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Summary
Background Differentiating between self-resolving viral infections and bacterial infections in children who are febrile 
is a common challenge, causing difficulties in identifying which individuals require antibiotics. Studying the host 
response to infection can provide useful insights and can lead to the identification of biomarkers of infection with 
diagnostic potential. This study aimed to identify host protein biomarkers for future development into an accurate, 
rapid point-of-care test that can distinguish between bacterial and viral infections, by recruiting children presenting to 
health-care settings with fever or a history of fever in the previous 72 h.

Methods In this multi-cohort machine learning study, patient data were taken from EUCLIDS, the Swiss Pediatric 
Sepsis study, the GENDRES study, and the PERFORM study, which were all based in Europe. We generated three 
high-dimensional proteomic datasets (SomaScan and two via liquid chromatography tandem mass spectrometry, 
referred to as MS-A and MS-B) using targeted and untargeted platforms (SomaScan and liquid chromatography mass 
spectrometry). Protein biomarkers were then shortlisted using differential abundance analysis, feature selection 
using forward selection-partial least squares (FS-PLS; 100 iterations), along with a literature search. Identified proteins 
were tested with Luminex and ELISA and iterative FS-PLS was done again (25 iterations) on the Luminex results 
alone, and the Luminex and ELISA results together. A sparse protein signature for distinguishing between bacterial 
and viral infections was identified from the selected proteins. The performance of this signature was finally tested 
using Luminex assays and by calculating disease risk scores.

Findings 376 children provided serum or plasma samples for use in the discovery of protein biomarkers. 79 serum 
samples were collected for the generation of the SomaScan dataset, 147 plasma samples for the MS-A dataset, and 
150 plasma samples for the MS-B dataset. Differential abundance analysis, and the first round of feature selection 
using FS-PLS identified 35 protein biomarker candidates, of which 13 had commercial ELISA or Luminex tests 
available. 16 proteins with ELISA or Luminex tests available were identified by literature review. Further evaluation via 
Luminex and ELISA and the second round of feature selection using FS-PLS revealed a six-protein signature: three of 
the included proteins are elevated in bacterial infections (SELE, NGAL, and IFN-γ), and three are elevated in viral 
infections (IL18, NCAM1, and LG3BP). Performance testing of the signature using Luminex assays revealed area 
under the receiver operating characteristic curve values between 89·4% and 93·6%.

Interpretation This study has led to the identification of a protein signature that could be ultimately developed into a 
blood-based point-of-care diagnostic test for rapidly diagnosing bacterial and viral infections in febrile children. Such 
a test has the potential to greatly improve care of children who are febrile, ensuring that the correct individuals receive 
antibiotics.
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Introduction 
Most children who are febrile and attending health-care 
settings have self-resolving viral infections; however, a 
small minority have bacterial infections, which can be 
life-threatening if left untreated. Clinical features do not 
reliably distinguish between bacterial and viral 
infections,1 with confirmed bacterial infections currently 
identified through culture tests from normally sterile 
sites. The results can take several days to become 
available and can be unreliable so antibiotics are often 
given on an empirical basis, contributing to the spread of 
antimicrobial resistance.2 Conversely, severe bacterial 
infections can be missed, which can have life-threatening 
consequences. In addition to culture-based diagnostic 
tests, blood biomarkers such as C-reactive protein and 
procalcitonin are often used as markers of bacterial 
infection.3,4 Despite their frequent use, C-reactive protein 
and procalcitonin are imperfect biomarkers for dis
tinguishing bacterial from viral infections, as elevated  
concentrations of both biomarkers have not only been 
observed in the plasma of patients with confirmed 
bacterial infections but also in those with viral infections, 

including SARS-CoV-2, and many non-infectious 
conditions.5

A rapid, accurate, point-of-care test is urgently required 
for distinguishing between bacterial and viral infections 
in children who are febrile. Interrogation of host 
proteomic profiles obtained from individuals with 
infectious and inflammatory diseases offers unique 
insights into disease pathogenesis and can reveal novel 
protein biomarkers with diagnostic potential.6 Multiple 
host protein biomarker candidates for diagnosing febrile 
illness in children have been identified,7,8 with one 
protein signature (ie, combination of proteins) proposed 
and developed into a commercialised point-of-care 
diagnostic test: MeMed BV (MeMed, Tirat Carmel).9 
MeMed BV uses three host protein biomarkers: 
C-reactive protein, interferon γ-induced protein 10 
(IP10), and tumour necrosis factor (TNF)-related 
apoptosis-inducing ligand (TRAIL). The three-protein 
signature included in MeMed BV was identified through 
hypothesis-driven literature searches and targeted 
screening of biomarker candidates,9 and developed and 
optimised for use in populations of all ages. Although 

Research in context 

Evidence before this study 
The majority of children who are febrile attending health-care 
settings have self-resolving viral infections; however, a small 
minority have bacterial infections that can be life-threatening. 
Clinical features alone do not reliably distinguish between 
bacterial and viral infections. Culture-based methods are the 
best diagnostic approaches; however, they have various 
shortcomings including slow turnaround times, low sensitivity, 
and high resource intensity. We searched PubMed for papers 
published between database inception and June 6, 2023 using 
the search terms “bacterial” AND “viral” AND (“paediatric” OR 
“pediatric” OR “children”) AND (“proteomics” OR “host protein” 
OR “host protein abundance”) AND (“signature” OR 
“diagnosis”). Our search returned 24 papers, with 11 papers 
reporting on the performance of a single three-protein 
signature (C-reactive protein, interferon γ-induced protein 10 
[IP10] and tumour necrosis factor (TNF)-related apoptosis-
inducing ligand [TRAIL]) for distinguishing between bacterial 
and viral infections, using various study populations to evaluate 
its performance. Although the three-protein signature has 
promising performance in paediatric populations, the proteins 
comprising the signature were not identified from child protein 
profile data and were instead identified from literature searches 
or adult transcriptomic data. A further two studies were 
identified, which explored the performance of distinct protein 
signatures using proteins selected from the literature (signature 
one: C-reactive protein, procalcitonin, IL-6, NGAL, MxA, TRAIL, 
and IP-10 and signature two: procalcitonin, TRAIL, IL-4, IL-6, 
CXCL10, IFN-γ, and LCN2) in distinguishing bacterial infections 
from viral infections in emergency departments in France and 
Spain. As such, there might be further optimal host proteins for 

distinguishing between bacterial and viral infections in children 
who are febrile. 

