≡ x and ỹ2 = . . . = ỹn = 0. Let ex be the solution 
to 1

n
u(x) − c(ex) = 0, as defined in the body of the text. Let π̃ be such that the prize ỹ1 = x

is allocated randomly and uniformly among the agents when e = (ex, . . . , ex). If some agent 
i unilaterally deviates, then agent i receives the prize ỹn = 0 for sure, while the prize ỹ1 is 
allocated randomly among the non-deviating agents. For all other effort profiles, the allocation 
of the prizes can be chosen arbitrarily. It follows immediately from the definition of ex that this 
contest implements (ex, . . . , ex).

We now claim that 
∑n

i=1 ēi < nex , so that the principal’s payoff is strictly higher with (ỹ, π̃ )

than with (y, π). Using the fact that (y, π) implements ē, we have, ∀i ∈ I ,

�i(ē | (y,π)) =
n∑

k=1

π̂ k
i (ē)u(yk) − c(ēi) ≥ 0.

Summing over all agents, we obtain
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n∑
i=1

n∑
k=1

πk
i (ē)u(yk) −

n∑
i=1

c(ēi) =
n∑

k=1

u(yk) −
n∑

i=1

c(ēi) ≥ 0.

Now assume by contradiction that 
∑n

i=1 ēi ≥ nex . Then, we have

c(ex) ≤ c

(
1

n

n∑
i=1

ēi

)
≤ 1

n

n∑
i=1

c(ēi), (26)

where the second inequality follows from strict convexity of c, and the inequality is strict when-
ever the original contest (y, π) satisfied condition (ii) in the lemma. In addition, strict convexity 
of u together with u(0) = 0 implies that

n∑
k=1

u(yk) =
n∑

k=1

u
(yk

x
· x
)

≤
n∑

k=1

yk

x
· u(x) = u(x), (27)

and the inequality is strict whenever the original contest (y, π) satisfied condition (i) in the 
lemma. Taken together, we have

n∑
k=1

u(yk) −
n∑

i=1

c(ēi) < u (x) − nc(ex) = 0,

because either condition (i) or (ii) in the lemma is satisfied, which is a contradiction. �
Lemma 19. Suppose that efforts are perfectly observable. For any fixed prize sum x > 0, a con-
test (y, π) maximizes the principal’s payoff if and only if the prize profile is y = (x, 0, ...0) and 
the allocation rule satisfies, for each i ∈ I ,

(i) π1
i (ex, ex

−i ) = 1
n

, and

(ii) π1
i (ei , ex

−i ) ≤ c(ei )
u(x)

, ∀ei 	= ex .

Proof. It follows from Lemma 18 that we can constrain attention to contests with a prize profile 
given by y1 = x and y2 = . . . = yn = 0 and which implement a symmetric pure-strategy effort 
profile (as any contest violating these conditions cannot be optimal). Any such contest must 
satisfy u(x) − nc(ē) ≥ 0, where ē is the implemented individual level of effort, as otherwise 
unilateral deviations to zero effort would be profitable. Hence, for a given prize sum x > 0, the 
maximization problem

max
ē

nē − x s.t. u(x) − nc(ē) ≥ 0

describes an upper bound for the principal’s payoff. The unique solution to this problem is ē = ex .
The contest described in the proposition implements (ex, ..., ex) and hence achieves the upper 

bound and is optimal, which proves the if-statement. Any contest not satisfying conditions (i)
and (ii) in the proposition does not implement (ex, ..., ex) and thus does not achieve the upper 
bound, which proves the only-if-statement. �

We now prove the proposition. Fix an arbitrary observational structure (S, η) and a total bud-
get x > 0 and consider a contest (y, π) as described in the proposition. It clearly implements the 
effort profile (ex, ..., ex). Suppose by contradiction that (y, π) is not optimal, i.e., there exists a 
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contest (ỹ, π̃) with the same total prize budget x and which implements some strategy profile σ
such that

�P (σ | (ỹ, π̃)) = Eσ

[
n∑

i=1

ei

]
− x

> �P ((ex, . . . , ex) | (y,π)) = nex − x.

Construct a contest (ỹ, π̂ ) for the setting with perfect observation of efforts by defining

π̂ k
i (e) = Eηe

[
π̃ k

i (s)
]

for all i, k ∈ I and all e ∈ E. It follows that the induced CSF p̂ of the contest (ỹ, π̂) with perfect 
observation is identical to the induced CSF p̃ of the contest (ỹ, π̃ ) with the original observational 
structure (S, η). Since the prize profiles are also identical, it follows that (ỹ, π̂) implements σ
under perfect observation and achieves a payoff for the principal strictly larger than nex − x. 
This is a contradiction to Lemma 19. �
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