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Abstract 

Objectives The purpose of this study was to determine the influence of dose reduction on a commercially available 
lung cancer prediction convolutional neuronal network (LCP‑CNN).

Methods CT scans from a cohort provided by the local lung cancer center (n = 218) with confirmed pulmonary malignan‑
cies and their corresponding reduced dose simulations (25% and 5% dose) were subjected to the LCP‑CNN. The resulting 
LCP scores (scale 1–10, increasing malignancy risk) and the proportion of correctly classified nodules were compared. The 
cohort was divided into a low‑, medium‑, and high‑risk group based on the respective LCP scores; shifts between the groups 
were studied to evaluate the potential impact on nodule management. Two different malignancy risk score thresholds were 
analyzed: a higher threshold of ≥ 9 (“rule‑in” approach) and a lower threshold of > 4 (“rule‑out” approach).

Results In total, 169 patients with 196 nodules could be included (mean age ± SD, 64.5 ± 9.2 year; 49% females). Mean 
LCP scores for original, 25% and 5% dose levels were 8.5 ± 1.7, 8.4 ± 1.7 (p > 0.05 vs. original dose) and 8.2 ± 1.9 (p < 0.05 
vs. original dose), respectively. The proportion of correctly classified nodules with the “rule‑in” approach decreased 
with simulated dose reduction from 58.2 to 56.1% (p = 0.34) and to 52.0% for the respective dose levels (p = 0.01). 
For the “rule‑out” approach the respective values were 95.9%, 96.4%, and 94.4% (p = 0.12). When reducing the original 
dose to 25%/5%, eight/twenty‑two nodules shifted to a lower, five/seven nodules to a higher malignancy risk group.

Conclusion CT dose reduction may affect the analyzed LCP‑CNN regarding the classification of pulmonary malig‑
nancies and potentially alter pulmonary nodule management.

Clinical relevance statement Utilization of a “rule‑out” approach with a lower malignancy risk threshold prevents 
underestimation of the nodule malignancy risk for the analyzed software, especially in high‑risk cohorts.

Key Points 

• LCP-CNN may be affected by CT image parameters such as noise resulting from low-dose CT acquisitions.

• CT dose reduction can alter pulmonary nodule management recommendations by affecting the outcome of the LCP-CNN.

• Utilization of a lower malignancy risk threshold prevents underestimation of pulmonary malignancies in high-risk cohorts.
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Introduction
Pulmonary nodules are a frequent incidental finding on 
chest computed tomography (CT) with a substantially 
increasing incidence in the past three decades, mainly 
driven by technical improvements such as the intro-
duction of spiral CT, increasing number of screening 
examinations and the widespread dissemination of CT 
scanners. In the literature, the proportion of chest CT 
scans containing pulmonary nodules varies between 15 
and 50% [1, 2]. Management guidelines for incidental as 
well as screening-detected nodules are currently based on 
the nodule size, respectively the nodule volume, in combi-
nation with the individual risk profile of the patient [2–5].

Being able to accurately predict malignancy in pulmo-
nary nodules in general would not only reduce the num-
ber of unnecessary follow-up examinations or invasive 
interventions, but also reduce the timespan to confirm 
the diagnosis for the patient. This could possibly enable 
curative treatment of early-stage lung cancers and hereby 
improve the overall survival of the patients [6].

To aid risk prediction in pulmonary nodules, various 
malignancy estimation models based on radiological and 
clinical parameters have been developed [7, 8]. One of 
the most renowned ones is the logistic regression model 
developed by the Brock University [7]. Although initially 
being designed for screening examinations, it has been 
validated successfully on cohorts with incidental pulmo-
nary nodules in the past as well [9–11]. However, there 
are concerns about the use of such prediction models in 
clinical practice. For example, there is considerable varia-
tion between different observers regarding the data input 
such as precise nodule measurement or classification of 
the nodule borders [12, 13]. Vachani et  al furthermore 
raised concerns regarding a potential overestimation of 
nodule malignancy caused by differing underlying cancer 
prevalence of the respective analyzed cohorts [14].

