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ABSTRACT

Context. The characterization of the interior of an exoplanet is an inverse problem. The solution requires statistical methods such
as Bayesian inference. Current methods employ Markov chain Monte Carlo (MCMC) sampling to infer the posterior probability of
the planetary structure parameters for a given exoplanet. These methods are time-consuming because they require the evaluation of a
planetary structure model ∼105 times.
Aims. To speed up the inference process when characterizing an exoplanet, we propose to use conditional invertible neural networks
to calculate the posterior probability of the planetary structure parameters.
Methods. Conditional invertible neural networks (cINNs) are a special type of neural network that excels at solving inverse problems.
We constructed a cINN following the framework for easily invertible architectures (FreIA). This neural network was then trained on a
database of 5.6 × 106 internal structure models to recover the inverse mapping between internal structure parameters and observable
features (i.e., planetary mass, planetary radius, and elemental composition of the host star). We also show how observational uncer-
tainties can be accounted for.
Results. The cINN method was compared to a commonly used Metropolis-Hastings MCMC. To do this, we repeated the characteri-
zation of the exoplanet K2-111 b, using both the MCMC method and the trained cINN. We show that the inferred posterior probability
distributions of the internal structure parameters from both methods are very similar; the largest differences are seen in the exoplanet
water content. Thus, cINNs are a possible alternative to the standard time-consuming sampling methods. cINNs allow infering the
composition of an exoplanet that is orders of magnitude faster than what is possible using an MCMC method. The computation of a
large database of internal structures to train the neural network is still required, however. Because this database is only computed once,
we found that using an invertible neural network is more efficient than an MCMC when more than ten exoplanets are characterized
using the same neural network.

Key words. planets and satellites: interiors – methods: numerical – methods: data analysis

1. Introduction

More than a decade ago, exoplanetary science has entered the
era of characterization, where new observations are used to infer
physical and chemical properties of exoplanets. These properties
can be related to the atmosphere (e.g., Hoeijmakers et al. 2019;
Madhusudhan 2019) or to the planetary composition (e.g., Dorn
et al. 2015). In the latter case, mass and radius measurements of
an exoplanet are used to derive its internal structure (e.g., size of
the iron core, presence of water, or gas mass fraction). This prob-
lem is notoriously strongly degenerate (Rogers & Seager 2010),
but part of this degeneracy can be removed by assuming that the
bulk refractory composition of an exoplanet matches the compo-
sition of its parent star (Dorn et al. 2017b). This assumption is
supported by numerical simulations (e.g., Thiabaud et al. 2015)
as well as Solar System observations (e.g., Sotin et al. 2007),
although studies of observed exoplanets are not yet conclusive
(Plotnykov & Valencia 2020; Schulze et al. 2021; Adibekyan
et al. 2021).

Even under the assumption that the bulk compositions of
the exoplanet and parent star match, the problem of deriving
the planetary composition from the mass, radius, and refractory
composition remains degenerate. The traditional method is to use
Bayesian inference where the posterior probability of the plan-
etary structure parameters is derived from the set of observed
parameters, given prior probability distributions on the plan-
etary structure parameters. These Bayesian calculations are in
general performed using a Markov chain Monte Carlo (MCMC)
method (Mosegaard & Tarantola 1995; Dorn et al. 2015; Dorn
et al. 2017b; Haldemann et al., in prep.)

Markov chain Monte Carlo methods are an efficient and well-
tested way of sampling probability distributions. No analytical
description of the whole normalized probability density func-
tion (PDF) of the target distribution is required. Instead, only the
ratios of the PDF at pairs of locations in the phase space need
to be calculated (Hogg & Foreman-Mackey 2018). This means
that in the case of Bayesian inference, only the prior probabil-
ity and the likelihood function need to be computed, and the
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Draw sample x(i)

from proposal
distribution q

Calculate prior
probability: p(x(i))

Calculate forward
model f (x(i))

Calculate likelihood
function: L(y|x(i), f )

Draw random num-
ber: r ∼ U(0, 1)

logL(i) + log p(x(i))
≥

logL(i−1)+log p(x(i−1))

Save x(i) to the
Markov chain
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r ≤ L(i) p(x(i))
L(i−1) p(x(i−1))

T: accept

F: reject

F: recject
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Fig. 1. Schematic overview of a Metropolis Hastings MCMC algorithm.
The MCMC algorithm generates samples x(0) . . . x(n) ∼ π, where the dis-
tribution π is proportional to the posterior probability p(x|y).

expensive calculation of Bayes’ integral can be skipped, which
acts as a normalization constant. A short conceptual summary
of a common Metropolis Hastings MCMC method (Metropolis
et al. 1953; Hastings 1970) is shown in Fig. 1. We refer to Trotta
(2008) and Hogg & Foreman-Mackey (2018) for a more detailed
introduction into MCMC methods and MCMC sampling.

In the past years, MCMC sampling together with a plane-
tary structure model has led to a number of successful planetary
characterizations (e.g., Dorn et al. 2017a; Agol et al. 2021), but
using an MCMC suffers from at least two main difficulties. The
first difficulty is that when planetary parameters are measured
with small error bars, the likelihood function becomes very nar-
row. This is for instance the case for radius determination using
high-precision telescopes such as CHEOPS (Benz et al. 2017,
2021) or PLATO in the future (Rauer & Heras 2018). Depend-
ing on the MCMC method that was used, small error bars can
drastically increase the time required to converge to a solution.
The second difficulty lies in the consideration of multiplane-
tary systems. In planetary systems, the observable data of the
individual planets are often correlated. To benefit from these
correlations, it is necessary to run an inference scheme for the
whole system at once. When multiple exoplanets are character-
ized simultaneously, however, a planetary structure model needs
to be calculated for every considered exoplanet. This increases
the computational cost linearly. At the same time, the number
of parameters that characterize the planetary compositions in a
multiplanetary system is similarly scaled with the number of exo-
planets. This increase in dimensionality of the parameter space

also generally implies an increase in the number of points needed
to properly sample the posterior distribution, and therefore, an
increase in the required computing time, which is more than
linear overall.

In this paper, we propose a new method to derive the poste-
rior distribution of planetary structure parameters. This method
is based on conditional invertible neural networks (cINNs),
which are a type of neural network architecture that is able to
provide the posterior distribution of planetary structure param-
eters for any given choice of observed parameters (e.g., mass,
radius, and refractory composition of the host star). The cINN
has proven to be a robust method for calculating the posterior
distribution in an inverse problem for any perfect observation,
that is, without observational uncertainty, within the range of the
training data (Ardizzone et al. 2019a,b). In this work, we expand
the method to observations with observational uncertainties (see
Sect. 2). Because the cINN was first proposed for cases with-
out observational uncertainty, it is naturally suited for the case
of high-precision measurements with very small uncertainties.
Another key aspect is that once it is trained, the cINN provides
the posterior distribution of planetary structure parameters in a
few minutes, where modern MCMCs often require hours or even
days to converge because the evaluation of the forward model is
time-consuming (see Sect. 4).

In the past years, several authors used machine learning tech-
niques to predict the output of a forward model (e.g., Alibert &
Venturini 2019; Lin et al. 2022), or to solve inverse problems
(de Wit et al. 2013; Atkins et al. 2016; Baumeister et al. 2020).
The inverse problems were mostly modeled using mixture den-
sity neural networks (Bishop 1994), that is, a combination of a
deep neural network with a probability mixture model. Likewise,
cINNs have already seen successful applications in astronomy.
Ksoll et al. (2020) were able to estimate stellar parameters from
photometric observations of resolved star clusters using a cINN,
and Kang et al. (2022) recently showed a cINN approach to
recover physical parameters of star-forming clouds from spectral
observations.

This paper is structured in the following way. In Sect. 2 we
describe the basic concept of cINNs. We show how they can be
set up in order to characterize exoplanets and how the forward
model works that generates the training data for the neural net-
works. In Sect. 3, we first validate our proposed method using
a simple toy model. In Sect. 4, we then apply the proposed
method to characterize an observed exoplanet and compare its
performance to a regular Metropolis-Hastings MCMC that was
previously used for the same purpose. In Sect. 5, we discuss
the current limitations of the approach and compare the time
required to run either an MCMC or use the proposed method
for cINNs. Finally, we summarize our findings in Sect. 6.