 Added value of this study 
This study is the first to use high-dimensional proteomic 
datasets composed of children from a range of countries and 
health-care settings to identify a host protein signature for 
distinguishing between bacterial and viral infections. We have 
identified a combination of six proteins (six-protein signature) 
that has not yet been reported as a combination of proteins 
with diagnostic potential for distinguishing between bacterial 
and viral infections in children who are febrile. Furthermore, we 
have identified a list of novel host protein biomarkers for 
differentiating between bacterial and viral infections in children 
who are febrile that have not yet been reported in the literature. 
This study also contributes three high-quality, high-
dimensional proteomic datasets that are publicly available 
for reuse. 

Implications of all the available evidence 
Host protein biomarkers have clear potential to improve the 
diagnosis of bacterial and viral infections in children who are 
febrile. The six-protein signature presented here could be 
developed into a rapid blood-based point-of-care diagnostic 
test with high accuracy, considerably improving the care of 
children who are febrile by reducing unnecessary antibiotic 
administration. Using an easy-to-access fluid such as blood 
would make obtaining samples simpler compared with the 
current standard for infectious disease diagnosis, in which 
samples are sourced from the site of infection, thus increasing 
the applicability and ease of use of such a diagnostic test. 
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the test has promising performance in paediatric 
populations,10 there might be alternative protein 
biomarkers that are superior for diagnosing bacterial 
and viral infections in children who are febrile.

We aimed to identify protein biomarkers for diag
nosing febrile illness in children and, in combination 
with literature-derived proteins, identify and evaluate 
the best reduced combinations of protein biomarkers 
for distinguishing between bacterial and viral infections.

Methods 
Study design 
In this multi-cohort machine learning study, we used 
samples from patients recruited prospectively into the 
EUCLIDS study, the Swiss Pediatric Sepsis study, the 
GENDRES study, and the PERFORM study (appendix 
p 1).11,12 These studies recruited children from across 
16 European hospitals and used a previously validated 
phenotyping algorithm and sampling procedures.11,12 The 
studies enrolled diverse yet well phenotyped children 
with suspected infection. Recruitment dates ranged from 
Sept 1, 2011, to Dec 31, 2019.

Participants 
All participants were aged 18 years and younger and were 
required to have a fever or history of fever (temperature 
≥38·0°C) in the previous 72 h for inclusion. Patients 
defined as having definite viral infections were required 
to have an identified virus that matched the clinical 
syndrome, in addition to C-reactive protein concen
trations of 60 mg/L or less, and reduced numbers of 
neutrophils at 12 × 10–⁹/mL or less. Patients defined as 
having definite bacterial infections were required to have 
a bacterial pathogen identified from a sterile site that 
matched the clinical syndrome (appendix pp 1, 11).

Parental informed consent and assent from older 
children was collected at the time of recruitment into 
each respective dataset. Ethical approval was obtained at 
the coordinating site (Imperial College London, 
16/LO/1684) and separately at each participating centre. 

The healthy control group from PERFORM constituted 
children younger than 18 years who were not febrile and 
who had no symptoms of infection. These children had 
blood tests for reasons unrelated to infection or 
inflammation and had not received vaccinations within 
the preceding 3 weeks.

Procedures 
Serum and plasma samples were obtained from 
participants in the EUCLIDS study, the Swiss Pediatric 
Sepsis study, and the GENDRES study, and plasma 
samples were obtained from participants in the 
PERFORM study. Samples were taken as part of the 
recruitment process by a clinical team member and were 
transported and stored at –80°C. Serum samples used in 
the SomaScan experiment were handled by SomaLogic 
(Boulder, CO, USA), plasma samples used in the liquid 

chromatography tandem mass spectrometry experiments 
were handled by the Discovery Proteomics Facility 
(Oxford, UK).

We did a robust protein biomarker identification study 
(ie, the high-throughput screening phase). Following the 
high-throughput screening phase, the most significant 
or most frequently selected biomarker candidates were 
quantified using Luminex and ELISA, which are similar 
to the type of platform used in a point-of-care diagnostic 
test (ie, the signature refinement phase). We then 
validated the final protein biomarker signature (ie, the 
signature validation phase).

The high-throughput screening phase involved 
identifying potential protein biomarker candidates for 
distinguishing between samples obtained from patients 
with definite bacterial and definite viral infections. Three 
separate datasets were generated for the discovery of 
protein biomarkers. The SomaScan dataset was 
generated from serum samples using the multiplexed 
SomaScan aptamer-based platform (SomaLogic; 1.3K 
Assay). The remaining two datasets were generated from 
plasma samples using liquid chromatography tandem 
mass spectrometry, to be referred to as the MS-A and 
MS-B dataset (appendix p 2). The MS-A dataset used 
plasma samples from patients recruited into the 
EUCLIDS study, and the MS-B dataset used plasma 
samples from patients recruited into the PERFORM 
study. Aside from cohort, the data generation protocols 
were identical for MS-A and MS-B. Differential 
abundance analysis was done on each dataset to identify 
lists of proteins that were significantly differentially 
abundant between patients with definite bacterial and 
definite viral infections. Next, feature selection was done 
on these datasets to identify small protein signatures, (ie, 
combinations of proteins with diagnostic potential; 
appendix p 3). For machine learning, an in-house feature 
selection method, forward selection-partial least squares 
(FS-PLS),1,13 was applied to each high-throughput dataset 
to identify protein signatures for differentiating between 
definite bacterial and definite viral infections (appendix 
p 3). FS-PLS was applied across 100 iterations to each 
dataset, each time with a different training and test split 
at a ratio of 7:3. This approach was used to enable 
identification of the most robust proteins in addition to 
the best diagnostic combination of proteins.