One critical step to surpass inaccuracies in radiologi-
cal lesion assessment is the utilization of computer-aided 
diagnostic (CAD) systems. CAD systems support radiolo-
gists with detecting and classifying nodules by a reduction 
of inter-reader variability [15–17]. Furthermore, artificial 
intelligence (AI) systems in general and deep learning 
(DL)–based malignancy risk stratification in particular 
are increasingly investigated for their capability to aid cor-
rect nodule classification by malignancy prediction. These 
systems interact directly with the image and patient infor-
mation without the need for manual data input or reader 
interaction. The lung cancer prediction convolutional 
neuronal network (LCP-CNN) evaluated in this study cre-
ates an individual malignancy risk score for each assessed 
nodule [18]. It was specifically designed to identify benign 
nodules in order to avoid unnecessary follow-up exami-
nations [19]. Several studies have already assessed the 

potential of this algorithm, some of them hinting at its 
superiority over the established risk models [19–22]. 
However, in view of the increasing implementation of 
such systems in daily clinical practice, there is no consen-
sus on how to use them for actual patient management, 
nor have they been implemented in the abovementioned 
guidelines. One major concern about DL-based systems 
is the generalizability from the available training data to 
all clinical scenarios encompassing local epidemiological 
variations, patient factors such as age, underlying lung 
disease such as emphysema or fibrosis, and technical bias 
such as CT manufacturer, CT technology (e.g., single or 
dual source, dual-layer detector, photon counting), scan-
ning parameters, and CT dose. Since the presentation of 
a pulmonary lesion will vary with these factors, DL-based 
algorithms may be affected in their performance. Wich-
mann and colleagues have therefore recommended train-
ing the algorithms with data sets from different sites and 
vendors in order to avoid problems such as the disease 
prevalence bias or technical bias [23].

The effects of dose reduction on a DL-based CAD sys-
tem have already been assessed in previous studies utilizing 
chest phantoms [24, 25] and have been validated in rela-
tively small clinical cohorts as well [26, 27] but still demand 
verification in larger cohorts over a wide variability of CT 
scanners and vendors. Due to the fact that the mentioned 
software was designed to identify benign lesions [19], the 
goal was to assess the limits and false-negative rate of the 
software by using a cohort of proven malignancies.

The aims of this study were to assess (1) the effects of 
dose reduction on a deep learning-based malignancy 
risk stratification system using a cohort of patients with 
incidental lung malignancies and (2) the effects on lesion 
management caused by dose reduction.

Methods/materials
Study cohort
This study was approved by the local ethics commit-
tee and conducted in accordance with the principles of 
the Declaration of Helsinki. For this retrospective study, 
a patient selection from the local lung cancer center 
archive was used, consisting of 218 patients. This selec-
tion consisted of patients with histologically proven T1 
lung cancers (biopsy or resection), who received the ini-
tial chest CT scan between 2013 and 2017 (Table 1).

Computed tomography scans and virtual CT dose 
reduction simulation
The 218 CT examinations of the primary cohort (80% with 
contrast media, n = 175) originated from over 20 differ-
ent sites with five different CT vendors (Siemens, n = 130; 
Philips, n = 34; GE, n = 28; Toshiba, n = 25; Canon, n = 1). 
The acquired minimum slice thickness varied from 0.5 to 
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4 mm, the majority of scans having a minimum slice thick-
ness of ≤ 1.5 mm (66.8%, Table 2). The reconstruction algo-
rithms included filtered-back projection (n = 98) as well as 
iterative reconstruction (n = 71). Scan volumes varied from 
chest-only acquisitions to whole-body examinations. The 
mean effective doses were 4.4 mSv, 12.8 mSv, 9.0 mSv, and 
4.2 mSv for the chest-only acquisitions (n = 101), chest plus 

neck or abdomen acquisitions (n = 35), whole-body acquisi-
tions (n = 3), and PET/CT scans (n = 30), respectively. The 
CT examinations were transferred to a dedicated post-
processing imaging lab specialized on LDCT simulations 
(Ravin Advanced Imaging (RAI) Lab, Duke University). The 
reduced dose simulations were produced by adding statis-
tical noise to the images using a previously described CT 
image-based noise addition tool [28]. Two low-dose simu-
lation levels were created for each CT scan, which led to 
three different dose levels for each examination: Original, 
25% and 5% dose level. The 25% and 5% dose levels were 
chosen to resemble low-dose (1–2 mSv) and ultralow-dose 
(0.1–0.2 mSv) chest CT scans [29].

