
Earth Syst. Dynam., 14, 955–987, 2023
https://doi.org/10.5194/esd-14-955-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
eview

Weather persistence on sub-seasonal to seasonal
timescales: a methodological review

Alexandre Tuel1,2 and Olivia Martius1,2,3

1Institute of Geography and Oeschger Centre for Climate Change Research,
University of Bern, Bern, Switzerland

2Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
3Mobiliar Lab for Natural Risks, University of Bern, Bern, Switzerland

Correspondence: Alexandre Tuel (alexandre.tuel@giub.unibe.ch)

Received: 30 January 2023 – Discussion started: 20 February 2023
Revised: 13 July 2023 – Accepted: 16 July 2023 – Published: 13 September 2023

Abstract. Persistence is an important concept in meteorology. It refers to surface weather or the atmospheric cir-
culation either remaining in approximately the same state (quasi-stationarity) or repeatedly occupying the same
state (recurrence) over some prolonged period of time. Persistence can be found at many different timescales;
however, sub-seasonal to seasonal (S2S) timescales are especially relevant in terms of impacts and atmospheric
predictability. For these reasons, S2S persistence has been attracting increasing attention from the scientific
community. The dynamics responsible for persistence and their potential evolution under climate change are a
notable focus of active research. However, one important challenge facing the community is how to define per-
sistence from both a qualitative and quantitative perspective. Despite a general agreement on the concept, many
different definitions and perspectives have been proposed over the years, among which it is not always easy to
find one’s way. The purpose of this review is to present and discuss existing concepts of weather persistence,
associated methodologies and physical interpretations. In particular, we call attention to the fact that persistence
can be defined as a global or as a local property of a system, with important implications in terms of methods
and impacts. We also highlight the importance of timescale and similarity metric selection and illustrate some of
the concepts using the example of summertime atmospheric circulation over western Europe.

1 Introduction

Surface weather persistence at sub-seasonal to seasonal
(S2S) timescales can have severe impacts on human and nat-
ural systems. Long-lasting dry conditions, for instance, can
lead to droughts and wildfires and can affect agriculture and
energy production. Long-lasting wet spells may cause se-
vere flooding and crop loss. Persistent surface weather can
result either from quasi-stationary, long-lived atmospheric
circulation conditions (quasi-stationarity) or from repeated,
shorter-lived circulation features (recurrence). Recurrence
refers to the repeated occurrence of similar large-scale cir-
culation types or weather systems within some (S2S) time
interval, usually with brief interruptions. Many recent high-
impact weather and climate events were linked to persistent

quasi-stationary or recurrent weather conditions. An example
for recurrence are the western European floods in July 2021
that occurred at the end of an extreme wet spell in western
Europe. The wet spell resulted from repeated atmospheric
blocks and Rossby wave breaking episodes (Tuel et al.,
2022b). Other examples of recurrence include the floods in
the UK during winter 2013–2014 and in Queensland (Aus-
tralia) in February–April 2022 both of which were caused by
sequences of cyclones (Huntingford et al., 2014; Wikipedia,
2022; Floodlist, 2022). An example for quasi-stationarity is
the catastrophic flooding in Pakistan in summer 2022 that
resulted (in part) from long-lasting and particularly heavy
monsoon rains (Mallapaty, 2022). Intense heat waves and as-
sociated atmospheric circulations also tend to be persistent
(often arising from a combination of recurrence and quasi-
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stationarity) (Lorenz et al., 2010), as in western Europe in
2003 (Black et al., 2004; García-Herrera et al., 2010), west-
ern Russia in 2010 (Drouard and Woollings, 2018; Di Capua
et al., 2021), or China (World Meteorological Organization,
2022) and India (Bloomberg, 2022) in 2022.

S2S weather persistence offers the potential for improved
predictability at the S2S timescale (Franzke et al., 2011),
which is highly relevant for risk preparedness and is attract-
ing increased attention from the research community (e.g.,
Vitart et al., 2017; Meehl et al., 2021; Domeisen et al.,
2022). However, a persistent state is not necessarily highly
predictable, and persistent states with low predictability can
cause large errors in sub-seasonal weather forecasts (Quandt
et al., 2017).

Persistence is also an important aspect of climate model
evaluation and climate projections. Whether global climate
models are able to correctly simulate persistence is key to
the robustness of long-term projections, especially of high-
impact weather events – all the more so as climate projec-
tions suggest enhanced persistence (Li and Thompson, 2021;
Hoffmann et al., 2021; Tuel and Martius, 2021a) in the fu-
ture.

Characterizing weather persistence is therefore key to our
understanding of the atmospheric circulation and its pre-
dictability and the associated hazards. Previous studies have
focused on weather persistence from varied perspectives.
Some assessed the persistence of specific weather systems or
features, like atmospheric blocking (e.g., Liu, 1994), Rossby
waves (Röthlisberger et al., 2019) or teleconnection pat-
terns (Barnes and Hartmann, 2010). Others analyzed spe-
cific episodes of particularly persistent weather conditions
(e.g., Black et al., 2004; Di Capua et al., 2021; Tuel et al.,
2022b) or characterized the overall tendency of the atmo-
spheric circulation and surface weather to exhibit persistence
(e.g., MacDonald, 1992; Li and Thompson, 2021; Hoffmann
et al., 2021). However, while previous studies generally agree
on what persistence means conceptually, past work on this
topic has involved many different definitions, often causing
confusion and leading to different interpretations of persis-
tence. Many case studies have also described observed situ-
ations as persistent based on subjective analyses rather than
quantitative metrics. A further source of confusion is that “re-
currence” is used in the literature to refer not only to succes-
sive occurrences of the same weather pattern at close inter-
vals – what we will focus on in this review – but also to the
states of the atmosphere with the highest probability of oc-
currence (Michelangeli et al., 1995).

It is difficult to give a unique definition of weather persis-
tence. Besides, it may not even be desirable as different inter-
pretations are possible and useful, depending on the system
and timescale of analysis and on the motivations and goals of
the study. Our goal here is therefore to review existing con-
cepts of weather persistence, associated methodologies and
physical interpretations. We present and structure a wide va-
riety of approaches, definitions, techniques and metrics that

have been used to analyze these concepts and that allow for
answering one or several of the following questions.

– Is there persistence in the data?

– What are the persistent timescales in the data?

– In which specific periods does persistence occur?

– What are the persistent locations in the state space?

While persistence occurs at many different timescales, we
specifically focus on the S2S timescale – often highly im-
pact relevant and certainly important for predictability – but
most methods and arguments in principle also apply to longer
timescales. An overview of the methods is given in Fig. 1.
We begin in Sect. 2 by introducing the two aspects of persis-
tence: quasi-stationarity and recurrence. Section 3 then dis-
cusses several different perspectives on persistence to con-
sider when choosing an analysis methodology. Finally, we
present a detailed list of methods to detect or quantify per-
sistence in Sects. 4 and 5. We illustrate most of the meth-
ods with examples taken from the literature or with our own
analyses of summertime atmospheric circulation over Europe
(details about the data we use are given in the data availability
section). We keep the interpretation of the results to a min-
imum, the point being to illustrate the methods and not to
analyze European summer circulation persistence in detail.

2 Persistence: quasi-stationarity or recurrence?

Persistence in a dynamical system (climate variable, atmo-
spheric circulation field, etc.) arises from the repeated oc-
currence of the same value(s) or pattern(s) over a period of
time. Successive occurrences can follow each other contin-
uously – a situation we refer to as “quasi-stationary” – or
in an interrupted sequence – in which case we speak of re-
currence. Persistence therefore comes in two flavors, quasi-
stationarity and recurrence, which we illustrate with the ex-
ample of extreme warm conditions in a region north of the
Black Sea in Fig. 2. Here, extreme warmth is defined as a
daily mean temperature exceeding 1.5 standard deviations
above its annual cycle. In summer 2010, the region expe-
rienced persistent (quasi-stationary) extreme warmth, with
temperatures remaining continuously above the threshold for
41 d straight (Fig. 2a). By contrast, in spring 1979, extreme
warm temperatures occurred frequently throughout May, but
the three extreme warm episodes within 1 month were sepa-
rated by at least 5 d with near-average temperatures (Fig. 2c).
The corresponding evolution of the atmospheric circulation
can be conceptually described as a slow-moving trajectory
for quasi-stationary conditions (Fig. 2b) and a more rapidly
evolving trajectory that revisits the same point repetitively
(Fig. 2d).

The literature often uses persistence as a synonym for
quasi-stationarity (e.g., Dole and Gordon, 1983; Barnston
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Figure 1. Overview of the persistence methods discussed in this paper. Section numbers relative to each method are indicated in bold between
brackets.

and Livezey, 1987; Franzke et al., 2011; Di Lorenzo and
Mantua, 2016; Fereday, 2017; Liu et al., 2018; Du et al.,
2019; Francis et al., 2020; Hoffmann et al., 2021; Li and
Thompson, 2021), i.e., persistence is associated with long-
lived flow anomalies and little change in atmospheric circu-
lation and surface weather. Recurrence has by contrast at-
tracted less scientific attention. Most studies on recurrence
have focused on extreme or impactful events (e.g., Mailier
et al., 2006; Barton et al., 2016; Dacre and Pinto, 2020;
Tuel and Martius, 2022a) and Rossby waves (e.g., Röthlis-
berger et al., 2019; Ali et al., 2021). Yet, from a physical per-
spective, quasi-stationarity and recurrence are intimately re-
lated. Recurring weather systems typically result from quasi-
stationary favorable large-scale conditions, like sea surface
temperature (SST) anomalies or the location of extratropical
jets (e.g., Tuel and Martius, 2022b). Temporal dependence,
or memory, in a system can thus translate in practice into
both quasi-stationarity and recurrence (Franzke, 2013). Ad-
ditionally, from the impacts perspective, it makes sense to
look at quasi-stationarity and recurrence together, since both
can cause prolonged, impactful surface weather. Recurrent
Rossby waves, for instance, modulate the persistence of sur-
face temperature and precipitation anomalies (Röthlisberger
et al., 2019; Ali et al., 2021) while long-lived SST anomaly
patterns like El Niño–Southern Oscillation (ENSO) can re-
motely trigger recurrent extreme weather (Gershunov and
Barnett, 1998).

Note that recurrence, as we define it here, is sometimes re-
ferred to as “temporal” or “serial clustering” (Franzke, 2013),

for instance in the case of recurrent cyclones (Mailier et al.,
2006) or heavy precipitation events (Barton et al., 2016).
Note also that recurrence is also frequently used in meteorol-
ogy to refer to preferred patterns that repeatedly occur in a
time series but not necessarily at close intervals (e.g., Vigaud
et al., 2018; Kornhuber et al., 2019; Son et al., 2021) – in the
case of atmospheric circulation patterns, one speaks of circu-
lation or weather “regimes” (Michelangeli et al., 1995). This
is different from our definition, in which recurrence specifi-
cally relates to the repeated occurrence of the same patterns
over S2S timescales. Such patterns may be rare in the full
dataset and would therefore not be considered “recurrent”
in the regime approach but can be highly relevant from an
impacts perspective. Hannachi et al. (2017) gave a compre-
hensive overview of the weather regime approach and asso-
ciated methodologies. We also discuss the relevance of the
weather regime perspective for quasi-stationarity analysis in
Sect. 4.2.1.

Because quasi-stationarity and recurrence are two faces of
the same coin, distinguishing one from the other may not be
evident nor necessarily relevant.