We also did a literature search of PubMed on Dec 1, 2017 
(appendix p 3), to explore studies published from 
Jan 1, 2005, that reported biomarkers for diagnosing 
bacterial and viral infections. The search used the terms 
“infection, bacterial or viral, biomarker, plasma or 
serum” and additional search terms including 
“biomarker”, “cytokine”, “chemokine”, “growth factor”, 
and “multiplex” or “Luminex”. The goal of the literature 
search was to identify known protein biomarkers for 
evaluation of their performance in our cohort of patients.

Protein biomarker candidates identified in the high-
throughput screening phase were considered for the 
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signature refinement phase in addition to the proteins 
identified from the literature. Multiple inclusion criteria 
were used to introduce redundancy in case some 
proteins did not successfully translate across platforms 
(appendix p 3).

In the signature refinement phase, concentrations of 
protein  were measured by ELISA or Luminex 
immunoassays in an independent set of plasma samples 
from the PERFORM study of children with definite 
bacterial and definite viral infection, using standard 
curves to identify protein concentrations (appendix p 4). 
Iterative FS-PLS was applied to the proteins measured 
using the Luminex results alone (Luminex signature), 
and then to the proteins measured using both the ELISA 
and Luminex results (Luminex and ELISA signature). 
The aim of the signature refinement phase was to 
narrow down the list of protein biomarkers identified in 
the high-throughput screening phase and from the 
literature screening phase, to identify the optimal 
combination of proteins that, when measured using a 
targeted, simpler platform, have the best performance at 
distinguishing between bacterial and viral infections. In 
this phase, a small protein signature for distinguishing 
between bacterial and viral infections was identified 
from the selected proteins.

The performance of this signature was tested in a 
further independent cohort of patients recruited into 
the PERFORM study in the signature validation phase 
with protein concentrations measured using Luminex 
immunoassays (appendix pp 4–5). The protein 
signatures identified in the signature refinement phase 
as the optimal predictive signature for distinguishing 
between bacterial and viral infections were taken 
forward to the signature validation phase. Proteins 
were measured on plasma samples from PERFORM 
patients with definite bacterial and definite viral 
infections, non-sterile definite bacterial infections, 
probable bacterial infections, bacterial syndrome, 
probable viral infections, viral syndrome, and the 
healthy control group. The performance of the 
signature identified in the signature refinement phase 
in differentiating between definite bacterial and definite 
viral infection was evaluated in all phenotypic groups 
and the performance of the signature was compared 
with the performance of the combination of proteins 
included in MeMed BV (composed of C-reactive 
protein, IP10, and TRAIL; appendix p 5), but was not 
measured on the MeMed BV platform.9 The healthy 
control group data were used purely for data pre-
processing purposes.

The performance of the signature identified in the 
signature validation phase was evaluated in terms of its 
ability to classify patients with definite bacterial infections 
and definite viral infections. A disease risk score was 
generated and the optimal threshold above or below 
which a patient was classified as definite bacterial was 
obtained, which corresponded to the maximal specificity 

with sensitivity greater than 90%, to prioritise correct 
classification of definite bacterial infections. There was 
no indeterminate classification. The signature was also 
tested on the patients in the following groups: non-sterile 
definite bacterial infection, probable bacterial infection, 
bacterial syndrome, probable viral infection, and viral 
syndrome. However, these groups were not used for the 
calculation of performance metrics. A disease risk score 
was generated for these patients and they were classified 
as either definite bacterial or definite viral using the 
threshold calculated previously. Retrospective clinical 
classifications (eg, definite bacterial) was available for all 
participants throughout this process for evaluation of test 
performance.

At each phase of the study, independent cohorts of 
patients were used, with no overlap between any patients 
included in datasets generated at any stage of the study. 
Biological sex at birth as recorded in patients’ hospital 
registration information was used.

Statistical analysis 
All statistical analyses in this study were done using R 
(version 3.6.1).14 Normalisation (appendix pp 2–3) and 
analytical processes were done on the three high-
throughput discovery proteomic datasets independently 
due to differences in sample type, study cohort com
position, and quantification platform. Limma15 was used 
for differential abundance analysis to identify proteins 
significantly differentially abundant between children 
with definite bacterial and definite viral infections. Age 
and sex were included as covariates for all three datasets, 
with plate as an additional covariate for the SomaScan 
dataset. P values were adjusted using the Benjamini-
Hochberg procedure,16 with a significance level of 0·05.

In the high-throughput screening phase, FS-PLS was 
done iteratively on 100 different training:test splits (ratio 
of 70:30) of each dataset (appendix p 3). For each iteration, 
the signature identified by FS-PLS with the highest area 
under the receiver operating characteristic curve (AUC 
ROC) in the test dataset was taken forward. The 
frequency with which each signature and each individual 
protein were selected across the 100 iterations was 
calculated. A robustness value was calculated as the 
number of times a protein was selected across all 
iterations, divided by the total number of iterations. 
Following the high-throughput screening phase, a 
shortlist of potential protein biomarkers for distin
guishing between bacterial and viral infections was 
identified.

In the signature refinement phase, levels of proteins 
were first compared between definite bacterial and 
definite viral patients using the Mann-Whitney U test. 
FS-PLS was then run twice, either on proteins measured 
using ELISA and Luminex and then just on the proteins 
measured using Luminex. All parameters were the same 
as the parameters used in the high-throughput screening 
phase, except the number of iterations which was reduced 
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to 25 to reflect the lower number of dimensions. For all 
samples, a weighted disease risk score1 was calculated for 
both signatures by multiplying the abundance values of 
each protein by their weights (also known as coefficients) 
from FS-PLS (appendix p 4). From the disease risk score, 
the AUCs and partial AUCs were calculated17 for the 
two signatures at 90% sensitivity and specificity, 
95% sensitivity and specificity, and maximal sensitivity 
and specificity using Youden’s index18 were also calculated 
to contrast the performance of the two signatures. 
Comparisons were to identify which was the optimal 
signature. To identify proteins that could distinguish 
between bacterial and viral infections when C-reactive 
protein is low in bacterial infections, differential 
abundance analysis was done using Limma between 
definite bacterial samples with C-reactive protein of 
60 mg/L or less and definite viral samples. Age and sex 
were included as covariates in the model.