2. Methods

2.1. Invertible neural networks

The invertible neural network (INN) provides an architecture
that excels in solving inverse problems (Ardizzone et al. 2019a).
In these problems, access to a well-understood forward model
is often given (e.g., a simulation) that describes the mapping
between underlying physical parameters x of an object and their
corresponding observable quantities y, for instance. At the same
time, however, recovering the inverse mapping y → x, which is
of central interest in many applications, is a difficult task. The
INN approach to these inverse problems makes the additional
assumption that the known forward model always induces some
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form of information loss in the mapping of x→ y, which can be
encoded in some unobservable, latent variables z. Leveraging a
fully invertible architecture the INN is then trained to approxi-
mate the known forward model f , learning to associate x values
with unique pairs of [y, z], that is, a bijective mapping. In doing
so, it automatically provides a solution for the inverse mapping
f −1 for free. For simplicity (as described in Ardizzone et al.
2019a), it is further assumed that the latent variables z follow
a Gaussian prior distribution, which is enforced during the train-
ing process. In principle, however, any desired distribution can
be prescribed for the latent priors.

Given a new observation y, this procedure allows us to pre-
dict the full posterior distribution p(x|y) by simply sampling
from the known prior distribution of the latent space. The archi-
tecture of the INN consists of a series of reversible blocks,
so-called affine coupling blocks, following a design proposed
by Dinh et al. (2016). After splitting the input vector u into
two halves u1 and u2, these blocks perform two complementary
affine transformations,

v1 = u1 ⊙ exp (s2 (u2)) + t2 (u2), (1)
v2 = u2 ⊙ exp (s1 (v1)) + t1 (v1), (2)

using element-wise multiplication ⊙ and addition. Here, si and ti
denote arbitrarily complex mappings of u2 and v1, for example,
like small fully connected networks, which are not required to be
invertible as they are only ever evaluated in the forward direction.

Inverting these affine transformations is trivial following

u2 = (v2 − t1 (v1)) ⊙ exp (−s1 (v1)), (3)
u1 = (v1 − t2 (u2)) ⊙ exp (−s2 (u2)). (4)

2.1.1. Conditional invertible neural networks

We employ a modification to this approach called conditional
invertible neural network (cINN), as proposed in Ardizzone et al.
(2019b) and as previously applied in Ksoll et al. (2020). Here,
the affine coupling blocks are adapted to accept a conditioning
input c such that the mappings in Eqs. (1)–(4), that is, s2(u2),
t2(u2), and so on, are replaced with s2([u2, c]) and t2([u2, c]),
respectively. By concatenating conditions to the inputs of the
subnetworks like this, the invertibility of the architecture is
not affected. The forward f (x; c) = z and backward mapping
x = g(z; c) of the cINN both entail this conditioning, and the
invertibility of the network is given for the fixed condition c as
f (· ; c)−1 = g(· ; c).

When using cINNs for inverse regression problems, such as
characterizing the internal structure of an exoplanet, the obser-
vations y (e.g., planetary mass, radius, and stellar refractory
composition) serve as the conditioning input. Figure 2 shows a
schematic representation of the cINN in this case. In doing so,
the cINN, just like the INN, will learn to encode all the vari-
ance of the physical parameters x that is not explained by the
observations y into the latent variables z during training. In addi-
tion to usually delivering better results, the cINN approach has
the additional advantage that no zero padding is needed if the
dimensions of [y, z] and x do not match, as we can simply set
dim(z) = dim(x), (Ardizzone et al. 2019a,b). Zero padding refers
to a procedure in which a zero vector of dimension k = |m − n| is
appended to either the input x or output [y, z] if their dimensions
dim(x) = m and dim([y, x]) = n do not match, which is a require-
ment in the standard INN approach. The zero padding can also
be used to embed the entire problem into a higher dimensional

cINN

Ph
ys
ic
al
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m
et
er
s

Latent
Variables

Observables

Fig. 2. Schematic overview of the cINN. During training, the cINN
learns to encode all information about the physical parameters x in the
latent variables z (while enforcing that they follow a Gaussian distri-
bution) that is not contained in the observations y. At prediction time,
conditioned on the new observation y, the cINN then transforms the
known prior distribution p(z) to x-space to retrieve the posterior distri-
bution p(x|y).

Random
Permutation
Layer

Conditional
Affine
Coupling
Block

Random
Permutation
Layer

Conditional
Affine
Coupling
Block

...

Fig. 3. Schematic overview over the cINN architecture.

space. The latter, however, introduces further hyperparameters
and, thus, complicates the training procedure.

Given the condition c of a new observation y, the posterior
distribution of the physical parameters is, as for the INN, deter-
mined by sampling the latent variables z from their Gaussian
prior,

p(x|y) ∼ g(z; c = y) with z ∼ pz(z) = N(z, 0, I), (5)

where I is the K × K unity matrix with K = dim(z). In this
framework, prior information on x is learned by the network
from the distribution of x in the set of training data. This means
that the distribution of the training data should follow the prior
probability distribution p(x).

2.1.2. Network architecture

For the work presented in this paper, we employed the frame-
work for easily invertible architectures (FrEIA; Ardizzone et al.
2019a,b) and mostly followed the specific cINN architecture
suggested in Ardizzone et al. (2019b). This means that we alter-
nated the reversible affine coupling blocks in the generative flow
(GLOW; Kingma & Dhariwal 2018) configuration with random
permutation layers (see Fig. 3 for a schematic of the structure).
The former is a computationally efficient variant, where the out-
puts of the mappings si(·) and ti(·) are predicted jointly by a
single subnetwork instead of one each. We used simple three-
layer (width of 512 per layer) fully connected networks with
rectified linear unit (ReLU) activation functions for these subnet-
works. The random permutation layers use random orthogonal
matrices that were fixed during training and are cheaply invert-
ible, to better mix the information between the streams u1 and
u2. Together with the structure of the affine transformations,
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this ensured that the cINN cannot just ignore the conditioning
input during training. In our final architecture, we employed
eight reversible blocks (an optimal value that we determined
through extensive hyperparameter search for the given problem).
In contrast to Ardizzone et al. (2019b), we did not apply a feature
extraction network that transforms the input conditions into an
intermediate representation because of the low dimensionality
of the observable parameter space in our problem. Some early
experiments have shown that a network like this did not benefit
the predictive performance of the cINN on the given regres-
sion task. We trained the cINN by minimizing the maximum
likelihood loss L,

L = Ei

 || f (xi; ci, θ)||22
2

− log |Ji|

 , (6)

where xi, ci denote the parameter-condition pair of training sam-
ple i, θ refers to the network weights, and Ji = det

(
∂ f /∂x|xi

)
is

the determinant of the Jacobian evaluated at training example i.
To update the weights during training, we used the widely used
adaptive moment estimation (ADAM) optimizer. For further
details, we refer to Ardizzone et al. (2019b).

2.2. Forward model

The forward model f maps the physical input parameters x to a
prediction in the data space y′, that is,
f (x) = y′. (7)

It does so by calculating the interior structure of a 1D spher-
ically symmetric sphere in hydrostatic equilibrium. Following
Kippenhahn et al. (2012) and similar to the case of stellar struc-
tures, we solved the two point boundary value problem given by
the equations

∂r
∂m
=

1
4πr2ρ

, (8)

∂P
∂m
= −

Gm
4πr4 , (9)

∂T
∂m
=
∂P
∂m

T
P
∇, (10)

where r is the radius, m is the mass within the radius r, P is the
pressure, T is the temperature, ρ is the density, G is the gravita-
tional constant, and ∇ is the dimensionless temperature gradient.
The sphere was split into three layers of distinct composition
similar to a differentiated planet (see Fig. 4). The thermody-
namic properties of each layer are given by the set of equations
of state (EoS) listed in Table 1.