Lung cancer prediction convolutional neural network
The algorithm used in this study is a commercially availa-
ble FDA-approved LCP-CNN, which is based on a Dense 
Convolutional Network, a type of deep learning CNN 

Table 1 Patient and nodule characteristics

NET neuroendocrine tumor, (N)SCLC (non-)small-cell lung cancer, SAD small 
airway disease, SCC squamous cell carcinoma
* Other entities: spindle cell carcinoma (n = 1), adenoid cystic carcinoma (n = 1), 
inflammatory fibroblastic tumor (n = 1), clear cell tumor (n = 1)

Sex (f/m) 68/101

Age (years, mean (SD)) 64.5 (9.2)

Other radiological pulmonary diagnoses, n (%)

  Emphysema 115 (58.7%)

  Fibrosis 1 (0.5%)

  Congestion 7 (3.6%)

  Pleural effusion 10 (5.1%)

  Pneumonia 28 (13.3%)

  Atelectasis 20 (10.2%)

  Bronchitis 151 (77.0%)

  SAD 30 (15.3%)

  Postoperative status 7 (3.6%)

Nodule localization, n (%)

  Right upper lobe 59 (30.1%)

  Middle lobe 11 (5.6%)

  Right lower lobe 43 (21.9%)

  Left upper lobe 43 (21.9%)

  Left lower lobe 32 (16.3%)

  Central bronchi 8 (4.1%)

Nodule attenuation and size categories, n (%)

  Solid 157 (80.1%)

    4–6 mm 7 (3.6%)

     > 6–8 mm 9 (4.6%)

     > 8–15 mm 56 (28.6%)

     > 15–30 mm 85 (43.6%)

  Part‑solid 28 (14.3%)

     < 6 mm 8 (4.1%)

     ≥ 6 mm 20 (10.2%)

  Ground‑glass 11 (5.6%)

     < 30 mm 11 (5.6%)

     > 30 mm ‑

Type of malignancy, n (%)

  Adenocarcinoma 113 (57.7%)

  SCC 47 (24.0%)

  NET 18 (9.2%)

  SCLC 6 (3.1%)

  NSCLC 5 (2.6%)

  Metastasis 3 (1.5%)

  Other* 4 (2.0%)

Table 2 CT scan parameters

CTDIvol volume computed tomography dose index, DLP dose-length-product, 
PET-CT positron emission tomography-computed tomography, SD standard 
deviation
# Calculated using the conversion factor of 0.014 [38]

Dose parameters of the original scans, mean (SD)

  DLP, mGycm

    Chest only (n = 101) 315.2 (238.3)

    Chest plus neck/abdomen (n = 35) 915.3 (633.5)

    Whole‑body acquisition (n = 3) 643.7 (559.7)

    PET‑CT (n = 30) 297.5 (151.1)

  CTDIvol, mGy

    Chest only (n = 101) 13.4 (13.3)

    Chest plus neck/abdomen (n = 35) 26.4 (26.5)

    Whole‑body acquisition (n = 3) 20.7 (28.8)

    PET‑CT (n = 30) 4.0 (2.1)

  Effective dose,  mSv#

    Chest only (n = 101) 4.4 (3.3)

    Chest plus neck/abdomen (n = 35) 12.8 (8.8)

    Whole‑body acquisition (n = 3) 9.0 (7.8)

    PET‑CT (n = 30) 4.1 (2.1)

Minimum slice thickness, n (%)

  0.5 mm 4 (2.4%)

  0.625 mm 3 (1.8%)

  0.75 mm 1 (0.6%)

  0.9 mm 5 (3.0%)

  1 mm 67 (39.6%)

  1.25 mm 26 (15.4%)

  1.5 mm 7 (4.1%)

  2 mm 46 (27.2%)

  2.5 mm 1 (0.6%)

  3 mm 7 (4.1%)

  4 mm 2 (1.2%)
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architecture designed for computer vision tasks [20, 21, 
30]. It was trained on the National Lung Screening Trial 
(NLST) data. In the standard procedure of the utilized 
version, the respective nodule is manually marked by a 
radiologist, the algorithm then automatically segments 
the nodule and a certain perinodular region of interest, 
with no possibility for secondary manual adjustments. It 
then provides a score from 1 to 10, which can be read as a 
likelihood for malignancy of that specific nodule, hereby 
a higher score indicates a greater chance of malignancy. 
Kim et  al proposed the division into three risk groups 
based on the malignancy risk thresholds according to 
the American College of Chest Physician guidelines: 
LCP score ≤ 4 (malignancy risk < 5%), LCP score 5–8 
(malignancy risk 5–65%), and LCP score ≥ 9 (malignancy 
risk > 65%) [22, 31]. A detailed description of the LCP-
CNN can be found in the supplements.