First, the distinction often depends on the variable of in-
terest. Recurrent weather systems can indeed result in quasi-
stationary surface weather anomalies and vice versa. For ex-
ample, the long-lived heat waves of the 2010 and 2021 sum-
mers in western Russia (Fig. 2a) and the Baltic were linked to
recurrent atmospheric blocks (Drouard and Woollings, 2018;
Tuel et al., 2022b). Likewise, prolonged droughts or wet
spells may result from recurrent Rossby wave activity (Röth-
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Figure 2. Illustrating quasi-stationarity and recurrence on S2S timescales. (a, c) Example of daily mean 2 m temperature series averaged
over the 50–57◦ N, 33–43◦ E region illustrating (a) quasi-stationarity (summer 2010) and (c) recurrence (spring 1979) in extreme warm
temperatures on S2S timescales (black: observations; gray: mean annual cycle; light gray: +1.5 standard deviation from the mean). Data are
from the ERA5 reanalysis (Hersbach et al., 2020). (b, d) Idealized system trajectories (thick black lines) in the phase space corresponding
to quasi-stationarity (b) and recurrence (d). The background PDF is shown in light contours. Panels (b) and (d) reproduced from Hannachi
et al. (2017). © 2017 American Geophysical Union, all rights reserved.

lisberger et al., 2019; Ali et al., 2021, 2022). Quasi-stationary
surface warm and humid conditions can also trigger recurrent
thunderstorm activity (Mohr et al., 2020). Conversely, recur-
rent extreme precipitation events (e.g., Barton et al., 2022) or
extratropical cyclones (e.g., Dacre and Pinto, 2020) are often
linked to quasi-stationary jet states that last for much longer
than the lifetime of individual weather systems.

Second, the longer the timescale of analysis, the less obvi-
ous the difference between quasi-stationarity and recurrence
becomes. Impacts, for example, often depend on anoma-
lies of surface temperature or precipitation averaged or ac-
cumulated over several weeks to months (e.g., droughts).
Weekly or monthly values may thus sometimes be preferred
to daily ones, in which case synoptic-scale quasi-stationarity
and recurrence would both result in large weekly or monthly
anomalies that would result from simple “persistence”.

Nevertheless, the distinction between quasi-stationarity
and recurrence remains highly relevant for several reasons:
from a methodological perspective (Sects. 4 and 5) but also
for forecasting and process understanding at the synoptic
timescale and for some stakeholders like insurers (for whom
it matters whether impacts resulted from a single or multi-
ple events). For process understanding, taking a weather sys-
tems perspective is often very relevant. In such a case, dis-

tinct weather systems (like cyclones) can in principle be sep-
arated from one another, and long-lived single systems be
distinguished from multiple short-lived systems occurring in
close succession. It therefore matters whether persistence is
driven by recurrence or quasi-stationarity. The distinction is
also important to assess whether numerical models simulate
persistence for the right physical reasons.

3 Considerations and methodological approaches
for persistence analysis in weather and climate
data

Before reviewing how persistence can be apprehended and
quantified, let us begin with some basic notation and defi-
nitions. In the following, we denote the dynamical system
under analysis with x(t) ∈ Rm.

x(t) could, for example, be the weather evolution in a re-
gion, the time evolution of one variable at one location or
the general circulation. (x(t))t evolves within a state space
S that consists of the set of all possible system states {si}i
that the system can occupy. A single system value and a sin-
gle system state corresponds to each time t , x(t). The same
system state can be attained at multiple different time steps.
The series of successive system values constitutes the system
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trajectory. In practice, only a finite number of observations
are available (x(tk))1≤k≤N to characterize the persistence of
a system.

Characterizing a system as “persistent” can mean differ-
ent things. Consequently, it is important to always specify
the perspective that is taken to avoid confusion. First, there
are different flavors to persistence (global, state or episodic
persistence; see Sect. 3.1). Second, persistence can be stud-
ied from a Lagrangian or an Eulerian perspective (Sect. 3.2).
Finally, persistence is linked to a similarity metric (Sect. 3.3)
and a notion of timescale (Sect. 3.4), for which different ap-
proaches are possible.

3.1 Global, state and episodic persistence

Persistence (whether quasi-stationarity or recurrence) is a
broad concept that covers different kinds of behavior in dy-
namical systems. We might say, for instance, that tempera-
ture is more persistent than precipitation because temperature
evolves, on average, over longer timescales than precipita-
tion. In this sense, persistence quantifies the system’s inertia.
However, if we qualify last summer’s weather as particularly
persistent, we mean something different: namely, last sum-
mer’s weather varied much less than what one could have
reasonably expected in a normal summer. Here, persistence
refers to some unusual behavior of the system over a partic-
ular period. Saying that zonal jets or atmospheric blocks are
persistent again means something else, i.e., that these partic-
ular states of the circulation tend to be more long-lived or
recurrent than other states.

This leads us to make the distinction between three types
of persistence: global, state and episodic persistence.

1. Global persistence. This characterizes the tendency to
quasi-stationarity or recurrence across the whole trajec-
tory of the dynamical system. We choose this term be-
cause persistence in this sense is a “global” property
of the system, meaning that it is not restricted to any
particular system state or time period. Global quasi-
stationarity translates into the tendency for the system
to change little at small timescales (successive values
being close to each other). In mathematical terms, this
translates into < | dx(t)

dt |>�
σx
T

, where < ·> is a time
average, σx is the standard deviation of the series x(t)
and T its typical timescale of evolution. Global persis-
tence can sometimes be impact relevant (e.g., trends in
global persistence under climate change can be impor-
tant for impacts). However, it does not make distinc-
tions between the different system states. Consequently,
global persistence is not suited to characterize persis-
tent system states or specific time intervals with per-
sistent system behavior and is generally not the best-
suited approach for risk assessment. Global persistence
is, however, strongly related to intrinsic system pre-
dictability, since present values of the system largely

constrain its future values. It can thus yield important
information for numerical forecasting, including at the
S2S timescale. Most global persistence methods focus
on quasi-stationarity – like the autocorrelation coeffi-
cient (Sect. 4.1.1) or the Hurst exponent (Sect. 4.1.2) –
but some exist for recurrence as well (Sect. 5.2.2). Many
studies look at global persistence, and we may cite, for
instance, MacDonald (1992); Pfleiderer and Coumou
(2018); Pfleiderer et al. (2019) and Li and Thompson
(2021), who analyze the persistence of temperature se-
ries, and Hoffmann et al. (2021), who consider 10 d at-
mospheric flow persistence.

2. State persistence. This relates to the persistent behavior
of specific system states. State space persistence analy-
sis consists of either identifying persistent system states
– e.g., with the quasi-stationary (Sect. 4.2.2) or opti-
mally persistent pattern (Sect. 4.2.3) methods – or char-
acterizing the persistence of given states with methods
like residence times (Sect. 4.2.5) for quasi-stationarity
or Ripley’s K for recurrence (Sect. 5.1.3). State per-
sistence is highly relevant from the impact, forecast-
ing and process understanding perspectives. Knowing
which states are persistent and to what extent is use-
ful (i) to make the link to surface impacts and (ii)
to know which weather patterns or sequences may be
more predictable than others. It also helps to determine
the physical processes that support or are responsible
for the persistence. The state approach to persistence
has been used to shed light on quasi-stationary states
of the North Atlantic circulation and their predictabil-
ity (Faranda et al., 2017b), to characterize the quasi-
stationarity of continental-scale weather patterns (Fran-
cis et al., 2018, 2020) or drought (Ford and Labosier,
2014), or to quantify recurrence in extra-tropical cy-
clones (Mailier et al., 2006) and extreme precipitation
(Tuel and Martius, 2021a).

3. Episodic persistence. This is tied to specific time inter-
vals (or “episodes”) during which the system exhibits
quasi-stationary or recurrent behavior. It is in that sense
a purely local property that characterizes the anoma-
lous behavior of the system over a limited time pe-
riod. Importantly, episodic persistence can occur sim-
ply by chance in any dynamical system, even in sys-
tems that exhibit no global persistence. Episodic per-
sistence is therefore not necessarily relevant for pre-
dictability and process understanding. Persistent peri-
ods can still always be analyzed to look for poten-
tial drivers that discriminate pure “statistical flukes”
from possibly predictable events. Episodic persistence
is, however, well suited for impacts analysis because
it can make a direct link between periods of persistent
weather and impacts. Relevant methods include running
window techniques (Sect. 4.3) for quasi-stationarity and
window counts (Sect. 5.1.1) for recurrence. Hoffmann
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et al. (2021) investigated for example quasi-stationarity
in 10 d sequences of atmospheric circulation, while Be-
vacqua et al. (2020) and Kopp et al. (2021) looked at
sub-seasonal periods with recurrent cyclones and ex-
treme precipitation events.

While it helps to capture the various interpretations of per-
sistence, this classification is not perfect, and there is some
overlap between categories. In practice, the state or episodic
perspectives can also be used to quantify global persistence
(by averaging persistence metrics across systems states or
time intervals) and global persistence metrics can be com-
puted on subsets of the data to identify persistent periods.
Some methods, like recurrence plots (Sect. 5.2.2), can even
deal with all three types of persistence.

The three types of persistence are also not indepen-
dent from one another. Global persistence, for instance, can
emerge from repeated occurrences in one or a handful of sys-
tem states only, while the rest of the trajectory, if analyzed
separately, may not be qualified as persistent. There are also
strong relationships between state and episodic persistence.
The most common system states to occur during persistent
periods are indeed likely to be persistent states. Correspond-
ingly, persistent states, when they occur, are likely to be as-
sociated with persistent periods. Persistent states can thus be
uncovered from the knowledge of persistent periods, for in-
stance with pattern recognition or clustering algorithms ap-
plied to system values during persistent periods, or simply
by averaging system values during persistent periods (e.g.,
Faranda et al., 2017b; Hoffmann et al., 2021).

However, state persistence only characterizes the average
behavior of system states – it does not imply that all oc-
currences of a persistent state will necessarily be persistent.
Consequently, there is no one-to-one relationship between
persistent states and persistent periods. Some system states
can behave in a persistent way under certain conditions but
not under others. The lifetime and travel speed of atmo-
spheric blocks, for instance, is affected by land–atmosphere
feedbacks or upstream latent heating (Steinfeld et al., 2020).
Similarly, extratropical cyclones may occur in sequences but
also as single events (Dacre and Pinto, 2020). Additionally,
persistent periods may be associated with a variety of sys-
tem states. While we expect persistent states to be the most
frequent ones during persistent periods, some states which
on average are not persistent can still at times behave persis-
tently by pure chance.

However, this classification is useful to illustrate the dif-
ferent methodological ways that weather persistence can be
tackled, and we rely on it to structure the description of meth-
ods in Sects. 4 and 5.

3.2 Lagrangian and Eulerian perspectives

Weather persistence is most often analyzed from an Eule-
rian perspective, i.e., persistence of the same weather pat-

tern or conditions at a fixed location in space. By contrast,
in the Lagrangian perspective the focus is on the persistence
of a given weather pattern in time. In the Eulerian frame-
work, the system x(t) represents a time series over a domain
fixed with time, whereas in the Lagrangian one x(t) follows
individual weather patterns or the background atmospheric
flow. The Eulerian stationarity of a quantityψ(x, t) translates
into ∂ψ/∂t = 0, while the Lagrangian stationarity implies
∂ψ/∂t +u · ∇ψ = 0, where u is the background flow. Simi-
larly, quasi-stationarity translates into ∂ψ/∂t ≈ 0 in the Eu-
lerian framework and ∂ψ/∂t+u ·∇ψ ≈ 0 in the Lagrangian
one. For example, temperature anomalies can be tracked over
time (e.g., Kornhuber and Tamarin-Brodsky, 2021) or ana-
lyzed at a fixed location (e.g., Pfleiderer and Coumou, 2018;
Li and Thompson, 2021). Similarly, weather systems such as
blocking, cyclones or vortices (Bray and Cavallo, 2022) can
be analyzed at a fixed location or following the weather sys-
tems. For example, Økland and Lejenäs (1987) contrast the
persistence of blocking at fixed longitudes against the per-
sistence of individual blocking episodes. Another example is
Kossin (2018), who characterize the persistence in tropical
cyclones by their translation speed.