From the EoS, we calculated ρ, the thermal expansion coef-
ficient α, and the specific heat capacity cP. We assumed that
each layer is in a regime of vigorous convection. Therefore,
the dimensionless temperature gradient is given by the adiabatic
temperature gradient

∇ =

(
∂ ln T
∂ ln P

)
S
=
αP
ρcp
. (11)

2.2.1. Core

We considered a solid iron core made out of hcp-Fe with possible
inclusions of less dense FeS alloys. In the model, the compo-
sition of the core is given by the sulfur fraction xS|Core, that
is,

xFe|Core =
1 − 2 xS|Core

1 − xS|Core
, (12)

Core

(Fe, FeS)

Silicate Mantle

H2O Ocean

Upper Mantle

Lower Mantle

High-Pressure Ice

Pcent Tcent

Psurf, Tsurf

Fig. 4. Schematic representation of the layered planetary structure.
Three main layers are present: the core, silicate mantle, and volatile
layer. Depending on the size of the layers, an upper mantle can be
present if the volatile layer above is not too massive. Conversely, if
the volatile layer is massive enough, high-pressure ices might form on
the bottom of the layer.

Table 1. List of EoSs used in the forward model.

Layer Composition EoS

Core Fe, S Hakim et al. (2018),
Fei et al. (2016) (a)

Mantle Fe, Mg, Si, O Sotin et al. (2007)
Volatile H2O Haldemann et al. (2020)

Notes. (a)Only for pressures below 310 GPa.

xFeS|Core =
xS|Core

1 − xS|Core
. (13)

The thermodynamic properties of Fe and FeS within the core
were calculated using the EoS of Hakim et al. (2018). However,
for Fe at pressures below 310 GPa, the EoS of Fei et al. (2016)
was used, as advised by Hakim et al. (2018).

2.2.2. Mantle

The mantle structure was calculated following the model used in
Sotin et al. (2007). It assumes a homogeneous elemental compo-
sition of Fe, Mg, Si, and O throughout the mantle, considering
four different minerals. In the upper mantle, the model includes
the iron and magnesium end members of the minerals olivine
([Mg,Fe]2SiO4) and ortho pyroxene ([Mg,Fe]2Si2O6), while for
the lower mantle, a composition of perovskite ([Mg,Fe]SiO3) and
wüstite ([Mg,Fe]O) is assumed. The transition between upper

A180, page 4 of 16



Haldemann, J., et al.: A&A proofs, manuscript no. aa43230-22

and lower mantle was calculated as in Sotin et al. (2007),

Ptransition = 25 GPa − 0.0017
GPa
K
· (T − 800 K). (14)

The respective fractions of the upper and lower mantle mineral
phases were calculated from the ratios of the xMg/xSi|Mantle and
xFe/xSi|Mantle mole fractions as in Sotin et al. (2007), where

xMg

xSi

∣∣∣∣∣
Mantle

=
xMgO

∣∣∣
Mantle

xSiO2

∣∣∣
Mantle

(15)

and

xFe

xSi

∣∣∣∣∣
Mantle

=
xFeO|Mantle

xSiO2

∣∣∣
Mantle

. (16)

Because a homogeneous elemental composition is assumed and
because of the choice of minerals in the model of Sotin et al.
(2007), the xMg/xSi|Mantle and xFe/xSi|Mantle ratios are limited by
the possible spread in these minerals. Thus, only compositions
that fulfil the relation

1 ≤
xMg

xSi

∣∣∣∣∣
Mantle

+
xFe

xSi

∣∣∣∣∣
Mantle

≤ 2 (17)

can be calculated with this model. This ultimately also limits the
possible Mg to Fe and Si to Fe ratios of the whole exoplanet. The
resulting limits are further discussed in Sect. 2.3.

2.2.3. Volatiles

The outermost volatile layer was assumed to be entirely made
up of H2O. We forwent including an additional H/He layer in
order to reduce the number of model parameters and hence the
time needed to calculate the database of forward models used to
train the cINN. More realistic volatile layers are planned to be
added in the future, however. The EoS of H2O is given by the
AQUA-EoS of Haldemann et al. (2020), which combines the ab
initio EoS of Mazevet et al. (2019) with the EoS of the high-
pressure ices (VII and X) by French & Redmer (2015), the EoS
for ice II-VI by Journaux et al. (2020), the EoS for ice Ih by
Feistel & Wagner (2006), and the EoSs by Wagner & Pruß
(2002), Brown (2018), Gordon & McBride (1994), and McBride
& Gordon (1996) for the liquid and vapor regions where Mazevet
et al. (2019) is not applicable.

2.2.4. Numerical method

To solve the two-point boundary value problem of Eqs. (8)–(10),
we used a so-called bidirectional shooting method. This means
that given the set of input parameters listed in Table 2, Eqs. (8)–
(10) were integrated using a fifth-order Cash-Karp Runge-Kutta
method with adaptive step size control (Press et al. 1996). This
integration yields as output the total radius of the planet. The
two remaining output variables, the planetary Mg/Fe and Si/Fe
ratios, can be calculated from the core and mantle composition
and the respective layer mass fractions.

2.3. Limits of the forward model

As mentioned in Sect. 2.4.4, in this method, the limits of the
forward model need to be considered and the sampling of observ-
able features y needs to be restricted to the domain of the training
set. Otherwise, we find that when an observation is close to the

Table 2. List of forward model parameters.

Symbol Parameter

Input

Mtot The exoplanet’s total mass
wcore Core mass fraction
wvol Volatile mass fraction
xSiO2 |mantle Molar fraction of SiO2 in the mantle
xMgO|mantle Molar fraction of MgO in the mantle
xS|core Molar fraction of S in the core

Constants

Tsurf = 300 K Surface temperature
Psurf = 1 atm Surface pressure

Output

Rtot The exoplanet’s total radius
xMg/xFe|Planet Planetary ratio of Mg to Fe mole fractions
xSi/xFe|Planet Planetary ratio of Si to Fe mole fractions
Rcore The exoplanet’s iron core radius
Rmantle The exoplanet’s mantle radius
Rvol The exoplanet’s volatile layer radius

domain boundary of the training set, then the quality of the sam-
pling suffers greatly because the cINN cannot properly learn the
inverse mapping for these regions. From the planetary structure
model we used, two sets of limits can be constructed for the
parameters in the space of observable features.

2.3.1. Limits of Mg/Fe and Si/Fe

The mantle model of Sotin et al. (2007) allows only for mantle
compositions that fulfil Eq. (17). This range in possible mantle
compositions can be translated into a limit for the possible bulk
composition of the modeled exoplanets. The limits for the bulk
composition were derived in the following way. In our structure
model, iron can occur both in the core and the mantle, whereas
Mg and Si are only included in the mantle. Thus, the Mg to Si
ratio of the mantle always represents the Mg to Si ratio of the
whole exoplanet. The upper limit of the Mg to Si ratio therefore
occurs when there is no iron in the mantle, that is, when

xMg

xSi

∣∣∣∣∣
Mantle

=
xMg

xSi

∣∣∣∣∣
Planet

= 2. (18)

Multiplying Eq. (18) with xSi/xFe|Planet returns the upper limit on
the planetary Mg to Fe ratio,

xMg

xFe

∣∣∣∣∣
Planet

= 2
xSi

xFe

∣∣∣∣∣
Planet
. (19)

The lower bound of the xMg/xSi|Planet occurs when the maximum
possible amount of iron is in the mantle, that is, in exoplanets
without a core, where xFe/xSi|Mantle = xFe/xSi|Planet. In this case,
we can write similarly to Eq. (17)

1 ≤
xMg

xSi

∣∣∣∣∣
Planet

+
xFe

xSi

∣∣∣∣∣
Planet
, (20)

or in terms of iron abundance ratios,

xSi

xFe

∣∣∣∣∣
Planet

≤
xMg

xFe

∣∣∣∣∣
Planet

+ 1. (21)
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Values of xSi/xFe|Planet and xMg/xFe|Planet that do not fulfil
Eqs. (19) and (21) cannot be modeled by the forward model. The
prior probability of any such value is therefore zero. This does
not mean that in nature, these values cannot occur. It is simply a
limitation of the current model.

2.3.2. Limits of Mtot and Rtot

Similar to the compositional output parameters, we can deter-
mine the limits of the forward model for Mtot and Rtot. The
limiting relations in this case are given by the mass radius
relation of the most and least dense composition. The densest
composition of this forward model is given by a pure iron sphere.
The corresponding mass radius relation is

Rtot

RE
= 0.796 ·

(
Mtot

ME

)0.2485

. (22)

In contrast, the least dense composition we considered is an exo-
planet consisting of 70 wt.% of water and 30 wt.% mantle, with
a composition given by xMg/xSi|Mantle = 2 and xFe/xSi|Mantle = 0.
The corresponding mass radius relation is then

Rtot

RE
= 1.341 ·

(
Mtot

ME

)0.2564

. (23)

Regarding the limits of the refractory elements, any combina-
tions of total mass and total radius that does not fulfil Eqs. (22)
and (23) cannot be modeled with the used forward model.
We show in Sect. 2.4.1 that these relations indeed bracket the
generated training data of this forward model.

