downl oaded: 9.5.2024

.org/ 10. 48350/ 188252 |

https://doi

source:

n
(GlgA) . GigaScience, 2023, 12, 1-9
CIEN{;\ E DOI: 10.1093/gigascience/giad082

OXFORD TECH NOTE

SpheroScan: a user-friendly deep learning tool for
spheroid image analysis

Akshay Akshay 12, Mitali Katoch 3, Masoud Abedi 4, Navid Shekarchizadeh *~4°, Mustafa Besic ~ ¢, Fiona C. Burkhard %,

Alex Bigger-Allen 78210 Rosalyn M. Adam ~8%10 Katia Monastyrskaya —~ »® and Ali Hashemi Gheinani = 168210+

'Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland

2Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland

3Institute of Neuropathology, Universititsklinikum Erlangen, Friedrich-Alexander-Universitit Erlangen-Nurnberg (FAU), 91054 Erlangen, Germany
“Department of Medical Data Science, Leipzig University Medical Centre, 04107 Leipzig, Germany

SCenter for Scalable Data Analytics and Artificial Intelligence (ScaDS.Al) Dresden/Leipzig, 04105 Leipzig, Germany

5Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland

’Biological & Biomedical Sciences Program, Division of Medical Sciences, Harvard Medical School, 02115 Boston, MA, USA

8Urological Diseases Research Center, Boston Children’s Hospital, Boston, MA, USA

9Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA

19Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA

*Correspondence address. Ali Hashemi Gheinani, Urological Diseases Research Center, Boston Children’s Hospital, Harvard Medical School, Boston, 02115, MA,
USA. E-mail: Ali.HashemiGheinani@childrens.harvard.edu

Abstract

Background: In recent years, 3-dimensional (3D) spheroid models have become increasingly popular in scientific research as they
provide a more physiologically relevant microenvironment that mimics in vivo conditions. The use of 3D spheroid assays has proven
to be advantageous as it offers a better understanding of the cellular behavior, drug efficacy, and toxicity as compared to traditional 2-
dimensional cell culture methods. However, the use of 3D spheroid assays is impeded by the absence of automated and user-friendly
tools for spheroid image analysis, which adversely affects the reproducibility and throughput of these assays.

Results: To address these issues, we have developed a fully automated, web-based tool called SpheroScan, which uses the deep
learning framework called Mask Regions with Convolutional Neural Networks (R-CNN) for image detection and segmentation. To
develop a deep learning model that could be applied to spheroid images from a range of experimental conditions, we trained the model
using spheroid images captured using IncuCyte Live-Cell Analysis System and a conventional microscope. Performance evaluation of
the trained model using validation and test datasets shows promising results.

Conclusion: SpheroScan allows for easy analysis of large numbers of images and provides interactive visualization features for a
more in-depth understanding of the data. Our tool represents a significant advancement in the analysis of spheroid images and will
facilitate the widespread adoption of 3D spheroid models in scientific research. The source code and a detailed tutorial for SpheroScan
are available at https://github.com/FunctionalUrology/SpheroScan.
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Introduction

Key points ) .
Two-dimensional (2D) cell culture models have long been a key

component of biomedical research, but they often do not accu-
rately replicate the in vivo environment [1]. In recent years, there
has been an increasing realization that 3-dimensional (3D) cell
cultures, such as 3D spheroid models, are better able to mimic the
in vivo environment. Moreover, the 3D cell cultures provide more
clinically relevant insights into cellular behavior and responses [2,
3]. The 3D spheroid models, in particular, have become increas-
ingly popular due to their ability to re-create the complex mi-
croenvironment found in vivo. This has made them a valuable tool
for studying a variety of biological processes and diseases.
Tumor spheroids are widely used for testing anticancer med-
ications [4]. They present a compromise between the cell ac-
cessibility of adherent cultures and the 3-dimensionality of ani-
mal models. Spheroids retain more biological tumor features and
reproduce the intratumor environment, which is an important

® A deep learning model was trained to detect and seg-
ment spheroids in images from microscopes and In-
cuCytes.

¢ The model performed well on both types of images, with
the total loss decreasing significantly during the training
process.

® Aweb tool called SpheroScan was developed to facilitate
the analysis of spheroid images, which includes predic-
tion and visualization modules.

® SpheroScan is efficient and scalable, making it possible
to handle large datasets with ease.