Assessment of impact on patient management
In order to assess a possible impact of simulated dose 
reduction on patient management, the proportion of cor-
rectly classified nodules was compared between the three 
dose levels based on the two malignancy risk thresholds 
according to the American College of Chest Physician 
guidelines [5]. The guidelines propose a 5% (“rule-out”) 
and a 65% (“rule-in”) malignancy risk threshold, dividing 
the current cohort into three risk groups:

– Low risk: LCP score ≤ 4 equal to a malignancy 
risk < 5%

– Intermediate risk: LCP score 5–8 equal to a malig-
nancy risk from 5 to 65%

– High risk: LCP score ≥ 9 equal to a malignancy 
risk > 65%

Following these categories, the definition of a “cor-
rectly” classified malignant nodule would be a score of 9 
or 10 using the “rule-in”-approach and a score of > 4 using 
the “rule-out”-approach. For the purpose of this study, 
changes in these categories based on simulated dose 
reduction were assumed clinically relevant for patient 
management.

Statistical analysis
All analyses were performed using SPSS (SPSS Statis-
tics, IBM Corp., version 25.0.) and GraphPad Prism 
(GraphPad Software, Inc., version 8). Metric variables 
are reported as mean (standard deviation), categori-
cal variables as absolute number (relative proportion). 
The LCP scores of the three dose levels were compared 
by using the Friedman ANOVA for paired samples, 
the number of correctly classified nodules by using 

the Cochran’s Q test. Cohen’s Kappa (κ) was used to 
assess the correlation between the LCP scores of the 
different dose levels. Hereby, κ was interpreted as fol-
lows: slight agreement (0 < κ ≤ 0.2), fair agreement 
(0.2 < κ ≤ 0.4), moderate agreement (0.4 < κ ≤ 0.6), sub-
stantial agreement (0.6 < κ ≤ 0.8), almost perfect agree-
ment (0.8 < κ ≤ 1.0) [32]. A p value < 0.05 was considered 
statistically significant.

Results
Patient and nodule characteristics
After evaluation of the primary cohort, eight patients 
had to be excluded because the virtual dose reduc-
tion simulation was not feasible due to technical issues 
such as incomplete coverage of the lungs. Another 41 
patients had to be excluded because the LCP-CNN 
rejected to analyze the CT datasets due to restrictions, 
such as a slice thickness > 4  mm, missing CT slices or 
because the nodule segmentation was not feasible 
(Fig. 1).

In total, 169 patients with 196 malignancies could be 
included into the study (mean age ± SD, 64.5 ± 9.2 years, 
49% females; Table  1, Figs.  2 and 3). One hundred 
eight-nine nodules were primary malignancies of the 
lung, three were metastases and four were other enti-
ties (spindle cell carcinoma, n = 1; adenoid cystic car-
cinoma, n = 1; inflammatory fibroblastic tumor, n = 1; 
clear cell tumor, n = 1; Table 1).

Simulated dose reduction leads to inferior performance 
of the LCP‑CNN
The mean LCP scores were similar for the original dose 
examinations (8.5 ± 1.7) compared to the 25% dose 

Fig. 1 Patient flowchart
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(8.4 ± 1.7, p = 0.42) and higher compared to the 5% dose 
simulations (8.2 ± 1.9, p = 0.006) (Table  3, Fig.  4). The 
difference between 25 and 5% dose simulations did not 
reach statistical significance (p = 0.07). The correlation 
between the scores of the original dose and 25% dose was 
almost perfect (κ = 0.81) whereas the correlation between 
original and 5% dose was only moderate (κ = 0.54).