2.4. Training of the cINN

2.4.1. Generation of the training data

In order to train the cINN, we computed 5.9 × 106 forward mod-
els. We also experimented with a smaller training set size that
comprised only 70% of the total computed models, and found
no significant change in the performance of our cINN compared
to using the entire dataset (bar the held-out test set). From this
experiment, we concluded that this training set size appears to
be sufficient for the task, and we did not generate any addi-
tional models. The forward model input parameters were drawn
at random from the distributions summarized in Table 3. The
total mass of the planet was drawn from the uniform distribution
U(0.5 ME, 15 ME). Since the layer mass fractions (wcore, wmantle,
wvol) sum up to one per definition, they were drawn uniformly
from the 3D probability simplex, with the restriction that the
maximum water mass fraction cannot exceed a value of 0.7. The
mantle Si/Fe and Mg/Fe ratios were calculated from the man-
tle SiO2, MgO, and FeO mole fractions, which are the assumed
sole constituents of the mantle model of Sotin et al. (2007) and
hence sum up to one. Similar to the layer mass fractions, we drew
the SiO2, MgO, and FeO mole fractions uniformly from the 3D
probability simplex. Because we used the mantle model of Sotin
et al. (2007), however, an additional rejection sampling was per-
formed without any combination that did not fulfill Eq. (17).
The resulting distribution on the probability simplex is shown in
Fig. 5. The accepted values were then used to calculate the man-
tle Si/Fe and Mg/Fe ratios, which are the forward model input
parameters. In the forward model, the core is made of a mix-
ture of Fe and FeS. Hence, we drew xS|Core from U(0, 0.5). The
resulting distribution of all input and output parameters within
the training set is shown in Figs. 6 and 7.

Table 3. Distribution of the forward model input parameters within the
training set.

Parameters Distribution in training set

Mtot Mtot ∼ U(0.5 ME, 15 ME)
wcore, wvol Uniform on ∆2, wvol = min(wvol, 0.7)
xSiO2

∣∣∣
Mantle, xMgO

∣∣∣
Mantle Uniform on ∆2 and Eq. (17)

xS|Core xS|Core ∼ U(0, 0.5)

Notes. Here, ∆2 denotes the 3D probability simplex.
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shaded areas in the 2D diagrams indicate the 68% HDR, and the dark
shaded areas are the 89%-HDR.

2.4.2. Data preprocessing

Before any training and prediction was performed, the data were
preprocessed. First, we transformed the physical parameters x
and observables y into log-space. This ensures that the physical
parameters stay strictly positive, while it also reduces magnitude
differences between different physical quantities. This is impor-
tant because vastly different magnitudes between parameters can
cause training instabilities, for instance, because a single param-
eter might dominate the target function (loss) that is minimized
during the training procedure. To further address this issue, we
also centered both x and y and rescaled them, such that their
standard deviations became unity by subtracting and then divid-
ing by the per parameter and observation means and standard
deviations, respectively. These linear scaling transformations are
easily inverted at prediction time. The scaling transformation
parameters were derived from the training set, and the same
transformations were applied to new data at prediction time.

2.4.3. Evaluating the training performance

To quantify the success of the cINN training procedure, we pro-
ceeded as in Ksoll et al. (2020). We measured its performance
on a test data set, a held-out subset of the training data con-
sisting of 20 000 randomly selected synthetic observations. On
this test set, we then first confirmed whether the distribution of
latent variables had converged to match the target multivariate
normal distribution with unit covariance matrix. We settled for
this small test set for our final performance evaluation because
we found negligible performance differences in comparison to
using a larger held-out test set (e.g., 30%), and we wished to
provide the exact performance for the best-informed cINN that
was later applied to the real observational data.

Afterward, we evaluated the shape of the predicted poste-
rior distributions by computing the median calibration error s,
as proposed in Ardizzone et al. (2019a), for each of the target
parameters x. Given an uncertainty interval q, the calibration
error ecal,q for a collection of N observations is defined as the
difference

ecal,q = qinliers − q, (24)

where qinliers = Ninliers/N denotes the fraction of observations,
where the true value x̃ lies within the q-confidence interval of
the predicted posterior PDF. Values of ecal,q < 0 signify that the
predicted PDFs are too narrow, whereas positive values suggest
the opposite, that is, that the PDFs are too broad. The median
calibration error s was derived as the median of the absolute
calibration errors over the range of confidences from 0 to 1.

Next, we quantified the cINNs predictive capability for max-
imum a posteriori (MAP) point estimates x̂. To do this, we
derived an accuracy for the individual target parameters x over
the entire test set as given by the root mean squared error
(RMSE) and normalized RMSE (NRMSE). They are defined as

RMSE =

√∑N
i=1 (x̂i − x̃i)2

N
, (25)

where x̃i is the ground-truth value of the target parameter for the
ith observation, and

NRMSE =
RMSE

x̄
, (26)

where x̄ = xts
max − xts

min denotes the range of parameter x within
the training data. To determine the MAP estimates x̂ from
the predicted samples of the posterior distribution, we per-
formed a kernel density estimation (KDE) to model the PDF
and find its maximum. This KDE employed a Gaussian ker-
nel function and was computed on an evenly spaced grid of
1024 points, covering the full range of the given posterior sam-
ples. The kernel bandwidth h was derived using Silverman’s rule
(Silverman 1986),

h = 1.06 ·min
(
σ,

IQR
1.34

)
· n−

1
5 , (27)

where IQR, σ, and n denote the interquartile range, standard
deviation, and number of the posterior samples, respectively.

2.4.4. Predicting posteriors for noisy observations

As the method was outlined so far, the cINN did not include
the possibility that a given input observation can be uncertain.
Instead, the described method assumed perfect observations as
an input. However, in many real-world applications, all observed
quantities usually have measurement uncertainties. In order to
predict the posterior probability distribution of x given a noisy
observation using the cINN, we devised the following strategy.

Let the noisy observation be represented by y∗ and the true
observable properties of the target be denoted as y. For this
paper, we assumed that the distribution of y∗ follows a mul-
tivariate normal distribution of dimension k with mean µ and
covariance Σ, that is,

y∗ ∼ Nk(µ,Σ). (28)
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Given the law of total probability, the posterior probability
distribution p(x | y∗) can be written as

p(x | y∗) =
∫

Y
p(x | y∗ ∩ y = y′)Φy′ |y∗ (y′) dy′, (29)

where y′ is a point in the space of observational parameters, and
Φy′ |y∗ is the probability density function of y′ given y∗. Because
we assumed that y∗ follows a multivariate normal distribution,
Φy′ |y∗ is given by

Φy′ |y∗ (y′) =
1

(2π)k/2
√

det(Σ)
exp

(
−

1
2

(y′ − µ)TΣ−1(y′ − µ)
)
.

(30)

Next we used that x is conditionally independent of y∗ given y,
that is, ((x ⊥⊥ y∗) | y). It follows that p(x | y∗ ∩ y) = p(x | y) and
hence

p(x | y∗) =
∫

Y
p(x | y = y′)Φy′ |y∗ (y′) dy′, (31)

where p(x | y = y′) can be calculated for a given y′ from Eq. (5).
The posterior probability distribution can now be calculated

using simple Monte Carlo integration. Here the Monte Carlo
samples of x were generated by first drawing N times a sample y′i
from the multivariate normal distribution given in Eq. (28). For
each sample y′i , we then calculated the point estimate of p(x|y′i)
using the cINN as outlined in Sect. 2.1.1. For each y′i , we there-
fore sampled another M times from the latent variables z and
evaluated for each zi the backward mapping of the cINN, that is,
g(zi, c = y′i).