Both the Eulerian and the Lagrangian perspectives are rel-
evant for impact and risk assessment. The former links per-
sistence to impacts at a given location, and the latter high-
lights impacts along the trajectory of a weather pattern (sys-
tem) during its lifetime. Indeed, the same weather system can
produce hazardous weather over large areas, putting strain on
the resources of insurance companies or governments. The
two perspectives can be brought together by considering the
translation speed and lifetime of the tracked weather systems.
Systems with long lifetimes and low translation speed lead to
both Eulerian and Lagrangian persistence. By contrast, long-
lived systems that travel quickly are persistent from a La-
grangian perspective only. Likewise, slow-moving but short-
lived systems are not Lagrangian persistent, but Eulerian per-
sistence can still be detected if several such systems occur
over the same area in close succession.

3.3 Quantifying similarity

Assessing persistence typically requires quantifying the self-
similarity of system values x(t) with a metric (e.g., Wharton
et al., 2008; Zerzucha and Walczak, 2012; Ali et al., 2020;
Ontañón, 2020). By self-similarity, we refer to the tendency
for successive values of x(t) to be similar to each other ac-
cording to some metric. This is not to be confused with the
concept of geometric self-similarity in fractal geometry. Met-
ric selection is an important step that should be done with
care because it conditions how persistence is quantified and
some metrics are not suited to certain kinds of data (e.g.,
heavily skewed). There are two main classes of similarity
metrics.
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1. Categorical metrics. With these metrics, system values
are either similar (if they belong to the same category)
or not (if they do not).

2. Continuous metrics. These metrics measure the degree
of similarity between two system values in a continuous
way.

Categorical metrics focus on specific features of the sys-
tem, such as the presence of a given weather pattern or the
occurrence of a specific event. They require the set of all
x(t) values to be classified into distinct categories (usually
from two to a few dozen). Categories can represent prede-
fined system states of interest (e.g., a warm or cold anomaly,
a given phase of a teleconnection mode, or the occurrence
of a specific weather pattern, like a block) (e.g., Pinto et al.,
2014; Drouard and Woollings, 2018; Pfleiderer and Coumou,
2018; Ali et al., 2021; Kopp et al., 2021) but can also
be obtained objectively with dimension reduction or pat-
tern recognition methods. Examples include principal com-
ponent analysis (or empirical orthogonal functions, EOFs)
(Fereday, 2017, e.g.,), optimally interpolated patterns (OPPs)
(Hannachi, 2008), self-organizing maps (SOMs) (e.g., Fran-
cis et al., 2018; Weiland et al., 2021; Rousi et al., 2022b)
or clustering algorithms (probabilistic, hierarchical or non-
hierarchical) (e.g., Demuzere et al., 2011; Hannachi et al.,
2012; Grams et al., 2017). When x(t) represents 2D circula-
tion data (like sea level pressure or geopotential height), the
ensemble of system states is often referred to as “weather
regimes” (Michelangeli et al., 1995; Grams et al., 2017;
Francis et al., 2018) (see Sect. 4.2.1). In EOF analysis, the
distance metric is theL2 norm (Euclidean distance), but most
clustering methods can work with any distance metric. The
challenge with dimension reduction methods is choosing the
number of categories to retain (EOFs, clusters, SOM nodes,
etc.). A high number can capture rare states of the system,
but this comes at the cost of making persistence more diffi-
cult to assess (since sequences when the system remains in
the exact same category will become less frequent).

Continuous metrics measure the degree of similarity be-
tween any pair of system values in a continuous way. Com-
mon examples of continuous metrics include the Euclidean
distance (e.g., Faranda et al., 2017b), pattern correlation(e.g.,
Mo and Ghil, 1987), or more complex similarity indices like
the Teweles–Wobus score (e.g., Horton et al., 2017; Blanchet
et al., 2018) or the image structural similarity index (SSIM)
(e.g., Hoffmann et al., 2021).

In comparison to categorical metrics, continuous metrics
offer the advantage that they do not require specifying fea-
tures or events of interest beforehand. They are also more
flexible insofar as similarity can be quantified with respect
to any system value as reference and not just representative
values for each category. Since they do not require simplify-
ing the state space, continuous metrics may also be able to
pick up rare persistent patterns that are missed by dimension
reduction methods that focus on the most common patterns

in a series. These advantages come at a cost: working with
continuous metrics, especially complex ones, can be more
computationally intensive and sometimes more difficult to
interpret physically.

3.4 Persistence timescales

Persistence is linked to a notion of timescale during which
the system continuously remains in the same state (for quasi-
stationarity) or occupies that same state repeatedly (for re-
currence). There are three common ways to approach persis-
tence timescales.

The first option is to choose a single, fixed timescale for
analysis. This choice can be guided by impact and forecast-
ing considerations, by physical knowledge of the underlying
system, or by observations of persistent events (e.g., Hunt-
ingford et al., 2014; Lawrence et al., 2020; Overland and
Wang, 2021; Rakovec et al., 2022; Rousi et al., 2022a). This
is the most common approach to analyze episodic persis-
tence, but it is also applicable to global persistence. Quasi-
stationarity can be quantified by the average similarity be-
tween n successive states (for continuous similarity metrics
see, e.g., Kolstad et al., 2017; Hoffmann et al., 2021) or by
the variety of system states during an n-step window (for cat-
egorical metrics see, e.g., Fereday, 2017; Richardson et al.,
2019). Quasi-stationarity can also be inferred from extreme
anomalies of circulation, temperature or precipitation during
n-step windows. For instance, Gálfi et al. (2019) and Tuel
and Martius (2023) identify persistent warm and cold spells
by averaging temperature anomalies over 1–3 weeks.

Recurrence can similarly be assessed by calculating the
number of times that a particular system state or event oc-
curs during n-step windows (e.g., Mailier et al., 2006; Pinto
et al., 2014; Kopp et al., 2021; Tuel and Martius, 2022a).
A fixed timescale can also be used as a threshold to sepa-
rate quasi-stationary from non-stationary events, by requiring
quasi-stationary events to last at least n steps. For instance,
Francis et al. (2018) and Francis et al. (2020) define persis-
tent periods by requiring the circulation pattern in a region to
remain in the same state for at least 4 consecutive days. Mann
et al. (2018) similarly define persistent resonant wave events
as those lasting at least 10 d. Dole and Gordon (1983) also
take this approach for the persistence of point-wise geopoten-
tial anomalies. Note that this fixed timescale can also consist
of a single time step. In this case, persistence characterizes
how much past system values determine future ones. Li and
Thompson (2021), for instance, characterize persistence with
the lag-1 autocorrelation coefficient, Röthlisberger and Mar-
tius (2019) look at 1 d transition probabilities between dif-
ferent system states, and Vautard (1990); Michelangeli et al.
(1995) and Hannachi et al. (2017) calculate time derivatives
of geopotential fields to identify quasi-stationary states.

The second option is to select an analysis method that ex-
plores a range of timescales and pinpoints the relevant persis-
tence timescales, sometimes accompanied by some notion of
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statistical significance. This approach only works for global
persistence. Autocorrelation analysis, for instance, detects
the timescales at which the system exhibits significant lagged
memory (Sect. 4.1.1). Spectral analysis can likewise high-
light important timescales of variability that can be linked to
quasi-stationarity (Sect. 4.1.2). For recurrence, methods like
Ripley’s K function indicate the timescales at which recur-
rence is statistically significant (Sect. 5.1.3).

Finally, the third option is to characterize persistence not
by a single timescale but by a distribution of timescales. To
assess quasi-stationarity, one can typically work with the dis-
tribution of persistent event durations. Persistent events are
periods during which the system satisfies a persistence crite-
rion: for quasi-stationarity, successive system values must be
similar, and for recurrence the same event must occur multi-
ple times, with each occurrence being separated by at most
n time steps from the previous one. For recurrence, it is also
possible to consider the distribution of inter-event times (e.g.,
Altmann and Kantz, 2005). The distribution of event lengths
can be further summarized by considering the average or
maximum event length (Faranda et al., 2017b; Rousi et al.,
2022b) or by modeling it with an exponential or power law
distribution (Sect. 4.2.5). This approach has been applied to
numerous cases: heat waves (Lorenz et al., 2010), droughts
(Meng et al., 2017; Moon et al., 2018), wet spells (Ali et al.,
2021), atmospheric blocks (Liu, 1994), circulation patterns
(Huguenin et al., 2020), and midlatitude cyclone clustering
(Bevacqua et al., 2020).

4 Quasi-stationarity

The diversity of perspectives on persistence translates into
a wide range of methods, of which we give an overview in
the following two sections dedicated, respectively, to quasi-
stationarity and recurrence. Following the distinctions intro-
duced in Sect. 3, we separate methods that quantify global,
state, and episodic persistence (though some methods can be
used for more than one). We also specify whether methods
can only be used with a single timescale or whether they
quantify persistence across timescales. An overview of meth-
ods is shown in Table 1.

4.1 Global quasi-stationarity

We begin with several methods that quantify global quasi-
stationarity in one-dimensional time series. They charac-
terize quasi-stationarity in the series as a whole but are
generally unable to identify quasi-stationary states or peri-
ods. However, they often allow the user to characterize the
timescales of variability and persistence in the data and are
hence relevant for system predictability and process under-
standing.

4.1.1 Autocorrelation

Autocorrelation is a frequently used measure of quasi-
stationarity in weather and climate science. If Xt is a contin-
uous, one-dimensional process of mean µ and variance σ 2,
its Pearson autocorrelation coefficient at lag k is defined as
follows:

ρ(k)=
E
[
(Xt −µ) (Xt+k −µ)

]
σ 2 , (1)

where E denotes the expectancy with respect to the distri-
bution of Xt . Potential cycles and long-term trends should
be removed from the data before analysis (Weiss and
Weiss, 1999). In Eq. (1), Xt can also be replaced by its
rank, which yields the alternative Spearman autocorrela-
tion that is more robust to nonlinear behavior in the data.
The definition of Eq. (1) can also be extended to third-
order statistics to capture interactions coming from non-
linear correlation, yielding the bi-correlation ρ(k1,k2)=
E
[
(Xt−µ)

(
Xt+k1−µ

)(
Xt+k2−µ

)]
σ 3 . (Pires and Hannachi, 2021).

Several summary metrics for autocorrelation exist, like the
autocorrelation timescale:

T e
ρ =min

k>0
{ρ(k)≤ exp(1)} ; (2)

the decorrelation time (Hannachi, 2021)

T d
ρ = 1+ 2

N∑
k=1
|ρ(k)|, (3)

where N is the number of time steps (if ρ is integrable); or
the characteristic time T c

ρ (Trenberth, 1984) (Fig. 3a):

T c
ρ = 1+

N∑
k=1

(
1−

k

N

)
|ρ(k)|. (4)

The absolute value on ρ(k) in Eqs. (3) and (4) is not re-
quired but can help avoid underestimated timescales in case
ρ exhibits oscillations (Franzke et al., 2005).

Both T d
ρ and T c

ρ roughly approximate the average time be-
tween successive independent values. The lag-1 autocorre-
lation ρ(1) can also be used as a quasi-stationarity metric
(Li and Thompson, 2021), which is equivalent to fitting a
linear regression model between successive system values:
x(t + 1)= βx(t)+ ε(t), where ε(t) is a white-noise process.
If x(t) is normalized, the regression slope β is equal to ρ(1).
Note that more complex models are possible: linear models
for continuous series can be extended by the large class of
autoregressive-moving average (ARMA) models.