® SpheroScan is user-friendly and accessible to re-
searchers, making it a valuable resource for the analysis
of spheroid image data.
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feature when selecting an effective treatment strategy. Most of
the spheroid-based assays use the overall size and/or cell survival
as a readout [5]. Thereby, a quick and easy tool for spheroid size
estimation would be advantageous for such applications.

Another important area of research that is dependent on the
spheroid size evaluation is the collagen gel contraction assay
(CGCA) method [6]. CGCA is a widely used in vitro model for study-
ing the interactions between cells and 3D extracellular matrices.
These assays help understand matrix remodeling during fibrosis
and wound healing. CGCA is a competent tool to evaluate the
contractility of myofibroblasts harvested from fibrotic tissues. The
advent of aqueous 2-phase printing of cell-containing contractile
collagen microgels has further advanced the CGCA technology [7].
Recently, the printing of the microscale cell-laden collagen gels
has been combined with live-cell imaging and automated image
analysis to study the kinetics of cell-mediated contraction of the
collagen matrix [8]. The image analysis method utilizes a plugin
for FIJI, built around Waikato Environment for Knowledge Analy-
sis (WEKA) segmentation.

Despite the advantages of 3D spheroid models over 2D cell cul-
tures, the lack of fully automated and user-friendly tools for an-
alyzing spheroid images has been a major challenge, hindering
widespread adoption and making high-throughput analysis diffi-
cult. Spheroid detection in an image is a crucial and challenging
part of 3D spheroid assays. Several tools [9-15] have been pre-
viously developed for spheroid image analysis that utilize tra-
ditional object detection methods, such as thresholding (using
algorithms like watershed [16], Otsu [17], Yen [18]), which involve
setting a threshold value for the intensity of pixels and iden-
tifying all pixels above that value as part of a spheroid. Other
techniques include shape-based detections (using circular/ellipse
Hough transform algorithms [19], active contours models [20])
that identify spheroids based on their shape.

Unfortunately, these methods prove ineffective in adapting to
a wide range of experimental conditions (Supplementary Fig. S6).
The reason behind this limitation lies in the inherent variability
observed in the images of spheroids captured during the assay.
This variability arises from several factors, including lighting con-
ditions, the composition of the medium, the quantity of cells uti-
lized, treatment type, presence of debris, and variations in plate
shapes, among others. Therefore, these methods require extensive
fine-tuning to analyze images from each experiment and some-
times even for each specific image, which is a tedious and time-
consuming task.

In recent years, the use of deep learning techniques for ob-
ject detection and segmentation has significantly increased [21-
25]. This rise is attributed to their ability to effectively learn from
limited-size datasets and adapt to diverse imaging conditions
without the need for excessive fine-tuning. Following the trend,
several tools and workflows [26-31] have been developed that uti-
lize deep learning for automatic spheroid detection in images.
However, all of them require a moderate to advanced level of com-
putational and programming skills to use. Consequently, many
researchers with domain expertise are unable to utilize them
easily. Additionally, none of these tools provide visualization fea-
tures to allow for efficient downstream analysis of spheroid data
(Supplementary Table S1). This is a significant drawback, as visu-
alizing data can greatly aid in the interpretation and understand-
ing of results.

To address these challenges, we have developed a fully au-
tomated, user-friendly web-based tool called SpheroScan for
spheroid detection and interactive visualization of spheroid data
using multiple publication-ready plots. Our tool is designed to

be accessible to researchers regardless of their computational
skills and aims to make the process of analyzing spheroid images
as simple and straightforward as possible. We have employed a
state-of-the-art deep learning model called Mask R-CNN (Region-
based Convolutional Neural Network) for image detection and
segmentation. This model has proven to be highly effective in im-
age analysis tasks and allows our tool to accurately detect and
segment spheroids in images. With our tool, researchers can eas-
ily and quickly analyze large numbers of spheroid images and can
use the interactive visualization features to gain a deeper under-
standing of their data (Fig. 1).