This resulted in N ×M samples of x drawn from the posterior
probability distribution p(x | y∗). By definition, the conditional
probability p(x | y) is zero if p(x) = 0 or p(y) = 0. Hence, if the
prior distribution of x has a compact support, then p(x | y) is
automatically zero for any x outside of the domain of x. While
the extent of the domain is in principle learned by the cINN, it
is still possible that the cINN maps some zi to an x for which
p(x) = 0. During the sampling of z, all such samples should thus
be rejected. Additionally, the compact support of p(x) simultane-
ously limits the possible output values of the forward model and
therefore also induces limits on y. We can hence forgo evaluat-
ing the cINN for any y′i for which p(y′i) = 0. The kind of limits
introduced for y depend on the forward model. We discuss this
aspect in more detail in Sect. 2.3.

3. Method validation

In order to validate the sampling scheme outlined in Sect. 2, we
used a simple toy model to benchmark the proposed scheme
against a common Metropolis-Hastings MCMC sampler. We
wished to test here in particular how the sampling performs when
i) the posterior distribution of the model parameters has nonzero
probability along the boundary of the prior domain, and ii) the
observation is close to a region in which the forward model can
no longer be applied. This will in particular demonstrate how the
method performs when an observation is close to the border of
the set of training data.

To mimic situations (i) and (ii), we set up the following toy
model. We defined the space of model parameters x = (x1, x2) ∈
R2, as well as the space of observable features y = (y1, y2) ∈ R2.
The forward model f (x) is given by the linear model

f
([

x1
x2

])
=

[
1 0
1 2

] [
x1
x2

]
=

[
y1
y2

]
. (32)
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Fig. 8. Comparison of the cINN and an MCMC method when applied
to the toy model. The data in the lower triangle (black) were predicted
by the cINN method, and the data in the upper triangle (blue) were
generated with an MCMC sampler. The dashed blue lines indicate the
boundaries of the prior domain, outside of which the prior probability is
zero. The dashed red line indicates the upper limit on y2 as in Eq. (36).
The histograms of the analytical solution are omitted since they overlap
with the MCMC data. The light shaded areas in the 2D scatter plots
indicate the 68% HDR, and the dark shaded areas are the 89%-HDR.

The prior domain is given by an equilateral triangle in the space
of model parameters, defined by its corners,

c1 =

[
0
0

]
, c2 =

[
1
0

]
, c3 =

[
0.5

0.5
√

3

]
. (33)

For simplicity, we chose a uniform prior probability distribution
within the prior domain. p(x) is therefore written as

p(x) =

 4
√

3
if x within triangle(c1, c2, c3)

0, if x outside triangle(c1, c2, c3)
, (34)

where the probability to be within the triangle is the inverse of
the area of the triangle. For a noisy observation y∗ defined as in
Eq. (28), that is, as a multivariate normal distribution,

y∗ ∼ N2

(
µ =

[
0.4
1.3

]
,Σ =

[
0.12 0

0 0.12

])
, (35)

the posterior distribution on x will become heavily truncated by
the prior domain. To mimic case (ii), we further added a restric-
tion on the observable parameter y2 and arbitrarily set an upper
limit of

y2 ≤ 1.4. (36)

The cINN was then trained on a dataset containing 106 sam-
ples of x and corresponding f (x) values. This number of training
samples is larger than necessary. As the training samples are
cheap to generate, we forwent finding an optimal number of
training samples. Given y∗ as in Eq. (35), we then followed
the method outlined in Sect. 2.4.4 to sample from the poste-
rior distribution. The resulting distributions from the cINN and
the MCMC sampling are shown in Fig. 8, with the summary
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statistics of the marginalized distributions listed in Table 4. The
summary statistics of the marginalized distributions show that
the median of each variable does not vary between methods.
Moreover, the centered 1σ interval (containing 68.3% of all
samples) and the centered 2σ interval (containing 95.4% of all
samples) are almost identical (except for a 0.01 deviation of the
lower bound of the 1σ interval of y2 and the upper bound of the
2σ interval of x1). To compare the shape of the resulting distri-
butions, we also computed the Hellinger distance h between the
marginalized probability distributions of the two methods.

The Hellinger distance h(r, q) between two discrete probabil-
ity distributions r and q is given by

h(r, q) =
√

1 − b(r, q), (37)

where b(r, q) is the Bhattacharyya coefficient (see Hellinger
1909),

b(r, q) =
∑

x

√
r(x)q(x). (38)

The Hellinger distance is a proper distance metric. It is zero if
the distributions r and q are identical and one if they are disjoint.
Here, the Hellinger distance was determined from the histograms
of the 1D marginalized distributions generated using the cINN
or MCMC method. The optimal number of bins was estimated
using the method of Doane (1976).

We report that the Hellinger distance between the distribu-
tions for x1 is h = 0.026, whereas for x2, it is h = 0.022. For the
observable features, the Hellinger distance has similarly low val-
ues of h = 0.023 for y1 and h = 0.046 for y2. For comparison, the
Hellinger distance of two normal distributions, where the median
of the two distributions differs by 10−1 or 10−2, is h = 0.035 or
h = 0.004, respectively. For more details see Table 5.

The 2D marginalized posterior densities in Fig. 8 show that
the posterior distribution on the input parameters x1 and x2 is
strongly truncated, as expected. Moreover, the upper limit of y2
has a notable effect on the distribution of the input parameters.
No major differences between the two methods are visible, how-
ever. We conclude that the cINN method can be successfully
used for this simple model, even when the observation is close
to the boundary of the training data.

4. Results

4.1. Training performance

For the planet characterization task, we trained a cINN to pre-
dict the physical parameters Rcore, Rmantle, Rvol (i.e., the radii
of the core, mantle, and surface layer, respectively), wcore, wvol,
xSiO2 |mantle, xMgO|mantle and xS|core from the observables Mtot, Rtot,
xSi/xFe|Planet, and xMg/xFe|Planet, using the database described in
Sect. 2.4.1. To fully assess the cINN performance, we would
need to generate posterior distributions for a large sample of
mock observations spread over the set of training data. To be
statistically significant, the number of observations would need
to be on the order of ∼103–104 cases. Computing the posterior
distribution of such a large number of cases using an MCMC
method is computationally unfeasible. Instead, we used two
complementary methods to assess the performance of the cINN.

4.1.1. Performance on test data

First, we tested the performance of the trained cINN model on
synthetic, held-out test data for all the target parameters. As

Table 4. Summary statistics (i.e., median centered 1σ interval and cen-
tered 2σ interval) of the marginalized posterior distributions of the toy
model.

Method: cINN
Parameter Median 1-σ 2-σ

x1 0.51 [0.36, 0.68] [0.29, 0.81]
x2 0.38 [0.30, 0.45] [0.23, 0.50]
y1 0.38 [0.30, 0.45] [0.23, 0.50]
y2 1.28 [1.20, 1.35] [1.11, 1.39]

Method: MCMC
Parameter Median 1-σ 2-σ

x1 0.51 [0.36, 0.68] [0.29, 0.82]
x2 0.38 [0.30, 0.45] [0.23, 0.50]
y1 0.38 [0.30, 0.45] [0.23, 0.50]
y2 1.28 [1.19, 1.35] [1.11, 1.39]

Method: analytical
Parameter Median 1-σ 2-σ

x1 0.51 [0.37, 0.69] [0.29, 0.82]
x2 0.38 [0.30, 0.45] [0.23, 0.50]
y1 0.38 [0.30, 0.45] [0.23, 0.50]
y2 1.28 [1.20, 1.36] [1.11, 1.39]

Table 5. Hellinger distances comparing the marginalized posterior
distributions for the toy model.

h(panalytical, pcINN) h(panalytical, pMCMC) h(pMCMC, pcINN)

x1 0.026 0.006 0.026
x2 0.020 0.008 0.022
y1 0.023 0.008 0.023
y2 0.048 0.006 0.046

described in Sect. 2.4.3, we computed the RMSE and NRMSE
for the MAP point estimates for the test data, as well as the
median calibration errors s and median uncertainty at 68% con-
fidence u68 (i.e., the width of the 68% confidence interval) of the
posterior distributions. This method allowed us to estimate how
well the cINN learned the shape of the posterior distribution for
a single-point estimate. The computed values are summarized
in Table 6. Figure 9 also provides 2D histograms comparing
the MAP estimates against the corresponding ground-truth val-
ues. The performance on the synthetic test set was evaluated
without error resampling, that is, assuming perfect observations.
As the histograms and the RMSEs/NRMSEs demonstrate, the
cINN can recover Rcore, Rmantle, Rvol, wcore, wvol, and xMgO|mantle
quite well overall with MAP estimates that fall very close or
directly on to the ideal one-to-one correlation in comparison to
the ground truth. Examining Rcore and Rmantle more closely, we
realized some systematic divergences from the one-to-one corre-
lation toward small cores and large mantles, however, indicating
that these properties appear to be harder to constrain within these
regimes. Likely related to this, we also observed a systematic
underestimation of the core mass fraction for very low-mass
cores between 0 and 0.1, showing that the cINN also slightly
struggles in this range.