In the signature validation phase, weighted disease risk 
scores were calculated using the FS-PLS model weights 
from the signature refinement phase (original weights) 
along with retrained model weights from the general 
linear models using the signature validation phase data 
(appendix pp 4–5). A simple disease risk score was also 
used (appendix p 4),1 which entails adding the total 
abundance of the over-expressed proteins and subtracting 
the total abundance of the under-expressed proteins. The 
signature performance was again evaluated through 
calculating AUCs and partial AUCs at 90% sensitivity 
and specificity, 95% sensitivity and specificity, and the 
maximal sensitivity and specificity were calculated using 
Youden’s index.18 Disease risk scores were also calculated 
for patients in other phenotypic groups (ie, not definite 
bacterial or definite viral) and individuals and samples 

were classified using the disease risk score threshold 
corresponding to the maximal specificity with a 
sensitivity greater than 90%. Patients were classified in a 
binary manner (ie, definite bacterial or definite viral) 
with no indeterminate classification.

Role of the funding source 
The funders of the study had no role in the study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results 
376 children provided serum or plasma samples for 
the identification of protein biomarkers for bacterial 
infection, with 79 providing serum for the generation of 
the SomaScan dataset, 147 providing plasma for the 
generation of the MS-A dataset, and 150 providing plasma 
for the generation of the MS-B dataset (table 1; figure 1).

A total of 431 proteins were significantly differentially 
abundant (Benjamini-Hochberg adjusted p<0·05) 
between bacterial and viral infections in the SomaScan 
dataset, with 198 more abundant and 233 proteins less 
abundant in bacterial infections than in viral infections 
(figure 2A). In the MS-A dataset, 54 proteins were 
significantly differentially abundant between bacterial 
and viral infections with 20 proteins more abundant and 
34 proteins less abundant in bacterial infections than in 
viral infections (figure 2B). In the MS-B dataset, 
97 proteins were significantly differentially abundant 
between bacterial and viral infections with 28 proteins 
more abundant and 69 proteins less abundant in bacterial 
infections than in viral infections (figure 2C). 16 proteins 
were significantly differentially abundant between 
bacterial and viral infections in all three datasets with 

SomaScan MS-A MS-B

Definite bacterial (n=48) Definite viral (n=31) Definite bacterial (n=74) Definite viral (n=73) Definite bacterial (n=75) Definite viral (n=75)

Study of origin EUCLIDS EUCLIDS EUCLIDS EUCLIDS PERFORM PERFORM

Sample type Serum Serum Plasma Plasma Plasma Plasma 

Age (months) 25 (9–77) 11 (4–35) 35 (10–61) 9 (2–23) 57 (12–101) 37 (10–83)

Female 24 (50%) 17 (55%) 47 (64%) 35 (48%) 33 (44%) 33 (44%)

Male 24 (50%) 14 (45%) 27 (37%) 38 (52%) 42 (56%) 42 (56%)

Duration of symptoms (days) 3 (2–7) 3 (1–4) 2 (1–4) 3 (2–7) 2 (1–5) 3 (1–6)

C-reactive protein (mg/L) 124·0 (68·0–226·0) 14·5 (5·0–34·8) 108·0 (39·3–220·8) 17·5 (6·0–26·5) 72·5 (20·7–146·7) 10·3 (3·2–22·0)

Platelets (× 10⁹/L) 216 (128–334) 249 (205–376) 228 (158–351) 306 (228–388) 263 (207–356) 274 (199–339)

Lymphocytes (× 10⁹/L) 1·8 (1·1–3·6) 2·0 (1·4–3·1) 1·5 (0·6–2·7) 2·2 (1·7–3·1) 1·4 (1·0–3·0) 2·5 (1·6–4·1)

Neutrophils (× 10⁹/L) 8·7 (3·6–14·1) 6·3 (2·9–10·2) 4·7 (1·8–12·9) 3·7 (2·7–6·4) 11·2 (6·1–17·3) 4·7 (2·7–7·3) 

Monocytes (× 10⁹/L) 0·8 (0·4–1·3) 1 (0·7–1·2) 1·5 (0·7–3·0) 0·9 (0·4–1·2) 1·1 (0·6–1·4) 0·8 (0·5–1·1)

Most common causative 
pathogens or disease

Neisseria meningitidis 
(n=11); Staphylococcus 
aureus (n=8); 
Streptococcus pneumoniae 
(n=5); Streptococcus 
pyogenes (n=5)

Enterovirus (n=6); 
Respiratory syncytial 
virus (n=5); 
Rhinovirus (n=4) 

Neisseria meningitidis (n=28); 
Streptococcuspneumoniae 
(n=13); Staphylococcus aureus 
(n=9); Escherichia coli (n=7)

Respiratory syncytial 
virus (n=22); 
Enterovirus (n=13); 
Rhinovirus (n=9); 
Influenza virus (n=6)

Escherichia coli (n=21); 
Streptococcus pyogenes 
(n=14); Staphylococcus 
aureus (n=9); Neisseria 
meningitidis (n=5)

Influenza virus 
(n=19); Rhinovirus 
(n=10); Adenovirus 
(n=9); Epstein–Barr 
virus (n=7)

 
Data are n (%) and median (IQR). Percentages might not sum to 100 because of rounding. 

Table 1: Clinical and laboratory features of patients whose samples were included in the discovery of novel protein biomarkers (ie, the high-throughput screening phase)
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concordant log-fold change directions, and these proteins 
were added to the shortlist of potential protein biomarker 
candidates (table 2).