Results and Discussion

Training and evaluating the performance of deep
learning model

Figure 2 presents the performance of the trained deep learning
(DL) model on the training, validation, and testing datasets for
microscope and IncuCyte images. The results show that the DL
model was able to effectively learn and improve its performance
over the course of training for both types of images. In particu-
lar, for IncuCyte images, the total loss at baseline was 1.6 for the
training data and 1.3 for the validation data. However, in the last
epoch, the total loss reached its minimum values of 0.09 and 0.13
for the training and validation data, respectively (Fig. 2A). This rep-
resents a significant improvement in performance. Similarly, the
bounding box and mask loss started at relatively high values of 0.3
and 0.7, respectively, but decreased to their minimum values of
0.03 and 0.04 in the last epoch (Fig. 2B). The model also performed
well on the training and validation datasets for microscope im-
ages, with the total loss decreasing from 1.8 and 1.4 to 0.09 and
0.16 at the last epoch, respectively (Fig. 2D). The bounding box and
mask losses for the microscope dataset were also low, 0.036 and
0.045, respectively, at the last epoch (Fig. 2E). Overall, these results
demonstrate the robustness and effectiveness of the DL model
in accurately detecting and segmenting spheroids in images from
both microscopes and IncuCytes.

To evaluate the performance of the trained model in segment-
ing spheroids, we calculated the average precision (AP) metric for
bounding boxes and segmentation masks in the range of 0.5 to
0.95. Throughout the text, APbboxeo 5095 represents the AP for
bounding boxes, and APmmaske|o s.0.95) T€presents the AP for seg-
mentation masks. In general, the trained models showed similar
performance on the test and validation datasets. The values for
APbbOXa|05.0.05) and APmmaske(os.0.95) were 0.937 and 0.972, re-
spectively, for the validation data and 0.927 and 0.97, respectively,
for the test data of IncuCyte images (Fig. 2C). The model’s perfor-
mance on the validation and test datasets for microscopic images
was also strong, with scores of 0.89 and 0.944 for APbboxe(o.5.0.95)
and APmmaske(os.9s), T€spectively, on the validation data and
scores of 0.899 and 0.977, respectively, on the test data (Fig. 2F).

Furthermore, we assessed the applicability of SpheroScan in
analyzing spheroid images generated by external users using dif-
ferentimaging platforms, diverse cell types, growth mediums, and
various lighting conditions. To achieve this objective, we employed
SpheroScan to mask spheroids in multiple image datasets ob-
tained from previous studies (Supplementary Table S2). In total,
we utilized 6 distinct datasets [10, 27, 32-34], including 4 fluores-
cence microscopy datasets (including multichannel) and 2 bright-
field microscopy datasets (Supplementary Fig. S7). The results
indicate that SpheroScan effectively detected spheroids in all im-
ages from the tested datasets, affirming its adaptability and ap-
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Figure 1: Graphical abstract. (A) Data acquisition. We used IncuCyte and microscope platforms to generate spheroid images for the training and
evaluation of deep learning model. (B) Deep learning (DL) pipeline. Tiwo models were trained using IncuCyte and microscope image datasets. These
models were then evaluated on validation and test datasets. (C) SpheroScan consists of 2 submodules: prediction and visualization. The prediction
module applies the trained deep learning models to mask the input spheroid images, producing a CSV file with the area and intensity of each detected
spheroid as output. The visualization module enables the user to analyze the output from the prediction module by providing various plots and
statistical analyses.
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Figure 2: Results of the deep learning model’s performance. The total loss for both training and validation datasets of IncuCyte (A) and microscope (D)
images. The bounding box loss and mask loss for the training dataset of IncuCyte (B) and microscope (E) images. The APbboxg(gs.0.95) and
APmmaske[o5.0.95) for the validation and test datasets of IncuCyte (C) and microscope (F) images. The APbboXa|os.0.95 represents the average precision
for bounding boxes, and the APmmaskejo 5.0.95) Tepresents the average precision for segmentation masks in the range of 0.5 to 0.95.
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plicability to external datasets (Supplementary Table S2). Never-
theless, the Nurnberg, Elina et al. dataset posed a challenge for
SpheroScan as it struggled to identify spheroids in 8 out of 48 im-
ages. The difficulty arose from a limited number of cells stained
with anti-KI67, resulting in the formation of hollow spheroid-like
structure.

SpheroScan characteristics

We have developed an open-source web tool called SpheroScan to
facilitate the analysis of spheroid images. This user-friendly, inter-
active tool is designed to streamline the process of spheroid seg-
mentation, area calculation, and downstream analysis of spheroid
image data. Furthermore, it helps to standardize and accelerate
the analysis of spheroid assay results. SpheroScan consists of 2
main modules: prediction and visualization. The prediction mod-
ule uses previously trained DL models to detect the spheroid in the
inputimages; accordingly, a CSV file is generated with the area, cir-
cularity, and intensity of each detected spheroid (Supplementary
Fig. S1A). The visualization module allows the user to analyze
the results of the prediction module through various types of
plots and statistical analyses (Supplementary Fig. S1B). The plots
generated by the visualization module are ready for publication
and can be saved as high-quality images in PNG format. Over-
all, SpheroScan is a powerful and user-friendly tool that greatly
simplifies and enhances the analysis of spheroid image data
(Supplementary Figs. S2-54).