For the remaining two properties, xS|core and xSiO2 |mantle, we
find that the MAP point estimates cannot match the ground-truth
values at all. The results are scattered across the entire parameter
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Table 6. Overview of cINN test performance for the planet characterization task.

Parameter RMSEMAP NRMSEMAP s u68 utraining
68

Rcore 0.1026 0.0630 0.005 0.160 0.155
Rmantle 0.1042 0.0520 0.007 0.133 0.123
Rvol 0.0365 0.0256 0.002 0.043 0.041
wcore 0.0598 0.0601 0.005 0.095 0.091
wvol 0.0170 0.0243 0.002 0.022 0.021
xSiO2 |mantle 0.0518 0.3109 0.001 0.107 0.104
xMgO|mantle 0.0369 0.0555 0.001 0.063 0.060
xS|core 0.1843 0.3687 0.002 0.340 0.155
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Fig. 9. Distribution of N = 20,000 MAP estimates of the trained cINN plotted against the ground truth from the training data set, shown for the
model input parameters.

ranges with no discernible overdensity at the one-to-one correla-
tion. The median calibration errors s of the underlying predicted
posterior distributions show that the cINN finds very well cal-
ibrated solutions (i.e., posteriors that are neither too broad nor
too narrow) with values below 0.7% for all target parameters,
including xS|core and xSiO2 |mantle. From the median widths of the
68% confidence intervals, which are on the order of ≈0.1 on aver-
age, we find, however, that the posterior distributions tend to be
rather broad in general (taking the target parameter ranges into
account).

For the posterior distributions themselves, the issues with
the xS|core and xSiO2 |mantle MAP estimates result from the fact
that the cINN consistently predicts almost perfectly uniform dis-
tributions across the parameter ranges for these two parameters
for all examples in the test set. In this case, performing an MAP
estimate simply becomes unfeasible as it merely picks up on
minor random fluctuations in these almost uniform distributions
rather than identifying distinct peaks in the posteriors. As
we show below in our direct comparison of the cINN and an
MCMC approach in Sect. 4.2.2, these almost uniform posterior

distributions of xS|core and xSiO2 |mantle are not a flaw of our cINN
model, but are also recovered by the MCMC. Because both
cINN and MCMC therefore return rather uninformative poste-
rior distributions for xS|core and xSiO2 |mantle, we have to conclude
that these two physical parameters cannot be constrained from
the observables Mtot, Rtot, xSi/xFe|Planet, and xMg/xFe|Planet.

4.1.2. Recalculation error

Complementary to the analysis of the cINN performance on the
test data, we assessed whether the generated posterior samples
correctly map back to their corresponding input observations.
We performed this by computing the recalculation error ε of the
cINN for all four input observables for each posterior sample of
5000 randomly selected synthetic examples from the held-out
test set (covering the entire domain of the training data). This
means that for each sample x(i) (i.e., predicted set of the eight tar-
get parameters) of the 1024 samples generated by the cINN per
posterior, we ran the forward model f (·) again and determined
the relative difference between the forward model output f (x(i))
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Fig. 10. Recalculation error ε of the four observables Mtot, Rtot, xSi/xFe|Planet, and xMg/xFe|Planet as a function of true mass and radius. The black and
white encircled cross marks the observed mass and radius of K2-111 b and its corresponding 1σ uncertainties.

and the original network input observation y(i). ε was calculated
for each component k of y(i) as

ε(k) = 100 ·
f (g(z, c = y(i)))k − y

(i)
k

y(i)
k

= 100 ·
f (x(i))k − y

(i)
k

y(i)
k

. (39)

The color-coding in Fig. 10 shows the recalculation error
for our four observables as a function of the ground-truth mass
and radius. For comparison, we also indicate the position of
our real-world test case K2-111 b. With average recalculation
errors of −0.01+0.06

−0.06%, 1.19+0.96
−0.71%, 3.68+2.80

−2.62%, and 3.68+2.79
−2.61%

for Mtot, Rtot, xSi/xFe|Planet, and xMg/xFe|Planet, respectively, we
find an overall excellent agreement with the input observations.
We can conclude that the cINN does indeed return valid pos-
terior distributions on our synthetic test set. Together with the
good posterior peak recovery indicated by the low MAP esti-
mate NRMSE for all parameters except xS|core and xSiO2 |mantle, the
cINN has therefore demonstrated a highly satisfactory predictive
performance on the synthetic test data.

4.2. Comparison between cINN and MCMC for K2-111 b

In order to demonstrate that our cINN provides accurate poste-
rior distributions of planetary parameters, we considered the case
of K2-111 b (Mortier et al. 2020), which was observed to be a
planet of radius 1.82+0.11

−0.09 RE with a mass of 5.29+0.76
−0.77 ME. Its high

mean density of 4.81+1.25
−1.01 g cm−3 implies that the planet is very

likely to have only a tiny gas envelope, making it a well-suited
example for our purpose. We also assumed that the composition

of the photosphere of K2-111 is identical to that of the planet in
terms of the elemental ratios of the refractory elements Mg, Fe,
and Si. The elemental ratios given in Mortier et al. (2020) are
1.82+0.48

−0.38 for Si/Fe and 2.51+0.85
−0.63 for Mg/Fe. With this observa-

tion, we sampled the posterior distribution of the forward model
parameters using the cINN method as described in Sect. 2.4.4.

4.2.1. MCMC setup

For this comparison, we also sampled the posterior probabil-
ity distribution using an MCMC method, as is often employed
to infer planetary interiors (see, e.g., Haldemann et al., in
prep.; Dorn et al. 2017a). In particular, we used the adaptive
Metropolis-Hastings MCMC algorithm (Haario et al. 2001),
sampling the posterior distribution of

p(x|yobs) ∝ L(yobs|x)P(x) (40)

given the same forward model f (·) as described in Sect. 2.2. We
considered the same prior P(x) as we used to construct the train-
ing data (see Table 3). The likelihood L(yobs|x) was calculated
using

L(yobs|x) =
1

(2π)N/2
(∏N

i=1 σi

)1/2 exp

−1
2

N∑
i=1

( f (x)i − µi)2

σ2
i

 ,
(41)

where µ and σ2 are the mean and variance of yobs and N is the
number of dimensions or parameters of yobs.

The MCMC was initialized at a random location in the sam-
ple space. We then ran the MCMC for ∼5 × 105 steps. The
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Table 7. Various statistics of the marginalized posterior distribution of the forward model parameters.

Method: cINN Method: MCMC Difference: 100 · (xcINN − xMCMC)/xMCMC
Parameter Median 1-σ 2-σ Median 1-σ 2-σ ∆Median ∆1-σ ∆2-σ

wcore 0.09 [0.03, 0.17] [0.00, 0.24] 0.09 [0.03, 0.16] [0.01, 0.23] 5.84 [−4.30, 6.60] [−23.19, 6.95]
wrock 0.64 [0.45, 0.81] [0.30, 0.92] 0.64 [0.47, 0.78] [0.33, 0.89] 0.69 [−4.01, 3.51] [−8.66, 3.32]
wvol 0.25 [0.07, 0.46] [0.00, 0.64] 0.26 [0.11, 0.44] [0.03, 0.61] –3.85 [−34.35, 4.37] [−89.56, 4.35]
xS|core 0.26 [0.08, 0.42] [0.01, 0.48] 0.27 [0.09, 0.43] [0.01, 0.49] −5.10 [−8.83, –3.23] [−16.19, –1.32]
xFeO|mantle 0.09 [0.03, 0.17] [0.01, 0.24] 0.10 [0.03, 0.17] [0.00, 0.23] −4.56 [−8.95, 3.25] [24.75, 5.10]
xSiO2 |mantle 0.41 [0.36, 0.47] [0.34, 0.49] 0.40 [0.35, 0.46] [0.34, 0.49] 1.47 [0.79, 1.49] [0.14, 0.33]
xMgO|mantle 0.50 [0.39, 0.58] [0.30, 0.63] 0.50 [0.42, 0.57] [0.33, 0.63] –0.19 [−6.02, 1.89] [−8.79, 1.26]
Rcore [RE] 0.55 [0.37, 0.68] [0.19, 0.78] 0.54 [0.37, 0.67] [0.21, 0.76] 2.22 [−0.51, 2.10] [−7.53, 2.08]
Rrock [RE] 0.88 [0.70, 1.08] [0.56, 1.31] 0.86 [0.71, 1.04] [0.57, 1.23] 1.89 [−0.39, 4.67] [−2.29, 6.33]
Rvol [RE] 0.38 [0.15, 0.66] [0.01, 0.88] 0.40 [0.21, 0.64] [0.07, 0.85] –4.89 [−29.47, 2.84] [−85.79, 4.07]