Comparison of the three dose levels using the 
5%-malignancy risk threshold (“rule-out” threshold) 
revealed no significant differences regarding the pro-
portion of correctly classified nodules (95.9% vs. 96.4% 
vs. 94.4%; p = 0.12). When performing the same analy-
sis using the 65% malignancy risk threshold (”rule-in” 
threshold), the algorithm classified significantly less 

Fig. 2 CT images of a 65‑year old male patient (former smoker, 40 pack‑years) depicting a small cell lung cancer (red arrow) with a diameter 
of 10 mm in the left upper lobe (circle) at 100% (A), and simulated 25% (B) and 5% (C) dose. The respective LCP scores for the three dose levels were 
4, 3, and 3 (corresponding to an estimated malignancy risk < 5% for all three dose levels)

Fig. 3 CT images of a 61‑year‑old female patient (longtime smoker) with an 18‑mm part‑solid lesion (solid part 8 mm) in the left upper lobe (red 
arrow) depicted with 100% (A), and simulated 25% (B) and 5% (C) dose. The respective LCP score for the three dose levels was 10 (corresponding 
to an estimated malignancy risk > 65% for all three dose levels). Biopsy showed that the tumor was an adenocarcinoma
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nodules as high risk nodules using the 5% dose simula-
tions compared to the original dose (52.0% vs. 58.2%; 
p = 0.01). Of note, original dose and 25% dose level 
simulations yielded similar sensitivity (56.1% vs. 58.2%, 
p = 0.34).

A subgroup analysis revealed no significant correla-
tion between the proportions of correctly classified nod-
ules with the most frequent underlying lung pathologies 
(bronchitis, emphysema and small airway disease).

Simulated dose reduction can cause reclassification 
of the malignancy risk group
The distribution between the different malignancy risk 
groups was similar for the three dose levels (Table 4). In 
total, 7% (n = 13) of all nodules shifted to another malig-
nancy risk group when comparing the original dose to 
the 25% dose simulation scans; hereby, 3% (n = 5) of the 
nodules shifted to a higher malignancy risk group, and 
5% (n = 8) shifted to a lower risk group (Fig. 5). Regard-
ing attenuation and size groups, 23% (n = 3) of the shifted 

nodules were subsolid, 20% (n = 2) of the solid nodules 
were < 10 mm.

When comparing the scores of the 5% dose simula-
tions to the scores of the original scans, 14.8% (n = 29) of 
the nodules were re-classified to another malignancy risk 
group; 4% (n = 7) shifted to a higher malignancy risk group, 
and 11% (n = 22) shifted to a lower risk group (Fig. 5).

Regarding the attenuation and size groups, 24% (n = 7) 
of the shifted nodules were subsolid, 23% (n = 5) of the 
solid nodules were < 10 mm.

Discussion
In this study, we could demonstrate that simulated dose 
reduction has an effect on the performance of a DL-
based malignancy risk stratification system in cohort of 
proven pulmonary malignancies, which may have impli-
cations regarding patient management.

The dose dependency of AI-based CAD systems has 
been described previously [24, 33–35]; however, the 
existing studies primarily focused on nodule detection 
rather than malignancy risk estimation. So far, the evalu-
ation of dose reduction effects was mainly examined in 
lung cancer screening programs than in the context of 
incidental pulmonary nodules. However, recent devel-
opments such as photon counting detectors will inevi-
tably increase the number of low-dose chest CT applied 

Table 3 Crosstab of Lung Cancer Prediction (LCP) scores between different dose levels

Bold indicating concordant scores

25%‑dose level LCP scores 5%‑dose level LCP scores

Original dose LCP scores 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

2 1 1 0
3 1 2 2 1
4 1 1 2 2 1 1

5 4 1 1 2
6 1 8 1 1 1 1 6 1

7 2 18 2 1 8 9 4

8 3 32 2 1 1 8 23 6

9 7 34 2 12 25 2

10 6 67 1 3 10 59

Fig. 4 Histogram of the of Lung Cancer Prediction (LCP) scores 
grouped by dose level

Table 4 Risk group distribution by dose level

* p = 0.012 vs. original dose

Original dose 25% dose 5% dose

Low risk (< 5%),
LCP score 1–4

8 (4.1%) 7 (3.6%) 11 (5.6%)

Intermediate risk (5–65%),
LCP score 5–8

74 (37.8%) 79 (40.3%) 83 (42.3%)

High risk (> 65%),
LCP score 9–10

114 (58.2%) 110 (56.1%) 102 (52.0%)*
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in daily clinical routine [36] and underline the relevance 
for incidental pulmonary malignancies. Jungblut et  al 
for example have taken first steps in this direction by 
evaluating the performance of energy-integrating detec-
tor (EID)-CT trained algorithms in photon counting CT 
scans with reduced dose levels [37].