The runtime complexity of the prediction module is linear,
meaning that it scales in proportion to the size of the input data.
This is an important property because it means that the predic-
tion module will be efficient and scalable, even when processing
large datasets. To confirm the linear runtime complexity of the
prediction module, we tested it on 4 different image datasets with
various numbers of images. The results of these tests showed that
the prediction module consistently had a linear runtime, taking
less than 1 second to mask a single image (Fig. 3D). This demon-
strates that the prediction module is highly efficient and capable
of handling large datasets with ease. We evaluated the runtime
performance on a Red Hat server with 16 central processing unit
cores and 64 GB of RAM.

Limitations and Considerations

As with any technology, there are limitations and considerations
to keep in mind when using the SpheroScan system. First, it is
important to note that this developed tool is primarily designed
for use with the spheroid images from IncuCyte and microscope
platforms. Additionally, when analyzing images that contain more
than 1 spheroid, the performance of the SpheroScan system may
decrease. Therefore, it is important to carefully consider the ex-
perimental design and imaging conditions to ensure optimal per-
formance and accurate results. The authors aim to expand the
training dataset with a diverse range of external images from var-
ious experimental environments and platforms in the future to
improve and advance the utility of SpheroScan.

Furthermore, in the current version, the tool provides a lim-
ited set of parameters—namely, the area, circularity, and bright-
field average intensity, to describe the spheroids. Although these
parameters are informative and relevant for certain assays, ad-
ditional parameters, such as volume estimation and cell count
estimation, may be required for a more comprehensive charac-
terization. As we continue to enhance the tool, we are actively

considering incorporating derived parameters to enhance its ap-
plicability across a broader range of experimental scenarios.

Besides that, we encountered several instances where
SpheroScan  faced difficulties in accurately masking
spheroids in images (Supplementary Fig. S8). For example, in
Supplementary Fig. S8A, there was a spheroid with a hollow,
spheroid-like structure formed from a limited number of la-
beled cells, but unfortunately, SpheroScan failed to identify it.
Moreover, we noticed challenges with masking spheroid im-
ages containing debris and irregular shapes. In such situations,
SpheroScan occasionally misidentified some debris as spheroids
(Supplementary Fig. S8B, S8D, and S8E). However, we found that
most of these challenges could be mitigated by adjusting the
prediction threshold (Supplementary Fig. S8C and S8F). These
challenging scenarios indicate that SpheroScan’s performance
may be influenced by specific image characteristics, such as the
complexity of spheroid structures and the presence of debris.
Generally, while the SpheroScan system offers many advantages
for high-throughput spheroid analysis, it is important to be aware
of its limitations and take steps to address them as needed.

Conclusion

The development of the web-based tool SpheroScan represents a
significant advancement in the analysis of 3D spheroid images.
Using the state-of-the-art DL techniques, our tool accurately de-
tects and segments spheroids in images, making it easy for re-
searchers to analyze large numbers of spheroid images. Addition-
ally, our tool is user-friendly and accessible to researchers regard-
less of their computational skills, making it a valuable resource
for the scientific community. The interactive visualization fea-
tures provided by our tool also allow for a more in-depth un-
derstanding of spheroid data, which will further facilitate the
widespread adoption of 3D spheroid models in research. Over-
all, SpheroScan represents a valuable tool for researchers work-
ing with 3D spheroid models and will help to advance the use of
these models in scientific research.

Materials and Methods

Implementation

SpheroScan (RRID:SCR_023886) was developed using the Plotly
Dash [35] library in Python (version 3.10.6), and all the plots were
made using Plotly. Pandas library [36, 37] was used to store and
process the data.