Autocorrelation has many advantages: it has a simple def-
inition, the ease of interpretation (ρ(k) of which is related
to the linear regression coefficient of Xt+k against Xt ); it
has high flexibility; it is already implemented in common
programming languages; it requires no subjective threshold
choice; and its results can be easily reproduced. By varying
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the lag k, it can measure quasi-stationarity at all timescales.
It also comes with a notion of statistical significance: given
a confidence level, it is possible to say whether the obtained
autocorrelation is significant (indicating a link at lag k) or
not, pointing to the relevant quasi-stationarity timescales in
the series. On the downside, autocorrelation only works for
one-dimensional data and requires a large number of val-
ues as input. Therefore, it is best suited to measuring quasi-
stationarity globally. One can compute autocorrelation on a
subset of the data only (summer values or a specific time
interval, for instance) if the number of data points is large
enough, in which case autocorrelation may be used to char-
acterize quasi-stationarity locally in time. Additionally, au-
tocorrelation only highlights linear relationships (though bi-
correlation can help capture nonlinearity). Finally, autocor-
relation measures the strength of the connection between
lagged system values but not how far apart they might be
in the state space.

Example applications include Horel (1985a) and Barn-
ston and Livezey (1987), who calculated lag autocorrela-
tion on principal component time series of monthly Northern
Hemisphere geopotential fields. MacDonald (1992) used au-
tocorrelation to detect quasi-stationarity in monthly temper-
ature series, as did Weiss and Weiss (1999) to assess quasi-
stationarity in ENSO. Weatherhead et al. (2010) character-
ized daily temperature quasi-stationarity in the Arctic based
on lag-1 autocorrelation. Degenhardt and Ólafsson (2019)
and Kolstad et al. (2015) calculated lag-1 autocorrelation to
highlight intra-seasonal quasi-stationarity of monthly mean
temperatures in Iceland and Europe, respectively, and Li and
Thompson (2021) applied autocorrelation to daily tempera-
ture series and found it was strongly related to the average
length of warm and cold episodes across the world. Kol-
stad et al. (2017) even used autocorrelation analysis in a
causal discovery framework by regressing temperature val-
ues against previous ones and including potential covariates.

We show the characteristic time for daily rescaled 500 hPa
geopotential height over Europe during summer in Fig. 3a.
While the results say nothing about the role of individual
weather systems, the larger values over the British Isles and
western Russia seem consistent with more frequent persistent
atmospheric blocks over these regions.

4.1.2 Asymptotic methods to characterize variability
across timescales

Persistence in a system is associated with memory effects
that lead to variability being concentrated at long rather than
short timescales. How variability in the series is distributed
across timescales is therefore an important indicator of global
persistence and can point to relevant persistence timescales.
Specifically, persistence often translates into scaling laws:
in the time series variability as a function of frequency or
timescale (for quasi-stationarity) (Bunde et al., 2002) but also
in the distribution of inter-event times (for recurrence, see

Sect. 5.1.4). The slope of these laws indicates the degree of
persistence. Time series also often exhibit different scaling
laws over different frequency intervals, highlighting how per-
sistence may differ across timescales in the data.

A first scaling law can be obtained by considering how au-
tocorrelation decreases as a function of time lag. The more
quasi-stationary a series, the less rapidly its autocorrelation
should decrease. Conceptually, time series can be broadly
divided between short-range and long-range dependence se-
ries. For a short-range dependent series (like autoregressive
models), the autocorrelation decreases rapidly with the time
lag, eventually reaching 0 after a certain lag or decaying ex-
ponentially.

ρ(k)∼ αk, (5)

as k→∞ and with 0< |α|< 1 (with α < 0 corresponding
to anti-persistence). By contrast, in a long-range dependent
series, the autocorrelation decays following a power law:

ρ(k)∼ k2d−1, (6)

where d is called the dependence parameter (0< d < 1
2 ) (Be-

ran, 2017; Franzke, 2013). A lower d is associated with a
slower decay of the autocorrelation function and hence with
more quasi-stationarity systems. White noise has d = 0. Witt
and Malamud (2013) and Franzke (2013) discuss several
ways how d can be estimated.

Like autocorrelation, α and d (the dependence param-
eter) measure global quasi-stationarity in continuous time
series because they are based on asymptotic relationships.
However, they cannot highlight specific quasi-stationarity
timescales in a series as autocorrelation does. Applications to
atmospheric time series show that temperature exhibits long-
term dependence (e.g., Yuan et al., 2010; Koscielny-Bunde
et al., 1998; Eichner et al., 2003), while precipitation ex-
hibits either short- or long-term dependence (Potter, 1979;
Hannachi, 2014; Yang and Fu, 2019). Franzke (2013) com-
puted d and found long-range dependence in North Atlantic
winds (Fig. 3b).

The Hurst coefficient (or exponent) H (Hurst, 1951) is a
common measure of memory in a time series which is ob-
tained from a second scaling law. Specifically, H character-
izes how a time series (Xt )t fluctuates relative to its mean.
Noting

Zni =

in∑
t=(i−1)n+1

(Xt −E[Xt ]) , (7)

the cumulative fluctuations in (Xt )t relative to its mean, cal-
culated over intervals of size n, Hurst argued, empirically
from geophysical time series, that these fluctuations could
exhibit scale-invariant properties. In other words, cumulative
fluctuations over two different timescales n andm are related
through

Zni

( n
m

)H
Zmj ∀ (i,j,k, l)> 0, (8)
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Figure 3. (a) Autocorrelation characteristic time (T c
ρ ; Eq. (4)) of June–July–August (JJA) daily rescaled Z500. (b) Long-range dependence

parameter d of unfiltered surface wind speeds. Only those values that are significant at the 5 % level are displayed. Reproduced from Franzke
(2013). © 2013 The Author(s) Published by the Royal Society. All rights reserved.

where stands for equality in distribution. H ranges from
0 to 1. H < 1/2 indicates anti-persistent behavior, such that
successive increments ofXt relative to its mean (Xt−E[Xt ])
tend to be negatively correlated, and the time series fluctuates
substantially at short timescales. By contrast,H > 1/2 points
to persistent behavior, in which successive increments are
positively correlated, and variability is concentrated at long
timescales. H = 1/2 corresponds to white noise (no tempo-
ral correlation). Thus, the higher H is, the smoother the time
series. H is also theoretically related to the dependency pa-
rameter (as H = 2d + 1) and the power spectrum exponent
(see below) (Franzke et al., 2020).
H can be estimated in many ways (see, e.g., Kout-

soyiannis, 2003; De las Nieves López García and Requena,
2019; Franzke et al., 2020). In the literature, H has mainly
been used to characterize long-term dependence or (quasi-
)stationarity (Mandelbrot and Wallis, 1969), for instance in
series of monthly or annual mean temperature (MacDonald,
1992; Kumar et al., 2013), precipitation (Bunde et al., 2013),
or drought indices (Tatli, 2015). However, some studies also
calculated it for daily time series (e.g., Rehman and Siddiqi,
2009; Velásquez Valle et al., 2013).

Like the Hurst exponent, spectral analysis also charac-
terizes how a time series’ variability is distributed across
timescales. The power spectrum is commonly defined as the
Fourier transform of the autocorrelation function ρ:

S(f )=

∞∫
−∞

ρ(k)e−2iπf kdk, (9)

where f is the frequency and k the time lag. In a pure white-
noise series, the variability is distributed equally across
frequencies. Hence, the power spectral density is a con-
stant. If temporal dependence is present, however, the power
spectrum typically exhibits a power law decrease with fre-

quency f :

S(f )∼ f−β , (10)

where β, called the power spectrum exponent, indicates the
degree of quasi-stationarity in the time series (0< β < 1).
For statistically stationary series, one can also show that β =
2H − 1, where H is the Hurst coefficient (Parzen, 1986).

The larger β is, the more variance is concentrated at low
frequencies. This implies a memory effect at low frequencies
that relates to quasi-stationarity in the time series. Such scal-
ing behavior is very common in climatological series, and
the spectrum is often divided into distinct scaling regimes
corresponding to specific frequency intervals. Fraedrich and
Larnder (1993) discuss the example of precipitation in con-
tinental Europe and relate the different regimes to specific
physical processes and timescales (from individual storms
at high frequencies to climate fluctuations at low frequen-
cies) (Fig. 4). Yang and Fu (2019) obtain similar results using
hourly and daily precipitation data for the United States. Pel-
letier and Turcotte (1997) also used power spectra to quantify
quasi-stationarity in various monthly climatic series, as did
Ault et al. (2014) for drought quasi-stationarity and MacDon-
ald (1992) for temperature quasi-stationarity. Telesca et al.
(2016) analyzed quasi-stationary regimes in 10 min wind se-
ries across Switzerland.

Note that, as with the autocorrelation, the definition of
the power spectrum can be extended to third-order statis-
tics to yield the bispectrum (the Fourier transform of the
bi-correlation function) (Pires and Hannachi, 2021). While
the power spectrum characterizes how the signal’s variance
is distributed across timescales, the bispectrum provides the
contribution of each pair of frequency to the signal’s skew-
ness. Pires and Hannachi (2021), for instance, calculated the
bispectrum of the 3-monthly ENSO series to better under-
stand its predictability.
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Figure 4. Schematic diagram of the scaling regimes of continen-
tal European rainfall obtained by spectral analysis, along with the
hypothesized meteorological interpretations of the various regimes.
Reproduced from Fraedrich and Larnder (1993) under the terms of
the Creative Commons CC BY license.

4.2 State quasi-stationarity

We now turn to methods that focus on the quasi-stationarity
of specific system states. Unlike global methods, which take
one-dimensional time series as input, several of the following
methods are directly applicable to multidimensional data. We
begin with methods that identify quasi-stationary states from
the system trajectory (Sects. 4.2.1–4.2.4), before discussing
methods that quantify the average quasi-stationarity of a sys-
tem state (Sects. 4.2.5–4.2.6).

4.2.1 Weather regimes

We begin with an identification method for quasi-stationary
states based on the concept of weather regimes (Michelan-
geli et al., 1995). This concept emerges from the realization
that the extra-tropical atmospheric circulation evolves mainly
as a succession of a handful of large-scale circulation pat-
terns (Hannachi et al., 2017). These preferred sub-seasonal
flow patterns, or weather regimes, tend to be quasi-stationary
over timescales of a few days to a few weeks and are there-
fore strongly related to weather persistence. They account for
much of the low-frequency atmospheric variability at intra-
seasonal timescales (Pandolfo, 1993; Hannachi et al., 2017).
The existence of weather regimes in the midlatitudes has
long been recognized, such as the concept of Grosswetter-
lagen (Baur, 1951) or atmospheric blocking (e.g., Namias,
1964). They have attracted considerable attention, in partic-
ular because of the potential long-range predictability they
offer (e.g., Ghil and Robertson, 2002; Büeler et al., 2021)
and their link to surface impacts (e.g., Grams et al., 2017).

There are many ways to calculate weather regimes (see
Huth et al., 2008, and Hannachi et al., 2017, for detailed
overviews). The most common methods include pattern

recognition and dimensionality reduction techniques, ap-
plied to a proxy variable for the atmospheric circulation
like 500 hPa geopotential height or sea level pressure. Ex-
amples include orthogonal pattern decomposition techniques
like principal component analysis (in the temporal or spec-
tral domain) (Fereday, 2017; Grams et al., 2017) or opti-
mally interpolated patterns (OPPs) (Hannachi, 2008), self-
organizing maps (Huth et al., 2008; Francis et al., 2020;
Weiland et al., 2021), archetypal analysis (Hannachi and
Trendafilov, 2017; Chapman et al., 2022), and clustering
algorithms (Fig. 5). The latter can be probabilistic (e.g.,
Gaussian mixture models; Woollings et al., 2010), hierarchi-
cal (e.g., Ward clustering; Hannachi et al., 2012) and non-
hierarchical (e.g., k means or partitioning around medoids;
Grams et al., 2017). Various statistics (gap statistic, silhou-
ette coefficient, etc.) can help objectively select an optimal
number of clusters, many of which are available from the
R package clusterCrit (Desgraupes, 2018). Note that,
in practice, the input data should be normalized to remove
long-term and seasonal trends to focus exclusively on intra-
seasonal variability (Grams et al., 2017).

