Evolution of water production of 67P/Churyumov-Gerasimenko: An empirical model and a multi-instrument study

Hansen, Kenneth C.; Altwegg, K.; Berthelier, J.-J.; Bieler, A.; Biver, N.; Bockelée-Morvan, D.; Calmonte, U.; Capaccioni, F.; Combi, M. R.; Keyser, J. De; Fiethe, B.; Fougere, N.; Fuselier, S. A.; Gasc, S.; Gombosi, T. I.; Huang, Z.; Le Roy, L.; Lee, S.; Nilsson, H.; Rubin, M.; ... (2016). Evolution of water production of 67P/Churyumov-Gerasimenko: An empirical model and a multi-instrument study. Monthly notices of the Royal Astronomical Society, 462, stw2413. Oxford University Press 10.1093/mnras/stw2413

[img] Text
stw2413.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (8MB)

We examine the evolution of the water production of comet 67P/Churyumov-Gerasimenko during the Rosetta mission (2014 June-2016 May) based on in situ and remote sensing measurements made by Rosetta instruments, Earth-based telescopes and through the development of an empirical coma model. The derivation of the empirical model is described and the model is then applied to detrend spacecraft position effects from the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) data. The inter-comparison of the instrument data sets shows a high level of consistency and provides insights into the water and dust production. We examine different phases of the orbit, including the early mission (beyond 3.5 au) where the ROSINA water production does not show the expected increase with decreasing heliocentric distance. A second important phase is the period around the inbound equinox, where the peak water production makes a dramatic transition from northern to southern latitudes. During this transition, the water distribution is complex, but is driven by rotation and active areas in the north and south. Finally, we consider the perihelion period, where there may be evidence of time dependence in the water production rate. The peak water production, as measured by ROSINA, occurs 18-22 d after perihelion at 3.5 ± 0.5 × 1028 water molecules s-1. We show that the water production is highly correlated with ground-based dust measurements, possibly indicating that several dust parameters are constant during the observed period. Using estimates of the dust/gas ratio, we use our measured water production rate to calculate a uniform surface loss of 2-4 m during the current perihelion passage.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Physics Institute > Space Research and Planetary Sciences
08 Faculty of Science > Physics Institute

UniBE Contributor:

Altwegg, Kathrin, Rubin, Martin

Subjects:

500 Science > 520 Astronomy
500 Science > 530 Physics
600 Technology > 620 Engineering

ISSN:

0035-8711

Publisher:

Oxford University Press

Language:

English

Submitter:

Dora Ursula Zimmerer

Date Deposited:

27 Oct 2023 07:19

Last Modified:

29 Oct 2023 02:26

Publisher DOI:

10.1093/mnras/stw2413

BORIS DOI:

10.48350/187483

URI:

https://boris.unibe.ch/id/eprint/187483

Actions (login required)

Edit item Edit item
Provide Feedback