Spheroid image acquisition

In this study, our goal was to create a generalized DL model that
can be used for spheroid images from various experimental se-
tups or laboratory environments. To this end, we applied the aque-
ous 2-phase solution method to embed the cells of interest into
collagen matrix spheroids. To estimate the cell-driven contrac-
tion of the collagen matrix, we collected spheroid images from dif-
ferent treatment conditions and time points, using both bladder
smooth muscle cells (SMCs) and human embryonic kidney (HEK)
cells. SMC cells were chosen for this study since they have the
ability to contract, which we expected to lead to the creation of
spheroids in a wide range of sizes. HEK cells, on the other hand,
do not contract and were used as a negative control to ensure
the accuracy of our results. The spheroids were treated with vari-
ous concentrations of histamine and fetal bovine serum (FBS) and
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ground-truth regions by the total area of both regions combined. (C) Spheroid intensity calculation. To determine the intensity of the spheroid image, a
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were observed at regular intervals to track their response to these
treatments.

To generate the image datasets needed for a DL model, we per-
formed a spheroid gel contraction assay using 5,000 SMC or HEK
cells per collagen spheroid. After the collagen droplet polymer-
ized, the medium was changed and plates were transferred to an
IncuCyte Live-Cell Analysis System, which acquired images of the
spheroids every hour for 24 hours. Alternatively, we used a ZEISS
Axio Vert.Al Inverted Microscope and manually acquired images
of the spheroids at selected time points. By using both methods,
we were able to capture a wide range of spheroid images and to
create a robust dataset for our DL model.

A total of 480 images were obtained from the IncuCyte system,
and these were randomly divided into a training dataset of 336
images (70%) and a validation dataset of 144 images (30%). An ad-
ditional test dataset of 50 images was used to evaluate the per-
formance of the trained model. To create a model specifically for
microscopic images, we gathered spheroid images from the mi-
croscope and divided them into 3 datasets: training, validation,
and test. The training dataset included 265 images, the valida-
tion dataset included 117 images, and the test dataset included 50
images (Fig. 3A). To test the robustness of the trained model, the
spheroids in the test dataset were treated differently from those
in the training and validation datasets. The medium used here
was smooth muscle cell medium and Dulbecco’s Modified Eagle
Medium with 0.5% and 1% FBS.

In the following step, an experienced researcher in the spheroid
assay manually annotated the images from IncuCyte and micro-
scopes using the VGG Image Annotator [38].

For spheroid detection and segmentation, we used a state-of-the-
art DL model called Mask R-CNN and an open-source Python [39]
library called Detectron? [40]. Mask R-CNN is a method for solving
the problem of instance segmentation, which involves both ob-
ject detection and semantic segmentation. Object detection is the
process of identifying and classifying multiple objects within an
image, while semantic segmentation involves understanding the
image at the pixel level to distinguish individual objects within
the image. In order to perform these tasks, Mask R-CNN first uses
a deep convolutional neural network (CNN) to process the input
image and to generate a set of feature maps. These feature maps
are then used as input for the next step in the process.

Mask R-CNN performs object detection in 2 stages. First, it uses
a region proposal network (RPN) module to identify regions of in-
terest (ROIs) within the image. ROIs are defined as bounding boxes
with a high probability of containing objects. In the second stage,
Mask R-CNN uses an ROI classifier and bounding box regressor
module to classify the objects within the ROIs and to determine
their bounding boxes. Both the RPN and ROI classifier and bound-
ing box regressor modules are implemented as CNNs.

€202 1290190 | £ Uo Jasn uleg yaylolqigsiernsisaiun Aq 0680£E./zg0pelB/aousiosebiB/ca0 L 0L /10p/aonle/aousiosehiB/wood dno-olwapese//:sdny woll papeojumoq



6 | GigaScience, 2023, Vol. 12, No. 1

For semantic segmentation, Mask R-CNN uses a fully con-
volutional network (FCN) called the mask segmentation mod-
ule to predict masks for each ROI determined in the object de-
tection phase. This allows Mask R-CNN to accurately identify
and distinguish individual objects within the image and seg-
ment them from the background. Overall, the combination of ob-
ject detection and semantic segmentation allows Mask R-CNN to
achieve highly accurate and detailed instance segmentation re-
sults (Supplementary Fig. S5).

In this study, we used the Mask R-CNN model for instance seg-
mentation and tuned several of its parameters to fit the specific
problem and the dataset we were working with. The backbone of
the model was a ResNet-50 feature pyramid network, and we ini-
tialized the model with weights from a pretrained COCO instance
segmentation model. The batch size for training was set to 4,
and the base learning rate was set to 0.00025. The RoIHead batch
size was 256, and we used a single output class (for spheroids).
We trained the model for a total of 1,000 iterations. In addition
to these specified parameters, we used the default values for all
other parameters of the Mask R-CNN model.