Regimes can also be identified as local maxima in the
(multidimensional) probability distribution function (PDF)
of the target field, obtained empirically through e.g., kernel
smoothing (Kimoto and Ghil, 1993; Woollings et al., 2010),
or with more complex tools of network theory (Mukhin et al.,
2022) and topology (Strommen et al., 2022). Finally, Franzke
et al. (2011) identify regimes in the North Atlantic jet po-
sition with a hidden Markov model (HMM). HMMs are a
powerful tool that brings together Markov models and Gaus-
sian mixture models. Given N unknown (hidden) states, the
HMM models the distribution of the observed series condi-
tionally on each hidden state, with the sequence of hidden
states following a first-order Markov process (Franzke et al.,
2008). The transition matrix, hidden states and conditional
distributions can be estimated simultaneously.

The main drawback of the weather regime approach is
that it is biased toward preferred or frequent states. Quasi-
stationary but rare flow patterns that fall outside the range
of the major regimes may therefore be missed. Addition-
ally, certain patterns may fall in between regimes and are not
classified or are misclassified. Despite this, weather regimes
are very useful because they transform complex multidimen-
sional systems into categorized, one-dimensional series (ac-
cording to which regime the system is closest to at each time
step).

4.2.2 Quasi-stationary states

One major disadvantage of weather regimes is that they
strongly simplify the state space. They also focus on the pat-
terns that account for most of the variability in the data, re-
gardless of their persistence. They may thus miss rare yet
impact-relevant persistent patterns. Several other techniques
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Figure 5. Summer weather regimes computed by k-means cluster-
ing from daily Z500 fields over the North Atlantic–European sector
from 1950 to 2003 (data from NCEP/NCAR reanalysis). To elim-
inate transient and ambiguous episodes, only sequences of 5 d or
more occupied by the same regime are retained (hence, total regime
frequency sums to ≈ 70 %). Reproduced from Cassou et al. (2005).
© American Meteorological Society. Used with permission.

exist to directly extract quasi-stationary patterns from the
system trajectory.

Quasi-stationary circulation patterns can be seen as math-
ematically quasi-stationary solutions of the atmosphere’s
equations of evolution (Mo and Ghil, 1987). Such solutions
are characterized by average system time derivatives close to
zero, meaning that the system tends to remain in their vicinity
longer than elsewhere in the state space – hence their link to
quasi-stationary states. Quasi-stationary states can therefore
be directly identified from the system’s dynamics by looking
for states whose time derivative is close to zero. If we know
the system’s exact evolution equations (in the case of simpli-
fied models, for example), strictly stationary solutions can be
directly computed (e.g., Charney and DeVore, 1979; Legras
and Ghil, 1985; Mo and Ghil, 1987). In practice, however,
this is rarely the case, and quasi-stationary (or “metastable”)
states are defined in a statistical sense only as those for which
system tendencies (i.e., time derivatives) approach zero (Vau-
tard, 1990):{
x∗ such thatT (x∗)≈ 0

}
. (11)

T (x∗) is the composite tendency at x∗, defined as the aver-
age (or area-average for multidimensional fields) of instanta-
neous tendencies at all occurrences of x∗ – in practice at all
times when the system is in the neighborhood of x∗:

T (x∗)=
∑
t

dx

dt

∣∣∣∣
x(t)

1{d(x∗,x(t))≤ d0}, (12)

where d(·, ·) is a similarity metric and d0 some small thresh-
old. It is also possible to weigh the terms in Eq. (12) accord-
ing to d(x∗,x(t)) (Vautard, 1990; Michelangeli et al., 1995).

When dealing with complex multidimensional systems, it
is simpler to calculate tendencies on the time series of the
system’s leading principal components. Equation (12) can
then more easily be solved by minimizing |T (x)2

| in x, with
distinct solutions corresponding to different quasi-stationary
states. In practice, instantaneous tendencies at any x∗ can ex-
hibit a large variance, and time series are commonly low-pass
filtered to remove the short-term noise that would complicate
solving for Eq. (12). Additionally, |T (x)2

| can be difficult to
minimize as it is piecewise constant (due to the finite num-
ber of observed x values). Only approximate solutions are
achievable. It may thus be difficult to know precisely how
many zeros of |T (x)2

| exist and whether two approximate
solutions correspond to the same minimum. Vautard (1990)
presents a method to select relevant solutions.

It is important to note that even if Ti(x∗)≈ 0, instanta-

neous tendencies dx
dt

∣∣∣∣
x(t)

in Eq. (12) may be far from zero

(Vautard, 1990). Indeed, the time derivative of x(t) usually
depends not only on x but also on other time-dependent vari-
ables that may evolve independently from x.

Haines and Hannachi (1995) and Hannachi (1997) esti-
mated quasi-stationary states over the North Pacific in the
output from a global climate forced by perpetual January
conditions, by projecting simplified dynamics (e.g., quasi-
geostrophy) onto the leading modes of variability in the
global climate model simulation. Vautard (1990) found four
main quasi-stationary patterns in wintertime daily 700 hPa
geopotential height fields over the Atlantic and analyzed
their quasi-stationarity and onset and break characteristics.
Michelangeli et al. (1995) also looked at 700 hPa geopoten-
tial fields and compared quasi-stationary states with the lead-
ing EOFs over the Atlantic and Pacific oceans during winter.
Mo and Ghil (1987) did a similar comparison for the South-
ern Hemisphere circulation during the austral winter.

Figure 6 shows five quasi-stationary Z500 anomaly pat-
terns over Europe in summer. We obtained them from the
10 leading EOFs of the 5 d averaged Z500 fields, following
Vautard (1990). The patterns were obtained by clustering the
resulting approximate solutions with the highest number of
clusters for which the resulting patterns were subjectively
different. The solutions include blocking-type patterns over
Scandinavia and western Russia (Fig. 6a, b) and zonal pat-
terns (Fig. 6c, d) that are similar to the results of Figs. 5
and 11 and to the canonical patterns of variability over the
European–Atlantic sector (Grams et al., 2017).

4.2.3 Optimally persistent patterns

The technique of optimally persistent patterns (OPPs) was
introduced by DelSole (2001). OPP analysis is conceptu-
ally similar to principal component analysis; however, in-
stead of patterns that maximize the variance in the observed
series, OPPs are defined as the patterns whose time com-
ponents (i.e., the projection of the observed series onto the
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Figure 6. Five quasi-stationary states of JJA 5 d averaged rescaled Z500.

OPP) are the most persistent. Persistence is here measured
by the decorrelation time (Eq. 3) or, alternatively, by the
squared decorrelation time T2 = 1+ 2

∑N
k=1ρ(k)2 DelSole

(2001) (with ρ(k) the autocorrelation function and N the
number of observations). If the dynamical system x(t) is m-
dimensional, then for an m-dimensional pattern u, the time
component of u is defined as y(t)= uT x(t). If ρy(k) is its as-
sociated autocorrelation function, finding OPPs then consists
of maximizing 1+ 2

∑N
k=1ρy(k) or 1+ 2

∑N
k=1ρ

2
y (k). In the

first case (maximizing the decorrelation time), the optimiza-
tion reduces to an eigenvalue problem, details of which can
be found in Hannachi (2021). The leading eigenvector max-
imizes the decorrelation time. OPPs can then be obtained by
projecting the observed data x(t) onto the time series associ-
ated with each eigenvector. The second case (maximizing the
squared decorrelation time) leads to a more complex nonlin-
ear optimization problem that can be solved iteratively (see
details in DelSole, 2001). Note that, as in Sect. 4.2.2, the
system should first be embedded into a lower-dimensional
space, e.g., by projecting it onto the set of leading EOFs. Fig-
ure 7 shows the leading OPP obtained by DelSole (2001) by
maximizing the squared decorrelation time for daily North-
ern Hemisphere Z500 fields.

OPPs are especially relevant for forecasting since they cor-
respond to the patterns with the most low-frequency variabil-
ity. However, like EOFs and quasi-stationary states, OPPs are
mathematical objects that do not necessarily correspond to
“real” patterns ever attained by the system.

Other methods have been proposed to identify persistent
patterns in a spatiotemporal field. One consists of minimizing
the one-step-ahead forecast error, where the forecast is ob-
tained by projecting the observed field x(t) onto a set of tem-
poral patterns. These patterns, named “predictive oscillation

Figure 7. The pattern associated with the leading eigenvector max-
imizing the squared decorrelation time for daily anomaly fields
of 500 hPa geopotential height for the 1950–1999 period (data
from NCEP/NCAR reanalysis; units in m). Adapted from DelSole
(2001). © American Meteorological Society. Used with permission.

patterns” by Kooperberg and O’sullivan (1996), can thus be
considered the “most predictable” (i.e., persistent) patterns
of a spatiotemporal field. Another possibility is to minimize
the interpolation error variance between x(t) and its estimate
x̂(t) obtained from all (x(t ′))t ′ 6=t values. In this case one
speaks of optimally interpolated patterns (Hannachi, 2008).
Further details for both methods can be found in Hannachi
(2021).
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4.2.4 Extreme values and dynamical systems theory

The quasi-stationary state method only focuses on the most
quasi-stationary states of a system, and OPPs characterize
quasi-stationarity for a handful of possible patterns only.
By contrast, dynamical systems theory provides a conve-
nient framework to describe the quasi-stationarity of any sys-
tem state (Lucarini et al., 2016). In this framework, quasi-
stationarity is defined for any point x0 of the state space
as the inverse of the average residence time of trajectories
around x0. The residence time is calculated based on the dis-
tance between successive system values, with two successive
values deemed similar if their distance is below some small
threshold. For any state x0, the probability that x(t) will re-
main in a close neighborhood around x0 (a ball of radius ε)
can be approximated by Faranda et al. (2017a) and Faranda
et al. (2017b)

P (d(x(t),x0)≤ ε)' exp
{
−θ (x0)

d(x(t),x0)−µ(x0)
σ (x0)

}
, (13)

where d(·, ·) is a distance function (Euclidean distance in
Faranda et al., 2017a, b) and θ is called the extremal in-
dex. ε is usually chosen to be the second percentile of the
d(x(t),x0) values. θ can be estimated in various ways (Hami-
dieh et al., 2009; Holešovský and Fusek, 2022), with two
common ones being the intervals estimator of Ferro and
Segers (2003) and the gap estimator of Süveges (Faranda
et al., 2017a).

In extreme value statistics, θ is the inverse average dura-
tion of consecutive sequences of extreme events and is used
to cluster events (Ferro and Segers, 2003). A large θ therefore
indicates that event occurrences tend to be isolated, while a
low θ indicates that events occur as part of a larger group.
In dynamical systems theory, quasi-stationarity is then de-
fined as 1/θ (some studies directly use θ as a measure of
quasi-stationarity e.g., Franzke, 2013). A perfectly stationary
point of the system (where dx

dt = 0) has infinite stationarity.
By contrast, if trajectories immediately leave the neighbor-
hood of x0, the stationarity is equal to 1. In practice, long
trajectories of x(t) are required to explore all possible states
of the state space (also called the set of attractor points or
simply the attractor) and to best approximates sequences of
states on the attractor. Note that the choice of ε constrains the
values that θ can reach. In particular, very small values (nec-
essary for Eq. 13 to hold) usually lead to 1/θ being around
1–2 d (e.g., Faranda et al., 2017b, a; Holmberg et al., 2023),
meaning that the resulting persistence metric is highly local
in time and not necessarily relevant for S2S timescales.