When iterative FS-PLS (with 100 iterations) was applied 
to the SomaScan dataset, a three-protein signature was 
selected the most frequently (five of 100 iterations), 
composed of ISG15 (robustness 0·92), TIMP metallo
peptidase inhibitor 1 (TIMP1; 0·42), and UL16 binding 
protein 3 (ULBP3; 0·05). When iterative FS-PLS was 
applied to the MS-A dataset, a four-protein signature was 
selected the most frequently (five of 100 iterations), 
composed of liposaccharide binding protein (LBP; 
robustness 0·55), clusterin (CLUS; 0·38), apolipoprotein 
H (APOH; 0·32), and histidine-rich glycoprotein (HRG; 
0·08). When iterative FS-PLS was applied to the MS-B 
dataset, a five-protein signature was selected the most 
frequently (seven of 100 iterations), composed of 
antithrombin 3 (AT3; robustness 0·95), ceruloplasmin 
(CERU; 0·49), secreted phosphoprotein 24 (SPP24; 0·29), 
apolipoprotein C1 (APOC1; 0·17) and α1-antichymotrypsin 
(AACT; 0·09).

A total of 35 protein biomarker candidates were 
identified in the high-throughput screening phase and 
considered for quantification in the signature refinement 
phase using an independent set of samples, including 
18 proteins more abundant in bacterial infections, and 
17 proteins more abundant in viral infections (table 2, 
appendix p 12). A total of 13 protein targets had 
commercial Luminex or ELISA assays available, and 
were taken forward to the signature refinement phase, 
including five that increased in bacterial infections and 
eight that increased in viral infections.

Literature searches were done in parallel to the 
hypothesis-free high-throughput screening phase to 
identify further protein biomarker candidates. A total of 
16 potential protein biomarkers were identified from the 
literature that also had commercial Luminex or ELISA 
assays available (appendix p 7), including ten that were 
found to increase and six that were found to decrease in 
bacterial infections.

The concentrations of the 13 proteins identified in the 
high-throughput screening phase as potential bio
markers for distinguishing between definite bacterial 
and definite viral infections with commercially available 
ELISA or Luminex immunoassays were evaluated in 
addition to the 16 proteins identified from the literature 
(appendix pp 7–8, 13). 88 definite bacterial and 113 definite 
viral infection samples were obtained from patients 
recruited into the PERFORM study for this evaluation in 
the signature refinement phase (table 3). Of the 
13 proteins from the high-throughput screening phase, 
10 were significantly different between bacterial and viral 
infections and of the 16 proteins derived from the 
literature, 11 were significantly different between 
bacterial and viral infections when concentrations were 
compared using Mann-Whitney U tests (appendix 
pp 8, 13).

Figure 1: Procedures flowchart
FS-PLS=forward selection-partial least squares. LC-MS/MS=liquid chromatography-tandem mass spectrometry. 
Figure created with BioRender.com.
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Iterative FS-PLS was applied to narrow down the list of 
29 protein candidates and identify small protein 
signatures for distinguishing definite bacterial from 
definite viral infection, with and without the proteins 
measured using ELISA. When FS-PLS was applied to the 
21 proteins measured using Luminex assays, the most 
frequently selected signature was a five-protein signature 
composed of NCAM1, IL18, SELE, NGAL, and IFN-γ (the 
Luminex signature), which was selected in seven of 
25 iterations. When FS-PLS was applied to the 28 proteins 
measured by ELISA assays (except C-reactive protein 
since it was used in the classification of patients with 
definite viral infection) in addition to the Luminex 
proteins, the most frequently selected signature was a 
five-protein signature composed of SELE, IL18, NCAM2, 

SAA1, ANGPT2 (the Luminex–ELISA signature), which 
was selected in seven of 25 iterations. The ROC curves 
for the Luminex and the Luminex–ELISA signatures 
(SELE, IL18, NCAM1, SAA1, ANGPT2) were compared 
using the roc.test function from the pROC package and 
no significant difference was identified (p=0·84). Despite 
this result, the Luminex signature had a higher overall 
AUC (Luminex 89·1% vs Luminex–ELISA 88·7%; 
figure 3A; appendix p 9), higher maximum sensitivity 
(90·4% vs 89·7%), specificity (67% vs 64·4%), and partial 
AUC when specificity was limited to 90–100% (6·1% vs 
5·3%; appendix p 9) and 95–100% (2·4% vs 2·3%; 
appendix p 9). Furthermore, the Luminex signature led 
to fewer misclassifications of definite viral infections 
than the Luminex–ELISA signature (appendix p 9). The 

Figure 2: Volcano plots for differential abundance analysis for each dataset
Volcano plots show the log2 fold-change values and the –log10 Benjamini-Hochberg adjusted p values for proteins in the (A) SomaScan, (B) MS-A (C) and MS-B 
cohorts for models contrasting definite bacterial and definite viral samples. Axis scales vary between A, B, and C for readability.
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Luminex signature was taken forward to the signature 
validation phase over the Luminex–ELISA due to its 
higher sensitivity which was prioritised due to the 
implications of missing a severe bacterial infection.