Evaluation metrics

To evaluate the performance of the trained models on spheroid
segmentation, we used the AP or mean average precision (mAP)
metric. mAP is a commonly used evaluation metric in computer
vision for measuring the accuracy of instance segmentation and
object detection models. Many of the state-of-the-art object de-
tection algorithms, such as Faster R-CNN [41], Mask R-CNN [42],
MobileNet SSD [43], and YOLO [44], as well as benchmark chal-
lenges such as PASCAL VOC [45], use AP to evaluate their models.
Calculation of AP is dependent on the following metrics:

Precision: It is defined as the fraction of true instances among
all predicted instances and is calculated using the following for-
mula:

TP

Precision =
recision = -

Recall: It is a metric that represents the fraction of retrieved in-
stances among all relevant instances and is calculated as follows:

TP

Recall = TPrEN

IoU: The IoU is a metric that measures the overlap between 2
bounding boxes or masks. It is commonly used to evaluate the ac-
curacy of object detection and instance segmentation models. The
IoU value ranges from 0 to 1, with a value of 1 indicating a com-
pletely accurate prediction. To calculate the IoU, the overlap be-
tween the predicted and ground-truth regions is first determined
and divided by the total area of both regions. The IoU is a useful
metric because it allows for comparing predictions with different
shapes and sizes, as it considers the area of both the predicted
and ground truth regions (Fig. 3B).

AP: The AP is a metric used to evaluate the performance of ob-
ject detection and instance segmentation models. It is calculated
as the area under the precision-recall curve, which plots the pre-
cision (the proportion of true-positive detections among all posi-
tive detections) against the recall (the proportion of true-positive
detections among all ground-truth objects) of a model. AP ranges
from 0 to 1, with a higher value indicating better performance. A
higher AP value indicates that the model can achieve both high
precision and high recall, making it a useful metric for evaluat-
ing the overall performance of a model. AP can be calculated for

a specific IoU threshold as follows:

1
AP = JPrecision d (Recall)
0

Often, AP is used as the average over multiple IoU thresholds,
and it is calculated as follows:

1 k=n
mAP = - > AR
k=1
where,

AP, AP at k10U threshold;

n = Number of IoU thresholds under consideration.

In the following, APgg 75 represents AP at IoU threshold 0.75 and
APajo5.0.95 represents the average AP over 10 IoU thresholds (from
0.5 to 0.95 with a step size of 0.05).

Area and intensity calculation

After performing object detection and instance segmentation on
an image, we can use the predicted contour boundary of each
spheroid to calculate its area, circularity, and intensity. To cal-
culate the area of a spheroid, we use Python’s OpenCV library
to count the number of pixels within the contour boundary. This
gives us the total area of the spheroid in pixels. To calculate the
intensity of the spheroid, we follow a similar process. First, we cre-
ate a new image with the same shape and number of pixels as the
original, but with a default intensity of zero. This image is then
masked with the predicted contour boundary of the spheroid, set-
ting all pixels within the boundary to a value of 255. We then
extract the x and y coordinates of all pixels with a value of 255,
which correspond to the pixels within the contour boundary of the
spheroid in the original image. Finally, we use OpenCV to calculate
the average intensity of these pixels, which gives us the intensity
value for the spheroid. This process allows us to accurately mea-
sure the area and intensity of each spheroid in an image (Fig. 3C).

Data Availability

The source code, example input data, and a detailed tutorial
for SpheroScan are available at GitHub [46]. All supporting data,
which include images used for training, validation, and testing
[47], as well as the trained model weights [48], are available at
Zenodo. Additionally, spheroid images from the external datasets
that have been used to evaluate the applicability of SpheroScan,
along with the corresponding masked images, are also available at
Zenodo [49]. An archival copy of the SpheroScan code is available
via the GigaScience database GigaDB [50].

Additional Files

Supplementary Table S1. Comparison of features between
SpheroScan and other similar deep learning-based tools for au-
tomatic spheroid detection. *No information provided in the
manuscript. GUI = Graphical User Interface.

Supplementary Table S2. List of external datasets used to eval-
uate the performance of SpheroScan on an unseen dataset ob-
tained from various experiments, studies, and conditions.