The advantage of the method is that it is grounded in
mathematical theory and, unlike approaches based on, e.g.,
transition probabilities, it does not require categorizing the
data. It also provides an easily interpretable index of quasi-
stationarity for each system state (the average residence time
of the system’s trajectory around that state). Holmberg et al.
(2023) have, for instance, taken this approach to analyze the

link between atmospheric circulation persistence and warm
spells in Europe. Faranda et al. (2019) averaged θ values
across all time steps to quantify global persistence in the
North Atlantic flow. Going back to our example of the Eu-
ropean summer circulation, the three major persistent Z500
anomaly patterns are obtained by clustering the top 3 % (115)
most persistent daily patterns (Fig. 8). We chose five clus-
ter centers empirically, after testing for 2–15 centers and se-
lecting the highest number of clusters for which the result-
ing patterns were subjectively different. As in Fig. 6, persis-
tent states include blocking regimes (over Scandinavia, west-
ern Russia and the North Sea; Fig. 8a, b, c), a zonal regime
(Fig. 8d) and a European ridge regime (Fig. 8e).

4.2.5 Residence times

A common way to quantify quasi-stationarity in time series
relies on the concept of “residence time”. Residence times
extend the dynamical systems approach of the previous sec-
tion. For a continuous series, the residence time R at time t is
defined as the time during which the system remains similar
to its value in t :

R(t)=max
k≥0

{
d
(
x(t),x(t + k′)

)
≤ ε ∀0≤ k′ ≤ k

}
, (14)

where d(·, ·) is a similarity metric and ε is a small threshold.
For a categorical series, R is similarly defined as the time
during which the system remains in its state x(t) before tran-
sitioning to another state:

R(t)=max
k≥0

{
x(t + k′)= x(t)∀0≤ k′ ≤ k

}
. (15)

The definition can be relaxed to allow for brief in-
terruptions in a sequence of similar states (one “av-
erage” day between two sequences of warm or wet
days, for instance) (e.g., Ali et al., 2021). This def-
inition can be extended to sets S̃ ⊂ S of several
system states: R(t)=maxk≥0

{
x(t + k′) ∈ S̃ ∀0≤ k′ ≤ k

}
(Richardson et al., 2019). Note that Eqs. (14)–(15) take an
Eulerian perspective; their parallel in the Lagrangian per-
spective is the concept of “survival time”, i.e., the duration
of a specific weather system or pattern along its trajectory
(Liu et al., 2018; von Lindheim et al., 2021).

The residence time approach can characterize episodic,
state and global quasi-stationarity and is particularly useful
for predictability and risk assessment (De Luca et al., 2019;
Francis et al., 2020; Berkovic and Raveh-Rubin, 2022). From
the time perspective, large values of R(t) indicate the most
quasi-stationary periods. A minimum threshold is often de-
fined to separate quasi-stationary from non-stationary peri-
ods: for instance, 2 d for weather regimes (De Luca et al.,
2019; Francis et al., 2020) and extreme precipitation (Du
et al., 2022), 5–6 d for warm spells (Berkovic and Raveh-
Rubin, 2022; Rousi et al., 2022b), 5–25 d for geopotential
anomalies (Dole and Gordon, 1983), or two seasons for
droughts (Ford and Labosier, 2014).
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Figure 8. Most persistent Z500 anomaly patterns during JJA, obtained by clustering the top 3 % (115) daily patterns with the highest quasi-
stationarity index 1/θ . The clustering algorithm is partitioning around medoids (PAM). Also shown are the associated 200 hPa zonal wind
anomalies (contours; same levels as Z500). The frequency of each pattern among the 115 most persistent ones is indicated in the top left-hand
corner of each panel.

In the state space, the quasi-stationarity of any state
x0 can be described from the distribution of its resi-
dence times Rx0 ∼ P {R(t) s.t. ,x(t)= x0 andx(t − 1) 6= x0}

(Fig. 9). The easiest is to calculate the mean (Kyselý and
Domonkos, 2006; Kučerová et al., 2017; Richardson et al.,
2019), maximum (Rousi et al., 2022b) or some extreme per-
centile (Zolina et al., 2013) of Rx0 . Like autocorrelation, it is
also possible to characterize quasi-stationarity by the depen-
dence of P

(
Rx0 = n

)
on n (Sharma and Panu, 2014). Light

distribution tails indicate an exponential decay and short-
term memory (see Sect. 4.2.6), while heavy tails (e.g., power
law (Bunde et al., 2013) or q-exponential (Weber et al., 2019)
distributions) point to long-range dependence in the system.
For example, Pfleiderer and Coumou (2018) fitted exponen-
tial models to the distribution of consecutive warm and cold
spells to quantify temperature persistence in the Northern
Hemisphere, and Huguenin et al. (2020) did the same for
weather types over Central Europe. Many other types of dis-
tribution can also be fitted (e.g., Deni et al., 2010; Zolina
et al., 2013). Residence times can also be modeled as func-
tions of covariates. For instance, Röthlisberger et al. (2019)
and Ali et al. (2021) apply a Weibull regression model to re-
late the duration of dry and wet spells to Rossby wave activity
in the midlatitudes.

Finally, averaging R(t) over time t , or Rx0 across all pos-
sible system states, provides a convenient and easily in-
terpretable global quasi-stationarity metric (e.g., Pfleiderer
et al., 2019).

4.2.6 Transition probabilities

Residence times characterize how long the system remains
in the same state x0. By contrast, transition probabilities P
describe the likelihood that the state of the system does not
change at the next time step:

P (x0)= P (x(t + 1)= x0 | x(t)= x0) . (16)

Transition probabilities can be further divided by marginal
probabilities to yield probability ratios (e.g., Kolstad et al.,
2015):

PR(x0)=
P (x0)

P (x(t)= x0)
. (17)

A high transition probability P (x0) or PR(x0) means that
the system likely remains in x0, which indicates persis-
tence (Fig. 10a). Like residence times, transition probabili-
ties can be computed on specific system states only or aver-
aged across all system states (according to their frequency)
to yield a measure of global quasi-stationarity. Their statis-
tical significance can be estimated by comparing observed
transition probabilities to those obtained from a large set of
randomly shuffled series. However, unlike residence times,
transition probabilities cannot identify quasi-stationary peri-
ods: they only work in the state space.

Økland and Lejenäs (1987) applied this method to block-
ing quasi-stationarity; Ford and Labosier (2014), Wilby et al.
(2016), and Moon et al. (2018) to droughts; Fereday (2017)
to large-scale sea-level pressure patterns; Guilbert et al.
(2015) to daily precipitation; and Röthlisberger and Martius
(2019) to dry and warm periods (Fig. 10a).
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Figure 9. PDF of the North Atlantic jet latitude index (solid) together with the weighted Gaussian PDFs from the HMM: the southern
(dashed), northern (dotted) and central (dashed–dotted) regimes. Regime duration curves (southern (black), northern (red) and central (blue)),
expressed as the frequency of occurrences lasting at least n days. Dashed curves show the corresponding 2.5 % and 97.5 % confidence levels.
Reproduced from Franzke et al. (2011). © American Meteorological Society. Used with permission.

Figure 10. (a) Climatological May–October (MJJASO) hot-spell
survival probabilities (shaded) in ERA-Interim reanalysis data. Red
contours show MJJASO cyclone frequencies of 30 % and 40 %. Re-
produced from Röthlisberger and Martius (2019). © 2019 American
Geophysical Union. All Rights Reserved. (b) Change in the odds
ratio of drought occurrence in spring given a single-unit increase
in the winter standardized precipitation index estimated from logis-
tic regression. Thick black contours indicate statistical significance
with 95 % confidence. Adapted from Ford and Labosier (2014).
© 2013 Royal Meteorological Society.

It is often convenient to assume that the distribution
of system states at t + 1 only depends on the system
state at t , in other words to approximate the system with
a first-order Markov chain model (Sericola, 2013). Un-
der this assumption, transition probabilities are directly re-
lated to the distribution of residence times. Indeed, if the
probability of remaining in state x0 does not depend on
how long the system has previously been in state x0:
P (x(t + 1)= x0|x(t)= x0)= α, then the probability that the
residence time of x0, Rx0 exceeds n is equal to the probabil-
ity of finding a sequence of at least n consecutive x0 values,
which specifically leads to the following equation:

P
(
Rx0 ≥ n

)
= Pt (x(t − 1) 6= x0;x(t)= x0;x(t + 1)

= x0; . . .;x(t + n− 1)= x0), (18)

where the subscript in Pt specifies that the probability
is taken with respect to the time variable, whereas in
P
(
Tx0 ≥ n

)
it is taken with respect to the ensemble of resi-

dence times for x0. Thanks to the first-order Markov assump-
tion, Eq. (18) factors as

P
(
Rx0 ≥ n

)
= Pt (x(t − 1) 6= x0;x(t)= x0)

×

n−2∏
k=0

Pt (x(t + k+ 1)= x0|x(t + k)= x0). (19)

Thus,

P
(
Rx0 ≥ n

)
= β ×αn−1, (20)

where β = Pt (x(t − 1) 6= x0;x(t)= x0) does not depend on
t for a (statistically) stationary system, and

P
(
Rx0 = n

)
= βαn−1(1−α). (21)

The logarithm of the distribution of residence times is there-
fore a linear function of n, with the slope (log(α)) equal to the
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transition probability. The Markov assumption is thus consis-
tent with a short-term dependent system in which residence
time probabilities decay exponentially with n (see Sect. 4.2.5
and Bunde et al., 2013). For instance, Huguenin et al. (2020)
fit such exponential laws and use their slope as measures
of weather regime quasi-stationarity over Central Europe in
current and future climates. This approach is well suited to
comparing two different series (e.g., two different periods or
locations) because it separates changes in the marginal fre-
quency of state x0 (only affecting β) from changes in quasi-
stationarity (only affecting α).

4.2.7 Time series modeling

Another possibility to investigate state quasi-stationarity is to
fit a statistical model to the data that links successive system
values with each other:

x(t + 1) F
(
{x(k)}k=1,...,t , {θ (t)}k=1,...,t

)
, (22)

where stands for equality in distribution and {θ (t)}k=1...t
are covariates. Transition probabilities (Sect. 4.2.6), for ex-
ample, are equivalent to modeling a system’s evolution by a
transition matrix between all possible system states. Hidden
Markov models (Sect. 4.2.1) likewise estimate transition ma-
trices between hidden states. Logistic regression can be used
to assess quasi-stationarity in a given state. Several studies
used it to quantify quasi-stationarity in droughts, using pre-
vious precipitation or soil moisture anomalies as predictor
variables (θ (t) in Eq. 22) (Ford and Labosier, 2014; Meng
et al., 2017) (Fig. 10b). The link to drought occurrence at the
previous time step is implicitly taken into account with previ-
ous precipitation or soil moisture anomalies. If previous sys-
tem values are explicitly included as covariates to the model,
one speaks of auto-logistic regression (Wolters, 2017).