In our study, the LCP-CNN scored 58% (n = 114/196) 
of all malignancies as ≥ 9, which is the so-called rule-
in threshold [5], in the original scans. This proportion 
decreased significantly to 52% when using the 5% dose 
simulations. These numbers are somewhat comparable to 
the results of Massion et al, who reported proportions of 
36% and 70% correctly classified lung cancers in two dif-
ferent cohorts [20].

Using the so-called rule-out approach with a thresh-
old LCP score of < 4, there were 4% (n = 8), 4% (n = 7), 
and 6% (n = 11) false-negatives observed for the origi-
nal, the 25%, and the 5% dose simulation, respectively, 
the difference not reaching statistical significance. The 
corresponding values reported by Massion and col-
leagues for their two cohorts were 2% and 3%, respec-
tively. These findings underline the aforementioned 
fact that the algorithm was primarily designed to rule 
out benign nodules rather than to correctly identify 
malignant ones. Interestingly, the differences to Mas-
sion et  al were not as striking as expected, despite 
the fact that the current work included both types of 

nodule densities, solid and subsolid, as well as contrast-
enhanced and non-contrast CT scans. Massion and 
colleagues only included non-contrast scans with solid 
nodules, which the software was initially trained on. 
Apparently, the algorithm is able to process contrast-
enhanced scans and subsolid nodules with a compara-
ble performance as well.

Regarding the effects of simulated dose reduction, it 
could be shown that a reduction to 25% and 5% of the 
original dose leads to lower mean LCP scores, at least 
in this specific setting, which focused solely on pulmo-
nary malignancies. In order to elaborate the clinical rel-
evance of these findings, the malignancy risk group shifts 
between the three dose levels were analyzed. Consider-
ing all upward and downward shifts, 4% (low-dose) and 
9% (ultralow-dose) of all nodules were falsely categorized 
into the medium- instead of the high-risk group, which 
could hypothetically delay the correct diagnosis and 
timely treatment of patients. However, only 0.5% and 2% 
of the nodules were falsely categorized into the low-risk 
group after simulated dose reduction, again underlining 
that the LCP-CNN should rather be used in a “rule-out” 
approach with a low malignancy risk threshold.

This study has several limitations. First, the cohort 
did not fulfill the criteria the software was initially 
designed and approved for, since it contained contrast-
enhanced scans and subsolid nodules. Despite this fact, 

Fig. 5 Risk group reclassification by simulated dose reduction. a Original vs. 25% dose. b Original vs. 5% dose
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the algorithm showed a performance in the current study 
comparable to the validation studies, which were in keep-
ing with the strict admission criteria [20]. Furthermore, 
it seemed pertinent to evaluate the software performance 
not only for one specific setting, especially in front of the 
upcoming or already established lung cancer screening 
programs all over the globe, in which a wide variety of 
different vendors, scanner types, and scan protocols can 
be expected.

Second, only histologically proven malignant nodules 
were included in this study. This approach allowed the 
assessment of the systems’ false-negative rate but does 
not allow any statement on false-positive rates and limits 
the comparability with similar studies. However, due to 
the fact that the software was designed to rule out malig-
nancy in pulmonary nodules instead of detecting malig-
nancies correctly, as reported in the past already [19], it 
seemed more tempting to assess the software’s limits by 
using a cohort of proven malignancies. However, valida-
tion of our results in a cohort including a benign control 
group is warranted.

Third, the authors are aware that virtual dose reduc-
tion created during post processing is not a perfect sub-
stitute for low-dose or ultralow-dose CT scans. However, 
this approach has been validated before [28] and enabled 
intra-patient comparison without the need for unneces-
sary radiation exposure.

In conclusion, this study showed that simulated dose 
reduction by 75% appears to be feasible without signifi-
cantly altering the outcome of the LCP-CNN. Simulated 
dose reduction by 95% to an ultralow-dose level poten-
tially alters the outcome of a DL-based malignancy risk 
estimation system, at least in the current setting using a 
high-risk cohort of proven malignancies, and that this 
alteration may affect patient management. However, 
underestimation of lung cancer can be avoided by using 
a “rule-out” approach with a lower malignancy risk score 
threshold.

The next step towards clinical implementation of the 
software are the validation of the achieved results by 
repeating the analysis on a larger cohort, ideally in a pro-
spective, randomized-controlled setting and containing 
both malignant and benign nodules, as well as a larger 
number of non-solid nodules.
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