Supplementary Fig. S1. SpheroScan Graphical User Interface.
(A) Prediction module. The prediction module applies trained DL
models to identify and mask spheroid images. It requires a zipped

€202 1290190 | £ Uo Jasn uleg yaylolqigsiernsisaiun Aq 0680£E./zg0pelB/aousiosebiB/ca0 L 0L /10p/aonle/aousiosehiB/wood dno-olwapese//:sdny woll papeojumoq


https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad082#supplementary-data

SpheroScan: a user-friendly

folder of images, platform type, and prediction threshold as in-
put and generates masked images and a CSV file containing the
area and intensity data of the identified spheroids as output.
(B) Visualization module. The visualization module creates plots
and performs statistical analysis using the output file from the
prediction module and a metadata file that contains informa-
tion about the study design. It offers various types of plots and
allows users to customize the plot options, such as plot type
and color palette. Users can export plots in high-resolution PNG
format.

Supplementary Fig. S2. SpheroScan plot gallery. (A) Bar plot. (B)
Bar plot with significance level. A bar plot with significance level
is a visual representation of data where the level of significance is
indicated by stars. Three asterisks (xx*) indicate a P value of less
than 0.001, while "ns" represents a P value of 0.05 or greater. The
less asterisks, the lower the significance level.

Supplementary Fig. S3. SpheroScan plot gallery. (A) Bubble
plot. A bubble plot is a type of scatterplot where the size of
the bubbles represents the mean spheroid area for a certain
group. The y-axis displays the relative area or contraction of the
spheroid, calculated with respect to a baseline group. (B) Line plot.

Supplementary Fig. S4. SpheroScan plot gallery. (A) Treemap.
A treemap is a method of displaying hierarchical data in which
nested rectangles are used to represent different groups. The
outer rectangles represent the top-level groups, while the inner
rectangles represent subgroups. The size and color of each rectan-
gle in the treemap indicate the mean spheroid areas or intensity
of the corresponding group. (B) Scatterplot.

Supplementary Fig. S5. Mask R-CNN architecture. The Mask
R-CNN model consists of 4 main modules: feature extraction,
region proposal network (RPN), region of interest (ROI) classifier
and bounding box regressor, and mask segmentation. The feature
extraction module takes images as input and produces feature
maps. The RPN module then runs on the feature maps and uses
a sliding window to identify bounding boxes with a high likeli-
hood of containing objects (ROIs). For each ROI, the ROI classifier
and bounding box regressor module is used to determine the class
label of the object. For semantic segmentation, the Mask R-CNN
model uses a fully convolutional network (FCN) in the mask seg-
mentation module to predict a mask for each ROl identified in the
object detection phase.

Supplementary Fig. S6. A comparison between masking meth-
ods: thresholding approach versus SpheroScan. (A-D) Images
masked using the thresholding approach in Image]. However, this
method proves ineffective in accurately masking the spheroid due
to significant contrast variations within the image. (E, F) Corre-
sponding images masked using SpheroScan, demonstrating more
accurate results.

Supplementary Fig. S7. Sample of spheroid images from ex-
ternal datasets. (A-C) Fluorescence microscopy images. (D) Fluo-
rescence (multichannel) microscopy image. (E, F) Brightfield mi-
croscopy images.

Supplementary Fig. S8. Challenging scenarios encountered by
SpheroScan. Image (A) contains a spheroid formed with a limited
number of labeled cells exhibiting a hollow, spheroid-like struc-
ture, which was not identified by SpheroScan in this image. Im-
ages (B), (D), and (E) represent spheroid images with debris and
irregular shapes, where SpheroScan mistakenly identified debris
as spheroids at a prediction threshold of 0.8. To address this is-
sue, the threshold was adjusted to 0.95 for image (B) and 0.9 for
image (E), leading to correct masking, as shown in images (C)
and (F), respectively. However, even after increasing the threshold,
SpheroScan still failed to correctly mask the spheroid in image (D).
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CNN: convolutional neural network; FBS: fetal bovine serum;
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lutional Neural Network; ROI: region of interest; RPN: region pro-
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Availability of Supporting Source Code and
Requirements

Project name: SpheroScan

Project homepage: https://github.com/FunctionalUrology/
SpheroScan

BioTool ID: spheroscan

SciCrunch ID: SpheroScan (RRID:SCR_023886)

Operating system(s): Linux or Mac

Programming language: Python 3.10.6

Other requirements: Docker, Python, Anaconda, Git

License: GNU GPL
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