4.3 Running window methods for episodic persistence

The running window approach identifies persistent periods
of a given fixed length in continuous or categorical data. It
assesses the degree of quasi-stationarity over fixed time in-
tervals by means of a “similarity index”. Given a time inter-
val T = {t1, . . ., tn} of length n and a similarity metric d(·, ·),
the similarity index Sn(T ) is defined as the average similarity
between system values in T . This similarity can be computed
with reference to one time step x(tk) in particular (typically
the first one):

Sn(T )=
1

n− 1

∑
1≤k′≤nk′ 6=k

d(x(tk′ ),x(tk)) , (23)

or it can measure the average similarity across all pairs of
values:

Sn(T )=
2

n(n− 1)

∑
1≤k,k′≤nk 6=k′

d
(
x(tk),x(t ′k)

)
. (24)

Different time intervals can then be ranked according to their
degree of quasi-stationarity. Mo and Ghil (1987), for in-
stance, use pattern correlation as similarity metric and set
a threshold of 0.5 to separate quasi-stationary from non-
stationary periods. Another possibility is to keep the N pe-
riods with the largest Sn(T ) (i.e., to use a percentile-based
threshold). Quasi-stationary states can then be detected with,
e.g., pattern recognition techniques applied to the most quasi-
stationary periods (Mo and Ghil, 1987). We show an ex-
ample for summertime European circulation in Fig. 11. The
most common are blocking-type patterns over northern Eu-
rope and western Russia (Fig. 11a, b, c), but we also find two
pronounced zonal patterns with a southward- or northward-
shifted jet (Fig. 11d, e).

Averaging Sn(T ) values across multiple periods of length
n can additionally provide for a measure of global quasi-
stationarity, as Hoffmann et al. (2021) did to analyze 10 d
persistence in summer atmospheric circulation. When work-
ing with categorical data, similarity indices can be averaged
for each system state to highlight the most quasi-stationary
ones (Horel, 1985b).

The running window approach is well suited to compute
temporal trends in quasi-stationarity, since the similarity in-
dex can be defined at all time steps (Hoffmann et al., 2021).
One limitation, however, is that results for the same system
but calculated for different period lengths are not directly
comparable since the marginal distribution of Sn(T ) depends
on n. Furthermore, Sn(T ) only measures the average similar-
ity between successive values. A high Sn(T ) does not guar-
antee a high degree of quasi-stationarity because there could
be breaks in between sequences of similar values. This is es-
pecially relevant for long periods during which strict persis-
tence is unlikely to occur.

While we try to give a comprehensive view of common
methods used in quasi-stationarity analysis, we could not
include all the methods that exist in the literature. Kornhu-
ber and Tamarin-Brodsky (2021), for instance, define quasi-
stationarity in a Lagrangian context as the zonal velocity of
individual weather systems (in their case, localized temper-
ature anomalies), while Hoskins and Woollings (2015) use
Rossby wave phase speed as a proxy for weather quasi-
stationarity in the midlatitudes. Finally, in the framework
of dynamical systems theory, quasi-stationarity can also be
equated to the system remaining for some period of time
in a small subset of the state space. During that period, the
system may explore different configurations, but fewer con-
figurations are explored than if it had been able to evolve
freely across the whole state space (Fereday, 2017). In this
sense, persistent states are states from which the system
takes a (statistically) long time to reach the rest of its state
space. This perspective relates to the intransitivity theory of
Lorenz (1990), which postulates that the evolution of the at-
mospheric circulation on S2S timescales can, under certain
conditions, be governed by a few well-separated attractors,
each with their own preferred states (Weiland et al., 2021).
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Table 1. Overview of quasi-stationarity methods: method name, corresponding section, type of persistence it applies to, a brief definition,
main features and main limitations.

Method Section Type Definition Features Main limitations

Autocorrelation 4.1.1 Global Measure of strength of linear depen-
dence between successive system val-
ues; Eq. (1)

Lag-1 autocorrelation frequently
used but can also highlight relevant
timescales of self-dependence in a
series

Requires 1D data; characterizes the
strength of the dependence, not similar-
ity per se

Dependence
parameter

4.1.2 Global Asymptotic characterization of how au-
tocorrelation evolves with time lag

Discriminates short- and long-range de-
pendence

Requires 1D data; based on autocorre-
lation, which characterizes the strength
of the dependence, not similarity per se

Hurst exponent 4.1.2 Global Asymptotic characterization of how cu-
mulative fluctuations in a series around
its mean evolve with timescale

Simple metric to identify stationary,
anti-stationary or noise-like behavior in
time series

Requires 1D data

Power
spectrum
exponent

4.1.2 Global Asymptotic characterization of the dis-
tribution of time series variability
across timescales

Relies on the power spectrum, for
which many methods are available

Requires 1D data; power spectrum
linked to autocorrelation, which charac-
terizes the strength of the dependence,
not similarity per se

Weather
regimes

4.2.1 State Common method to identify patterns
accounting for high variability in multi-
dimensional series

Many techniques available; unsuper-
vised method; often good physical in-
terpretation

Requires choosing a number of
regimes; strong simplification of the
state space, i.e., rare yet relevant system
states may be missed; indirect link to
persistence, which requires further
analysis

Quasi-
stationary
states

4.2.2 State Identifies quasi-stationary system states
(time derivative ≈ 0)

Unsupervised method; best applied to
low-dimension systems (dimension re-
duction required)

Challenging implementation; true num-
ber of states can be difficult to as-
sess; the quasi-stationarity constraint is
strong (zero tendency) and highly lo-
cal in time; no guarantee that resulting
states are physical

Optimally
persistent
patterns

4.2.3 State Identifies most autocorrelated patterns
in multi-dimensional series and associ-
ated timescales

Unsupervised method; relevant for
forecasting

Implementation can be challenging;
limited number of resulting states and
no guarantee that they are physical

Dynamical
systems
approach

4.2.4 State Defines a persistence index for every
point of a system’s trajectory based on
local residence times

Unsupervised method, well grounded in
mathematical theory; persistence index
directly interpretable; works with con-
tinuous multi-dimensional data

Based on extreme value approxima-
tions; the metric is consequently highly
local in time and may not be relevant at
S2S timescales

Residence
times

4.2.5 Global,
State
or
Episodic

Defined as the period during which
a system remains similar to its initial
value

Versatile and easy to interpret approach;
residence times can be calculated across
time or system states on continuous or
categorical data

Potentially difficult to summarize the
distribution of residence times for a
given system state

Transition
probabilities

4.2.6 State Probability that a system remains in the
same state at the next time step

Easy to calculate and interpret; directly
related to residence times under the
Markov assumption

Requires categorical data; limited to
one-step-ahead quasi-stationarity

Time
series
modeling

4.2.7 State Statistical modeling of successive sys-
tem values

Potentially very versatile approach that
can include the effect of external covari-
ates

Models may capture “dependence”
rather than “similarity” and can quickly
become complex and difficult to inter-
pret

Running
window
methods

4.3 Episodic Defines a quasi-stationarity value for all
time steps at a given timescale

Results can be used to identify quasi-
stationary states

Relative quasi-stationarity metric only;
difficult to compare different systems

5 Recurrence

We now discuss methods to capture recurrence in atmo-
spheric data (see Table 2 for an overview). In contrast to
quasi-stationarity, most methods here only quantify recur-
rence in a specific system state. They typically require binary
time series as input (where “1” represents an occurrence of
the system state or event of interest) and count event occur-
rences over time. Recurrence is therefore always defined for

a given state or event, usually with the potential for large im-
pacts like tropical (Mumby et al., 2011) and extra-tropical cy-
clones (Mailier et al., 2006; Vitolo et al., 2009), windstorms
(Khare et al., 2015), or extreme precipitation episodes (Kopp
et al., 2021). For this reason, we did not explicitly divide
this section into global, state and episodic methods. Common
methods are available to characterize episodic persistence
(Sect. 5.1.1) and the persistence of given states (Sect. 5.1.2–
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Figure 11. (a–e) Most persistent 10 d averaged Z500 anomaly pat-
terns during JJA, obtained by clustering the top 10 % (40) 10 d pat-
terns with the highest similarity index (Eq. 24). Similarity is mea-
sured with the SSIM index. The clustering algorithm is partition-
ing around medoids (PAM). The associated 200 hPa zonal wind
anomalies are shown by contour lines (same levels as Z500). The
frequency of each pattern is also indicated. (f–j) 10 d averaged sur-
face temperature anomalies associated with each persistent Z500
pattern.

5.2.1). However, few definitions of “global recurrence” exist.
Additionally, no study has, to our knowledge, tried to analyze
S2S recurrence in a “non-supervised” way, i.e., that would al-
low us to objectively identify recurrent states. In Sect. 5.2.2,
we discuss the potential of recurrence plots to fill that gap.

Because most recurrence methods work directly with bi-
nary time series, point processes are a convenient theoreti-
cal tool in recurrence analysis. Point processes are a class of
probability models for the random occurrence of points in

a space (one- or multi-dimensional space). The most simple
hypothesis that can be made is that of complete serial ran-
domness, i.e., points occur completely independently of one
another. In this case, recurrence occurs by chance only. The
homogeneous Poisson point process is a simple model with-
out memory for binary series in which events occur with-
out correlation and with a constant intensity. In a homoge-
neous Poisson process, the number of points in individual
time intervals are independent, and the number of points in
an interval of length τ is Poisson distributed with the rate λτ ,
where λ is the process intensity rate. This model is useful to
simulate binary series with complete serial randomness, and
therefore provides an empirical basis to assess the statistical
significance of various recurrence metrics in observations.

Separating distinct occurrences of a state, pattern or event
is critical to distinguish recurrence from quasi-stationarity.
Over short periods, like a season, it is in principle possi-
ble to visually separate multiple systems occurring in close
succession, for instance with Hovmöller diagrams (e.g., Tuel
et al., 2022a; Rousi et al., 2022a). Most of the time, how-
ever, separation cannot be done by hand, and objective crite-
ria are required. One option is to use physically based detec-
tion and tracking algorithms – e.g., for cyclones (Hodges,
1995; Wernli and Schwierz, 2006) or atmospheric blocks
(Schwierz et al., 2004; Steinfeld, 2021) – that can separate
distinct weather systems. A second option is to use a min-
imum duration between events to classify them as distinct,
with the choice depending on the underlying physical system
or on impact considerations. Barton et al. (2016), Kopp et al.
(2021) and Tuel and Martius (2021a), for instance, require
a minimum of 2 d with non-extreme precipitation between
extreme precipitation episodes (a typical timescale for extra-
tropical cyclones). In Pfleiderer et al. (2019), a single day is
used to separate distinct dry or warm periods.

5.1 Diagnostic methods

5.1.1 Window counts

A simple way to identify recurrent periods is to look for pe-
riods with high event counts. One possibility is to set a time
window and require the number of event counts during this
window to exceed some threshold (two or higher; Fig. 12a).
Kopp et al. (2021) and Tuel and Martius (2022a) take this
approach to analyze recurrent extreme precipitation episodes
at the 2- and 3-week timescales. Pinto et al. (2014) likewise
identify cyclone clusters over the British Isles as periods with
four or more consecutive cyclones within 7 d. Another pos-
sibility is to look for clusters of events in which each event
is separated by at most n time steps from the preceding one.
For instance, Bevacqua et al. (2020) define cyclone clusters
as sequences ofN ≥ 2 consecutive cyclones transiting within
a given area and separated by 24 h or less. This method is
largely impact driven and does not aim at modeling the bi-
nary series, assessing the significance of the clustering or
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calculating return periods for large event counts (Dacre and
Pinto, 2020). For this, further steps must be taken.