Differential abundance analysis was done, comparing 
definite bacterial samples with C-reactive protein 
concentrations of 60 mg/L or less with definite viral 
samples. Galectin-3-binding protein (LG3BP) was the 

Protein name Uniprot Infection 
type protein 
is elevated in

Reasons for inclusion

A2GL Leucine-rich α-2-glycoprotein P02750 Bacterial MS-A Limma top five, MS-A most robust (n=2)

AACT α-1-antichymotrypsin P01011 Bacterial Significantly differentially abundant in all three datasets, MS-B top 
signature (n=2)

AFM Afamin P43652 Viral MS-B top five significantly differentially abundant (n=1)

AT3 Antithrombin-III P01008 Viral MS-B top signature, MS-B top five significantly differentially abundant, 
MS-B most robust (n=3)

APOC1 Apolipoprotein C-I P02654 Bacterial MS-B top signature (n=1)

APOH β-2-glycoprotein 1 P02749 Bacterial MS-A top signature, MS-A most robust (n=2)

CERU Ceruloplasmin P00450 Bacterial MS-B top signature, MS-B most robust (n=2)

CLUS Clusterin P10909 Viral Significantly differentially abundant in all three datasets, MS-A top 
signature, MS-A top five significantly differentially abundant, MS-B top 
five significantly differentially abundant, MS-A most robust (n=5)

CNTN5 Contactin-5 O94779 Viral SomaScan top five significantly differentially abundant (n=1)

CO7 Complement component C7 P10643 Viral Significantly differentially abundant in all three datasets (n=1)

FA5 Coagulation factor V P12259 Viral Significantly differentially abundant in all three datasets (n=1)

FBLN3 EGF-containing fibulin-like extracellular 
matrix protein 1  

Q12805 Bacterial Significantly differentially abundant in all three datasets (n=1)

FETUA α-2-HS-glycoprotein P02765 Viral Significantly differentially abundant in all three datasets (n=1)

HRG Histidine-rich glycoprotein P04196 Bacterial MS-A top signature (n=1)

IGFBP3 Insulin-like growth factor-binding protein 3 P17936 Viral MS-B top five significantly differentially abundant (n=1)

IPSP Plasma serine protease inhibitor P05154 Viral Significantly differentially abundant in all three datasets (n=1)

ISG15 Ubiquitin-like protein ISG15 P05161 Viral SomaScan top signature, SomaScan most robust (n=2)

KAIN Kallistatin P29622 Viral MS-B most robust (n=1)

LBP Lipopolysaccharide-binding protein P18428 Bacterial Significantly differentially abundant in all three datasets, MS-A top 
signature, MS-A top five significantly differentially abundant, SomaScan 
most robust, MS-A most robust (n=5)

LG3BP Galectin-3-binding protein Q08380 Viral Significantly differentially abundant in all three datasets (n=1)

MASP1 Mannan-binding lectin serine protease 1 P48740 Viral Significantly differentially abundant in all three datasets, MS-A most 
robust (n=2)

MASP2 Mannan-binding lectin serine protease 2 O00187 Viral MS-B most robust (n=1)

MPIF1 C-C motif chemokine 23 P55773 Bacterial SomaScan top five significantly differentially abundant (n=1)

NCAM1 Neural cell adhesion molecule 1 P13591 Viral Significantly differentially abundant in all three datasets (n=1)

NGAL Neutrophil gelatinase-associated lipocalin P80188 Bacterial Significantly differentially abundant in all three datasets (n=1)

NRP1 Neuropilin-1 O14786 Bacterial Significantly differentially abundant in all three datasets (n=1)

PLG Plasminogen P00747 Viral Significantly differentially abundant in all three datasets (n=1)

SAA1 Serum amyloid A-1 P0DJI8 Bacterial Significantly differentially abundant in all three datasets, MS-A top five 
significantly differentially abundant, MS-B Limma top five (n=3)

SAA2 Serum amyloid A-2 P0DJI9 Bacterial MS-A top five significantly differentially abundant (n=1)

SELE E-Selectin P16581 Bacterial SomaScan top five significantly differentially abundant, SomaScan most 
robust (n=2)

SPP24 Secreted phosphoprotein 24 Q13103 Viral MS-B top signature, MS-B most robust (n=3)

TIMP1 Metalloproteinase inhibitor 1 P01033 Bacterial SomaScan top signature, SomaScan top five significantly differentially 
abundant, SomaScan most robust (n=3)

TNF sR-I Tumor necrosis factor receptor superfamily 
member 1A

P19438 Bacterial SomaScan most robust (n=1)

ULBP3 UL16-binding protein 3 Q9BZM4 Bacterial SomaScan top signature (n=1)

ZPI Protein Z-dependent protease inhibitor Q9UK55 Bacterial Significantly differentially abundant in all three datasets (n=1)
 
Ns in parentheses following reasons for inclusion indicate the total number of reasons.

Table 2: Shortlist of proteins candidates identified from the high-throughput screening phase.
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most significantly differentially abundant protein, with a 
Benjamini-Hochberg16 adjusted p value of 0·013 (log2 fold-
change –0·706). LG3BP was taken forward to the signature 
validation phase in addition to the Luminex signature.

Concentrations of the proteins included in the 
signature identified in the signature refinement phase 
were tested on an independent set of plasma samples 
from PERFORM patients with definite bacterial (n=162) 
and definite viral (n=144) infections, non-sterile definite 
bacterial infection (n=31), probable bacterial infection 
(n=64), bacterial syndrome (n=2), probable viral infection 
(n=75), viral syndrome (n=12), and healthy controls 
(n=61; table 3) in the signature validation phase.

The performance of the five-protein Luminex signature 
(appendix p 9) in classifying definite bacterial and definite 
viral infection samples was tested. The AUC calculated 
using the original model weights from the signature 
refinement phase was 79·7% (95% CI 74·9–84·6; 
figure 3B; appendix p 9). This result improved to 89·2% 
(85·7–92·7) when retrained model weights were used.

The measurements of the proteins included in the 
signature were combined into a single score for each 
sample—a simple disease risk score (appendix p 4).19 The 
direction (ie, whether the proteins are expected to 

increase or decrease) was identified from the weights 
calculated by FS-PLS in the signature refinement phase. 
The AUC using the simple disease risk score was 87·4% 
(95% CI 83·6–91·2; figure 3B; appendix p 9).