Notes. Comparing the cINN method with a Metropolis-Hastings MCMC scheme when applied to K2-111 b. ∆1σ and ∆2σ are the relative differ-
ences of the interval boundaries of the 1σ and 2σ intervals. The wrock and xFeO|mantle were calculated from the other layer mass fractions and other
mantle oxide fractions.
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Fig. 11. Autocorrelation as a function of lag calculated from the Markov
chain of the four output parameters of the forward model. The auto-
correlation time τ of each parameter was calculated following Hogg &
Foreman-Mackey (2018). The dashed lines indicate the autocorrelation
when the lag is equal to the autocorrelation time.

resulting Markov chain had an autocorrelation time τ between
28 and 44 steps for the four output parameters (see Fig. 11).
The autocorrelation time was calculated following Hogg &
Foreman-Mackey (2018).

To generate independent samples from the Markov chain, we
began by discarding the first 2000 steps along the Markov chain
due to burn in, and then, accounting for the maximum autocor-
relation time, add every 50th step along the chain to the set of
independent samples. This resulted in a total of 104 indepen-
dent samples from the Markov chain, which is sufficient given
the shape and number of dimensions of the posterior probability
distribution.

4.2.2. Comparison of marginalized posterior distributions

In order to compare the performance of the cINN with the
MCMC method, we show in Table 7 a summary of the key
statistics of the 1D marginalized posterior PDF. For each model
parameter, the median as well as the centered 1σ and 2σ inter-
vals (containing 68% and 95% of all samples, respectively) are
shown. The median values show that both methods return almost
identical results with a maximum difference of ∼5.8%. For the
boundaries of the centered 1σ and 2σ regions, the differences

Table 8. Hellinger distance metric between the marginalized posterior
distributions of the cINN and MCMC method.

Parameter Hellinger distance h

Mtot 0.024
Rtot 0.071
xSi/xFe|Planet 0.031
xMg/xFe|Planet 0.044
wcore 0.052
wvol 0.107
xS|core 0.042
xSiO2 |mantle 0.040
xMgO|mantle 0.092
Rcore 0.045
Rrock 0.072
Rvol 0.115

are larger, notably for the lower boundaries of Rvol, wvol, xS|core,
xFeO|mantle, and xSiO2 |mantle. However, the Hellinger distances h
between the marginalized posteriors predicted by the two meth-
ods are very low (h < 0.05) for all parameters, except for Rvol,
wvol, and Rtot (see Table 8). The largest Hellinger distance of
0.103 for Rvol is equivalent to the distance of two standard normal
distributions whose median is shifted by 0.25. The fact that Rvol
has the largest error here is an odd result at first glance because
Rvol appeared to be one of the best-constrained parameters in
our test on the synthetic data. There are multiple possible expla-
nations for this result. First, this might simply be an effect of
the uncertainty of the observables, which are taken into account
here, but not in our previous synthetic test. Second, although the
MAP estimates for Rvol are indeed overall quite excellent, there
are a few statistical outliers with slightly larger discrepancies as
well, so that the result for K2-111 b may just be one such out-
lier. Last, it is also important to note that the MAP RMSE and
the Hellinger distance measure two different properties of the
predicted posterior distributions. The former quantifies the point
estimation capability, that is, the ability of the cINN to recover
the true value as the most likely peak in the posterior distri-
bution. The latter, on the other hand, quantifies a difference in
the shape of the posterior with respect to the MCMC ground
truth. It might therefore be that the shape of the Rvol posteriors
in our synthetic test also tends to deviate slightly more from the
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Fig. 12. Comparison of the cINN and an MCMC method when applied to K2-111 b. The data in the lower triangle of each panel (blue points) were
generated with the cINN method, and the data in the upper triangle (black points) were generated with the MCMC sampler. In the diagonal panels,
we also show the marginalized prior probability (gray). The light shaded areas in the 2D diagrams indicate the 68% HDR, and the dark shaded
areas are the 89% HDR.

ground-truth shape, even though the low MAP NRMSE indi-
cates that they have the correct peak. Unfortunately, due to the
prohibitive computational cost of running the MCMC for a sta-
tistically large enough sample of the synthetic test data, we were
unable to quantify this effect in our previous test.

In Figs. 12 and 13, we show the pairwise marginalized 2D
posterior PDF of all parameters. In the diagonal of these figures,
we also show the 1D histograms of the marginalized PDF, as well
as the prior distribution of the points in the training data. Overall,
the shape of the pairwise marginalized 2D posterior PDF is very
similar between the two methods. Figure 13 also shows that the
cINN method can be used close to the boundary of the training
data (red lines). For the 1D histograms, the largest difference is
again seen for Rvol and wvol, especially toward dry compositions.

The layer mass fractions and the mantle composition are each
a set of compositional variables (hence they sum up to one).
Their distribution on the ternary diagram is therefore shown in
Fig. 14. For the layer mass fractions, the agreement in the region
above 0.1 wvol is very good. Because this is also present in the
1D marginalized distributions, there are fewer samples with low

volatile content in the Markov chain than in the set generated
using the cINN. For the mantle composition, the posterior dis-
tribution of both methods is centered around compositions with
60% MgO and less than 10% FeO. Compared to the MCMC
method, the cINN predicts slightly more compositions with
larger amounts of SiO2 than MgO, which results in the two kinks
in the contours in the ternary diagram.

4.2.3. Recalculation error of trained cINN for K2-111 b

To assess the quality of the inverse mapping from y to x, we cal-
culated the recalculation error ϵ for each sample x(i) generated
with the cINN according to Eq. (39). In Fig. 15, we show the dis-
tribution of the recalculation errors of all data variables together
with wvol, given the set of x(i) generated for the case of K2-111 b.
The cINN learned the mapping of the total mass best, and the
median recalculation error of the other variables is between 1.3%
and 2.5%. Figure 15 also indicates that the recalculation errors
increase toward low values of wvol, especially below 0.1. This
indicates that the quality of the cINN mapping in this region is
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Fig. 13. Comparison of cINN and MCMC posteriors when applied to
K2-111 b. The colors and shadings are the same as in Fig. 12. The
solid red line indicates the limits of the forward model, as discussed
in Sect. 2.3.

not yet optimal. This likely explains the observed differences in
the posterior distribution of wvol and Rvol between the MCMC
and the cINN method.

5. Discussion

5.1. Comparison to the initial characterization of K2-111 b

The exoplanet K2-111 b was also characterized in Mortier
et al. (2020). In their work, two different internal structure
models were used for characterization, one considering four lay-
ers, that is, an iron core, a silicate mantle, a water layer, and
an H/He envelope. The other model only considered two lay-
ers, that is, an iron core with a surrounding mantle. In the
first model, the inferred bulk composition of K2-111 b was
wcore = 0.10+0.07

−0.07, wmantle = 0.68+0.13
−0.14, wwater = 0.20+0.16

−0.13, and
log10 wH/He = −8.76+2.20

−2.21. The inferred small amount of H/He by
Mortier et al. (2020) is one reason we chose this exoplanet for our
work because we trained the cINN only on planetary structures
without H/He layers so far.