LG3BP was also taken forward from the signature 
refinement phase for further validation and was 
combined with the five-protein signature, leading to a 
slightly improved AUC of 89·3% (95% CI 85·7–92·9; 
figure 3B) when the simple disease risk score was used. 
When model weights were retrained with LG3BP 
included in the signature, the six-protein signature had 
an AUC of 93·6% (90·9–96·3). The addition of LG3BP 
led to statistically significant differences between the 
ROC models for the five-protein and six-protein 
signatures calculated using retrained model weights 
(p=1·5 × 10–⁴) but not for the models calculated using the 
simple disease risk score. The addition of LG3BP to the 
signature led to improvements in specificity over the five-
protein signature but not sensitivity. The specificity of 
the six-protein signature was 89·6% for ROC models 
with the retrained weights and 85·4% for the simple 
disease risk score (appendix p 10).

The six-protein signature was used for downstream 
analyses given its improved specificity in classifying 

Signature refinement phase Signature validation phase

Definite bacterial 
(n=88)

Definite viral 
(n=113)

Definite 
bacterial 
(n=162)

Non-sterile 
definite bacterial 
(n=31)

Probable 
bacterial 
(n=64)

Bacterial 
syndrome 
(n=2)

Definite viral 
(n=144)

Probable viral 
(n=75)

Viral 
syndrome 
(n=12)

Healthy control 
(n=62)

Age (months) 50 (13–115) 38 (13–76) 53 (12–120) 116 (35–188) 47 (19–101) 71 (47–71) 44 (10–92) 29 (9–64) 27 (10–44) 106 (68–163)

Female 45 (51%) 51 (45%) 73 (45%) 11 (36%) 28 (44%) 0 72 (50%) 31 (41%) 4 (33%) 23 (37%)

Male 43 (49%) 62 (55%) 89 (55%) 20 (65%) 36 (56%) 2 (100%) 72 (50%) 44 (59%) 8 (67%) 39 (63%)

Duration of 
symptoms (days)

2 (1–4) 3 (1–5) 3 (1–5) 2 (2–7) 3 (2–5) 4 (3–4) 3 (1–5) 2 (1–4) 3 (2–6) ··

C-reactive 
protein (mg/L)

103·0 
(33·2–202·2)

10·3 
(4·0–23·8)

89·0 
(32·5–175v0)

79·1 
(25·0–129·2)

106·7 
(53·9–179·0)

7·6  
(7·6–7·6)

6·6  
(3·0–18·0)

4·0  
(2·2–10·8)

8·6  
(2·5–30·2)

··

Platelets (× 10⁹/L) 264  
(166–395)

270 
(201–349)

284  
(230–396)

295  
(215–365)

285  
(220–397)

265 
(259–270)

250 
(192–337)

285  
(222–371)

353 
(309–407)

··

Lymphocytes 
(× 10⁹/L)

2·1  
(1·1–3·5)

2·8  
(1·7–3·8)

2·3  
(1·2–3·3)

1·8  
(1·5–2·6)

2·2  
(1·3–3·3)

3·2  
(1·9–4·4)

2·3  
(1·3–3·8)

3·1  
(1·8–4·8)

3·6  
(2·8–5·4)

··

Neutrophils 
(× 10⁹/L)

11·4  
(5·5–17·6)

5·1  
(2·7–6·5)

10·1  
(6·7–15·9)

5·6  
(4·2–8·8)

11·7  
(7·4–16·9)

7·0  
(6·9–7·1)

3·6  
(2·2–6·3)

3·8  
(2·4–6·7)

13·3 
(8·5–16·6)

··

Monocytes 
(× 10⁹/L)

1·0  
(0·6–1·6)

0·8  
(0·5–1·1)

1·2  
(0·7–1·6)

0·9  
(0·6–1·1)

1·3  
(0·8–2·0)

0·8  
(0·8–0·8)

0·6  
(0·4–1·0)

0·7  
(0·4–1·0)

1·7  
(1·0–2·0)

··

Causative 
pathogens or 
disease

Escherichia coli 
(n=16); 
Streptococcus 
pyogenes (n=11); 
Staphylococcus 
aureus (n=11); 
Neisseria 
meningitidis 
(n=11); 
Streptococcus 
pneumoniae 
(n=9); other* 
(n=30)

Adenovirus 
(n=19); 
influenza virus 
(n=18); 
rhinovirus 
(n=15); 
respiratory 
syncytial virus 
(n=12); 
enterovirus 
(n=12); other* 
(n=37)

Escherichia coli 
(n=70); 
Staphylococcus 
aureus (n=31); 
Streptococcus 
pneumoniae 
(n=23); 
Streptococcus 
pyogenes 
(n=11); other* 
(n=27)

Salmonella spp 
(n=11); 
Mycoplasma spp 
(n=8); 
Campylobacter 
spp (n=6); 
Mycobacterium 
tuberculosis 
(n=3); other* 
(n=3)

Streptococcus 
spp (n=10); 
Staphylococcus 
spp (n=7); 
Clostridium 
difficile (n=3); 
Campylobacter 
spp (n=3); 
other* (n=41)

·· Influenza virus 
(n=45); 
Epstein–Barr 
virus (n=21); 
Enterovirus 
(n=19); 
Respiratory 
syncytial virus 
(n=18); other* 
(n=41) 

Rhinovirus 
(n=7); measles 
(n=7); 
enterovirus 
(n=4); 
Epstein–Barr 
virus (n=4); 
other* (n=53)

Rhinovirus 
(n=3); 
respiratory 
syncytial virus 
(n=2); 
adenovirus 
(n=2); 
influenza virus 
(n=2); other* 
(n=3)

··

Data are n (%) and median (IQR). *Other refers to less frequently identified pathogens.

Table 3: Clinical and laboratory features of patients whose samples were included in the signature refinement and signature validation phase
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definite viral samples (appendix p 10). The six-protein 
signature was applied to the other phenotypic groups to 
identify whether they would be classified as bacterial or 
viral (appendix pp 5–6, 14) and was compared with the 
three-protein signature identified by Oved and colleagues 
(MeMed BV).9 The six-protein signature was compared 
with the three-protein signature with and without C-reactive 
protein and, in both instances, the six-protein signature 
outperformed the three-protein signature with statistically 
significant differences in AUC (models including C-reactive 
protein p=5·92 × 10–⁴; models excluding C-reactive protein 
p=7·79 × 10–⁸; appendix pp 5–6, 15).