When we compare this to the results obtained using the
cINN, which are given in Table 7, we see that the inferred core
mass fraction is almost the same, while the mantle mass frac-
tion is slightly smaller and the water mass fraction is slightly
larger than in Mortier et al. (2020). They also inferred a man-
tle composition of xFeO|Mantle = 0.09+0.07

−0.06, xSiO2 |Mantle = 0.39+0.05
−0.04

and xMgO|Mantle = 0.51+0.06
−0.06, together with a core composition

of xS|Core = 0.27+0.16
−0.18. This also agrees well with the prediction

results of the cINN. We note, however, that the good agreement
in xS|Core and xSiO2 |Mantle may only be by chance here, as both the
cINN and MCMC regard these two parameters as largely uniden-
tifiable from the available observations (see Sect. 4.1). At the
same time, the inference method used in Mortier et al. (2020) can
merely constrain xS |Core and xSiO2 |Mantle beyond the constraints
given by the used structure model.
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Fig. 14. Ternary diagrams of the cINN prediction. Top panel: kernel
density estimate of the layer mass fractions as determined with the
cINN. Bottom panel: kernel density estimate of the mantle composi-
tion. The kernel density in both panels was estimated using a Gaussian
kernel with a standard deviation of 0.2. The white lines indicate the con-
tours of the 68% HDR and 95% HDR. For comparison, the HDR from
the posterior calculated with the MCMC is also shown (dashed lines).

The reason for the small difference in the mantle mass frac-
tion and water mass fraction is likely that they used a four-layer
model, including a H/He layer. Although K2-111 b has a very
small H/He content in mass (∼10−8 ME as found in Mortier
et al. 2020), this small H/He layer can still contribute to radius
by ∼0.1 RE, given the high equilibrium temperature of the
planet (Teq = 1309 K). Thus, our results are expected to differ
slightly from their study. Taking the difference in model setup
into account, we conclude that our results agree well with the
characterization performed by Mortier et al. (2020).

5.2. Comparison of the computational cost

One main motivation for using cINNs to infer planetary compo-
sitions is to reduce the time needed to perform a single inference.
We provide here an overview over the encountered computa-
tional cost when using the two methods shown in this work,
that is, an adaptive Metropolis Hastings MCMC method and the
cINN method.
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The MCMC method is calculated sequentially, that is, for
each step of the Markov chain, a forward model is run until a suf-
ficient number of steps are generated. Hence, its computational
cost scales linearly with the number of steps of the generated
Markov chain. For the forward model we used, it was proven
sufficient to generate on the order of 5 × 105 forward models.
On a single core of an Intel Xeon Gold 6132 processor run-
ning at 2.6 GHz, one forward model takes 1.5 s to compute on
average. Therefore, computing one planetary structure inference
takes approximately 8.7 days in total on a single core.

Instead of computing a single Markov chain, it is also pos-
sible to initialize multiple chains in parallel or use an ensemble
method such as in emcee (Foreman-Mackey et al. 2013). This
parallelized approach allows leveraging the availability of mul-
ticore CPU architectures. For an efficient tuning of the proposal
distribution, a minimum length of the Markov chain on the order
of ∼104 samples is required, however. Using 28 cores of an Intel
Xeon Gold 6132 CPU, we had to compute 104 steps for each of
the 28 Markov chains to account for burn-in and tuning of the
proposal distribution. This results in a total of 7.8 × 105 forward
models to be calculated by 28 parallel MCMC chains, which
takes approximately 12 h. While the time for a single inference
is only a fraction compared to a sequential MCMC run, the total
computational cost is equivalent to 13.5 days of single threaded
run time. The reason are the larger number of samples, which
cannot be used for inference due to burn-in and tuning of the
proposal distribution.

The total computational cost of the cINN method in contrary
is split into three parts. The computation time needed to generate
the training data, the time needed to train the cINN including the
search for the hyperparameters for optimal training (i.e., deter-
mining learning rate, network architecture, etc.), and the time
needed to sample the posterior using the cINN. For this project,
the training data were generated calculating 5.9 × 106 forward
models. With an average run time of 1.5 s, this would take
102 days to run on a single core, whereas using a compute node

Table 9. Overview over the computational cost for the two inference
methods.

Computing time
Method gen. TD & training single inference

cINN (‡) 105 days 5 min
MCMC (†) – 8.7 days
parallel MCMC (†) – 12 h

Notes. (†)Run on a compute node containing 2 × 14-Core Intel Xeon
Gold 6132 CPUs at 2.6 GHz. (‡)Run on a compute node containing 2 ×
14-Core Intel Xeon Gold 6132 CPUs at 2.6 GHz and 10× Nvidia Titan
Xp GPUs at 1.6 GHz.

with 28 cores, the data set can be generated within 3.7 days. With
the training data at hand, training the cINN itself takes between
2 and 3 h on a single GPU. The training and inference were per-
formed on a compute node at the Interdisziplinäres Zentrum für
Wissenschaftliches Rechnen (IWR) in Heidelberg, which con-
sists of 2 × 14-Core Intel Xeon Gold 6132 at 2.6 GHz and
10× Nvidia Titan Xp at 1.6 GHz, but only one GPU was used.
Then a hyperparameter search is necessary to find the parame-
ters for optimal training (i.e., learning rate, number of the neural
network layers, network layer widths, etc.). For this study, we
performed 23 trials to find the optimal parameters, thus repeat-
ing the training of the cINN 23 times. A single inference of the
composition of an exoplanet using the trained cINN on the same
GPU as mentioned above can be performed in 5 min. Performing
all preparatory steps, that is, generating the training data, train-
ing, and hyperparameter search, takes approximately 105 days of
sequential computing time. Leveraging multithreaded CPUs can
reduce the runtime of all preparatory steps to 6 days.

When comparing the computational cost of the two meth-
ods, it is clear that for a single inference, the MCMC method
is far cheaper given the large number of training data needed to
train the cINN. When multiple inferences using the same for-
ward model are to be performed, however, then generating the
training data will contribute less to the total computational cost
the more inferences are performed. Taking into account that the
hyperparameter search in both does cases not need to be repeated
(except when the MCMC method is used for very different data),
then the cINN already becomes the more efficient method if the
same forward model is used for more than ten planetary structure
inferences. In Table 9 we show a summary of the computational
cost of the two methods.

So far, we used a forward model without an additional atmo-
sphere layer. Including an atmosphere in the forward model
would add another two to three more input parameters and also
make the forward model computationally more expensive. From
experience with running structure inference models that include
atmosphere layers, a number of 5 × 105–106 samples would be
necessary to be generated for the Markov chain. We did not yet
create a database of forward models including an atmosphere,
hence we cannot conclude how this change would affect the com-
putational cost. The time needed for inference should remain on
the order of minutes for the cINN approach, however.

6. Conclusions

We discussed how INNs, in particular, the cINN, can be used to
characterize the interior structure of exoplanets. So far, mainly
MCMC methods were used to do this.
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Compared to the cINN version initially proposed by
Ardizzone et al. (2019b) for point estimates, we showed how
the method can be adapted for noisy data. We validated this
approach using a toy model, for which we compared the cINN
performance against a regular Metropolis Hastings MCMC.

Then we applied the method to the exoplanet K2-111 b,
inferring its composition. To do this, we trained a cINN on a sim-
plified internal structure model for exoplanets and showed that
in this case, cINNs also offer a computationally efficient alterna-
tive to the MCMC sampler that is commonly used for Bayesian
inference.

In the benchmark of K2-111 b, only minor differences can be
seen between the MCMC methods and the cINN method. The
largest differences appeared in the marginalized posterior dis-
tribution of Rvol and wvol. Computing the recalculation error of
the benchmark case showed that the largest errors in total radius
appeared for low values of wvol. This agrees with the observed
differences in the marginalized posterior distributions of wvol
and Rvol. Hence, it is likely that the difference between the two
methods will become smaller if the training of the cINN can
be further improved. Nevertheless, the two methods return very
similar posterior distributions of the model parameters.

A key benefit of using cINNs over an MCMC method is that
most of the computational cost of the method occurs during the
generation of the training data and training, but not during the
inference. This allows reducing the computational time spent
for inference by almost four orders of magnitude compared to
a regular MCMC method. In order to have an overall benefit
in computational cost against the MCMC method used in this
work, the cINN needs to be used to infer more than approxi-
mately ten planetary structures. While other authors successfully
used neural networks to predict the output of their forward mod-
els (e.g., Alibert & Venturini 2019; Baumeister et al. 2020), this
work showed that it is also possible to train a neural network that
encapsulates the full inverse problem.
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