Discussion 
We did a multi-platform, multi-cohort study to identify 
and subsequently validate protein biomarkers for 
differentiating between bacterial and viral infections in 
children who are febrile. We have identified a five-protein 
signature with AUCs ranging between 79·9% and 89·2% 
and specificity of 76·5% in distinguishing between 
definite bacterial and viral infections. The performance 
of the signature improved following the addition of 
LG3BP to the signature, with increases to the specificity 
(up to 89·6%) and AUC. Using a simple performance 
evaluation metric—the simple disease risk score—the 
combination of six proteins (ie, SELE, IL18, NCAM1, 
NGAL, IFN-γ, and LG3BP) had an AUC of 89·3%, which 
increased to 93·6% following retraining of model 
weights. However, this performance with retrained 
model weights is probably an over-estimation of the 
signature performance as the model weights are likely to 
be overfitted to the data, so the simple disease risk score 
performance should be used.

Of the six proteins included in the six-protein signature, 
three were elevated in bacterial patients (ie, SELE, NGAL, 
and IFN-γ), and three were elevated in viral patients (ie, 
IL18, NCAM1, and LG3BP). All proteins in the signature 
have biological functions relevant to the host response to 
infection. SELE is a glycoprotein expressed on endothelial 
cells after activation by IL-1, TNF-α, or bacterial 
lipopolysaccharide.20 SELE mediates leukocyte rolling 
and is involved in neutrophil, monocyte, and T-cell 
recruitment to inflammatory foci.20 NGAL has a 
fundamental role in the control of bacterial infections by 
preventing iron acquisition through sequestering iron-
loaded bacterial siderophores, which provide essential 
iron nutrients to the bacteria, thus preventing their 
survival.21 IFN-γ is a proinflammatory cytokine with 
crucial roles in innate and adaptive immunity, including 
a protective role against bacterial infections.22 IL18 is a 
proinflammatory cytokine that induces other 
inflammatory cytokines. IL18 promotes cell activation of 
Th1 cells and enhances cytotoxic activity of CD8 T cells 
and natural killer cells.23 IL18 was reported to be elevated 
following various viral infections.24,25 NCAM1 is a 
glycoprotein with various functions, and has been 
identified as a potential viral receptor for rabies virus26 
and Zika virus.27 LG3BP is a soluble scavenger receptor 
that has been identified as being associated with various 
viral infections including Dengue virus28 and HIV.29

The combination of C-reactive protein, TRAIL, and 
IP10 has been reported as being a promising protein 
signature for diagnosing febrile children, with a 
sensitivity of 93·7% and specificity of 94·2%.10 C-reactive 
protein was used in the initial classification of the 
patients with definite viral infection reported here, as 
per the PERFORM phenotyping algorithm (appendix 
p 11), meaning direct comparison is challenging. 
Despite these challenges, the six-protein signature 
presented here outperformed the Oved and colleagues9 
three-protein signature both with and without the 
inclusion of C-reactive protein, leading to statistically 
significant improvements in performance. C-reactive 
protein is an imperfect biomarker, with elevated 
C-reactive protein in various other infectious and 
inflammatory conditions, including SARS-CoV-2, 
influenza, and severe adenovirus.5,30 The lower perfor
mance of IP10 and TRAIL in classifying the bacterial 
and viral samples used in our analyses could reflect 
differences in the patient populations used between our 
study and Papan and colleagues’ study,10 and different 
protein detection methods and antibody clones in the 
MeMed BV test compared with the Luminex assays 
presented here.

This study is not without limitations. First, co-infection 
of bacterial and viral pathogens can occur, meaning that 
some patients with definite bacterial infection might 
have also had viruses present. Despite this possibility, the 
six-protein signature can accurately classify 90% of 
definite bacterial and 82% of definite viral patients, 

Figure 3: ROC curves for the signature refinement phase and the signature validation phase
(A) The ROC curves of the protein signatures identified by running FS-PLS on either Luminex or Luminex and ELISA 
proteins measured in the signature refinement phase. (B) The ROC curves of the five-protein signature identified in 
the signature validation phase calculated using original logistic regression weights, retrained general linear model 
regression weights, the simple DRS for the five-protein signature, and the simple DRS for the six-protein signature. 
AUC (95% CI) is shown for each category. AUC ROC=area under the curve of the receiver operating characteristic. 
DRS=disease risk score. FS-PLS=forward selection-partial least squares.
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meaning that it is expected to be robust to co-infections. 
Second, some promising biomarker candidates identified 
in the high-throughput screening phase could not be 
validated due to an absence of commercially available 
assays. Third, as the literature review was completed on 
Dec 01, 2017, the proteins identified in this process only 
reflect those detailed in the literature before this date. 
Fourth, this study was composed of populations from 
primarily high-income settings from hospital settings 
across Europe, meaning that lower-middle-income 
settings have not been represented and further validation 
would be required in these settings. Finally, the spectrum 
of disease-causing pathogens differs between the cohorts 
included in the SomaScan and MS-A discovery datasets 
and the other datasets (MS-B, signature refinement 
phase, signature validation phase). Despite these 
differences, the six-protein signature performs well in all 
datasets, indicating that it is robust to pathogen type. The 
signature should, however, be validated in a further 
external cohort to ensure its performance is not specific 
to the patient cohorts presented here.

Through a rigorous multi-stage study using multiple 
patient cohorts and platforms, we have discovered and 
subsequently validated various protein biomarkers, 
resulting in a six-protein signature that can accurately 
distinguish between definite bacterial and definite viral 
infections in children who are febrile. This six-protein 
signature could be developed into a blood-based rapid 
point-of-care diagnostic test for distinguishing between 
bacterial and viral infections in children who are febrile, 
for example as a rule-out test for establishing who does 
not need antibiotics. Important next steps would be to 
identify the optimal way to combine these proteins using 
a rapid protein quantification platform.
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