5.1.2 Dispersion metrics

Dispersion metrics characterize the distribution of event oc-
currences in a time series. In a series with no tendency to
clustering, high event counts over a given duration should be
much less frequent than in a series where clustering is preva-
lent. If events occur with the same average probability in the
two series, then in the clustered series, sequences with no
events should mechanically be more frequent, and the vari-
ance in event counts will be higher. In a homogeneous Pois-
son process (see above) Nk(τ ), event counts in disjoint inter-
vals of length τ (indexed by k) follow a Poisson distribution
with parameter λτ . Hence, the expected value µ(τ ) and vari-
ance σ (τ )2 of Nk(τ ) are both equal to λτ . Two common sta-
tistical dispersion metrics quantify deviations from this ho-
mogeneous behavior. The dispersion statistic is a measure of
temporal correlation over different timescales. It is defined as
Mailier et al. (2006)

ψ(τ )=
σ (τ )2

µ(τ )
− 1. (25)

ψ is related to the Fano factor (FF(τ )= ψ(τ )+ 1) (Telesca,
2007), also called index of dispersion (Mailier et al., 2006).
A positive ψ(τ ) (σ (τ )2 > µ(τ )) indicates over-dispersion,
meaning that events tend to occur in clusters. A negative
ψ(τ ) points to under-dispersion, meaning that events oc-
cur more regularly than in a random process. Near-zero
values are consistent with a homogeneous Poisson process
(Fig. 12b).

Similarly, the Allan factor (AF) is defined as the variance
of successive event counts over an interval of length τ di-
vided by twice the average event count in τ steps (Telesca,
2007):

AF(τ )=
E[(Nk+1(τ )−Nk(τ ))2

]

2µ(τ )
. (26)

For a homogeneous Poisson process, AF(τ )= 1, while
AF(τ )> 1 indicates clustering behavior. ψ and AF can be
evaluated for a single window τ ∗, but assessing how they
evolve with τ helps better detect recurrent behavior in the
series (Serinaldi and Kilsby, 2013). In the absence of clus-
tering, ψ(τ ) and AF(τ ) remain constant with τ . In clustered
processes, however, both metrics scale with τ , often with a
power law behavior over some range [τ1,τ2], which can be
described by an exponent (Telesca, 2007) similar to the spec-
tral analysis of persistence (Sect. 4.1.2). One advantage of ψ
and AF is that they are insensitive to the underlying event
frequency, which makes them convenient to compare dif-
ferent locations or event identification algorithms with each
other (Dacre and Pinto, 2020). However, the corresponding
null hypothesis – that the absence of recurrence is equiva-
lent to exponentially distributed event return times under the

Poisson assumption – is not always relevant, and other ap-
proaches may be better suited to detect deviations from mem-
oryless processes (Blender et al., 2015).

The statistical significance of ψ(τ ) and AF(τ ) can be as-
sessed empirically through Monte Carlo sampling of random
series without memory or analytically. Mailier et al. (2006)
discuss a chi-squared test for ψ(τ ) (for a fixed window τ ),
while Serinaldi and Kilsby (2013) introduce the sampling
distribution of the empirical AF estimator. Note that sea-
sonality in event counts can artificially inflate the dispersion
statistic, meaning that care must be taken either to remove
the seasonality (e.g., Tuel and Martius, 2021a) or to simu-
late random processes with the same seasonality as the ob-
served signal (λ function of the month, for instance). Note
also that ψ(τ ) and AF(τ ) both involve µ(τ ) in the denom-
inator; in other words, these metrics are normalized by the
marginal event frequency. The same ψ(τ ) can be obtained
for series with different event frequencies, which makes dis-
persion metrics less relevant for impacts than other methods
(e.g., window counts; Sect. 5.1.1).

Since its introduction by Mailier et al. (2006), the disper-
sion statistic has been frequently applied in recurrence analy-
sis, namely to detect temporal or serial clustering in cyclones,
both tropical (Mumby et al., 2011; Wolff et al., 2016) and
extratropical (Vitolo et al., 2009; Pinto et al., 2013, 2014;
Economou et al., 2015; Pinto et al., 2016). The Allan fac-
tor has been applied to daily precipitation series (Serinaldi
and Kilsby, 2013), wave storms (Besio et al., 2017) and to
extreme wind speeds in Switzerland (Telesca et al., 2020).

Alternative metrics that characterize the distribution of
event counts have been proposed in the literature. For exam-
ple, Kopp et al. (2021), working with extreme precipitation
counts over 2- to 4-week timescales, proposed a new metric,
Scl(τ ) – which they named the “clustering metric” – based on
a weighted sum of window event counts. Like the dispersion
statistic and Allan factor, Scl(τ ) requires choosing a window
size τ . Clustering periods of length τ are then identified and
ranked by applying a moving window sum to the binary se-
ries. The period with the most events is selected first; the
corresponding events are removed from the series (to avoid
any intersection between clustering periods); and the proce-
dure continues until a minimum number of events is obtained
or until no more clustering periods (with at least two events)
are found. This yields a set of K periods with decreasing
event counts nk(τ ): n1(τ )≥ n2(τ )≥ . . .≥ nK (τ ). Kopp et al.
(2021) then define their clustering metric by

Scl(τ )=
∑

1≥k≥K
nk(τ )qk, (27)

where qk are weights that can be defined in various ways, as
long as they verify (i) that qk decreases with k (periods with
fewer events are given less weight) and (ii) that q(i)− q(i+
1)> q(i+1)−q(i+2). In the end, this approach is equivalent
to a scoring system for clustering periods, and the resulting
metric Scl(τ ) correlates well with the dispersion statistic.
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Figure 12. (a) Example of a time series of extreme precipitation events (black dots) and 21 d periods containing more than two events (gray
shading). Adapted from Kopp et al. (2021) under the terms of the Creative Commons Attribution 4.0 License. (b) Map of dispersion statistic
ψ (Eq. 25) of December–January–February (DJF) cyclones over 1975–2004, averaged across an ensemble of CMIP5 models. Reproduced
from Bevacqua et al. (2020) under the terms of the Creative Commons Attribution 4.0 license.

5.1.3 Ripley’s K function

Given a system state x0, Ripley’s K function measures the
average number of occurrences of x0 within a given neigh-
borhood around a random occurrence of x0. It was originally
developed for spatial data, but it can be applied in a tempo-
ral setting to characterize recurrence in x0. Let the binary
variable Yt = 1{Xt is in statex0}. Ripley’s K function for a
neighborhood of size n is then equal to Ripley (1981) and
Dixon (2014):

K(n)= λ−1

(
E

[
n∑

k=−n

Yt+k
∣∣Yt = 1

]
− 1

)
, (28)

where λ= E[Yt ] (frequency of x0 in Xt ). The statistical sig-
nificance of K(n) can then be assessed by comparing it to
values obtained for a homogeneous Poisson process of same
length and with the same average rate of occurrence as Yt
(Fig. 13). In Eq. (28), λ−1 can also be discarded, meaning
that K(n) represents an average event count and is more di-
rectly related to impacts. Ripley’s K was used in meteorol-
ogy to characterize S2S recurrence in extreme precipitation
events by Barton et al. (2016), Tuel and Martius (2021a), and
Tuel and Martius (2021b). Stephenson et al. (2004) and Han-
nachi (2010) also used Ripley’s K to characterize the clus-
tering of climate modes in the state space.

5.1.4 Distribution of inter-event times

Quasi-stationarity in a given system state x0 can be de-
scribed by the corresponding distribution of residence times
(Sect. 4.2.5). Similarly, the distribution of inter-event times
(also called “recurrence times” or “waiting times”) charac-
terizes the recurrence in x0 from a global perspective (Alt-
mann and Kantz, 2005). The recurrence time Ti is the du-
ration between the ith and (i+ 1)th occurrences of state x0
in a time series. We can easily see that both short and long
recurrence times will be more frequent in a series that ex-

hibits clustering than in a series where events occur indepen-
dently of one another. The presence of a heavy tail in the
distribution of Ti therefore points to a tendency for temporal
clustering in the series. If x0 is rare enough, the distribution
of Ti may converge to well-known distributions like the ex-
ponential (a sign of short-term dependence, as with homo-
geneous Poisson processes), stretched exponential or power
law distribution (Eichner et al., 2007; Corral, 2015). When
events correspond to extremes above a given threshold, the
exponents that characterize these distribution are even related
to the autocorrelation coefficient of the original series (San-
thanam and Kantz, 2008; Kalra and Santhanam, 2021).

5.2 Stochastic modeling of recurrence

5.2.1 Event series

We have so far discussed diagnostic methods that charac-
terize recurrence in binary time series. A different approach
consists of fitting point processes to the series. A point pro-
cess is a random process representing the occurrence times of
specific events. It can be characterized by event times T (n)
(time of the nth event in the series) or by the distribution of
event counts N (t1, t2) for any interval [t1, t2]. We can define
its intensity or hazard function λ(t) by

λ(t)= lim
1t→0+

1
1t

P(N (t, t +1t)= 1), (29)

and, for any t1 < t2, its intensity measure 3(t1, t2) as

3(t1, t2)=

t2∫
t1

λ(t)dt. (30)

Many different point processes have been described in the
statistics literature (e.g., Cox and Isham, 1980), but cluster-
ing analyses in weather and climate studies have mainly re-
lied on Poisson processes. In a Poisson process, λ(t) is a de-
terministic function of time. If λ(t) is constant, the process is
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Figure 13. (a) Assessing the significance of clustering with Ripley’s K function: conceptual example of Ripley’s K values on an observed
series (black crosses) and the corresponding 95 % uncertainty range obtained from random simulations of series with no clustering (blue
shading). In this case, observations show significant clustering at the 10–20 d timescale. Reproduced from Tuel and Martius (2021a) under the
terms of the Creative Commons CC BY-NC-ND 4.0 license. (b) Map of 20 d Ripley’sK values for catchment-averaged extreme precipitation
during fall in Switzerland. Hatching indicates statistical significance at the 95 % level. Adapted from Tuel and Martius (2021b) under the
terms of the Creative Commons Attribution 4.0 license.

Figure 14. Effect of European–Atlantic zonal regime occurrence (corresponding 500 hPa geopotential mean and anomalies are shown in the
left panel) on the temporal clustering of extreme precipitation at the 3-week timescale during winter (measured as a probability multiplicative
factor). Reproduced from Barton et al. (2022) under the terms of the Creative Commons Attribution 4.0 license.

said to be homogeneous; otherwise, the process is said to be
inhomogeneous. For any t1 < t2, N (t1, t2) follows a Poisson
distribution with rate 3(t1, t2):

N (t1, t2) Poisson (3(t1, t2)), (31)

and event numbers in disjoint intervals are independent from
each other.

The point process approach has mainly been used to relate
recurrence in extreme events to atmospheric or climate vari-
ability. To that end, λ(t) is assumed to depend on given time
covariates X(t). A linear dependence corresponds to Poisson
generalized linear models (GLMs):

λ(t)= β ·X(t). (32)

For instance, Villarini et al. (2011), Tuel and Martius
(2022a), and Tuel and Martius (2022b) used Poisson GLMs
to relate temporal clustering in heavy precipitation to large-
scale modes of climate and atmospheric variability. Mailier
et al. (2006) did the same for extratropical cyclones in the

North Atlantic. The linear constraint can be lifted by us-
ing general additive models (GAMs) in which the relation-
ship between λ(t) and the covariates is specified by flexible
smooth functions (Hastie, 1992). Villarini et al. (2013) used
GAMs to relate flood recurrence in the US Midwest to modes
of climate variability like ENSO, and Barton et al. (2022)
used GAMs to link temporal clustering in extreme precipita-
tion across Europe to weather regimes in the North Atlantic.
Another extension of the Poisson GLM is the Cox regression
model (Smith and Karr, 1986), in which

λ(t)= λ0(t)exp(β ·X(t)), (33)

where λ0(t) is a baseline intensity or hazard function and
exp(β ·X(t)) accounts for the time-varying effects of the se-
lected covariates. Examples include Villarini et al. (2013),
Mallakpour et al. (2017), and Yang and Villarini (2019), who
applied Cox regression to recurrence in floods and extreme
precipitation. More complex models are also possible; for
instance, Khare et al. (2015) introduced a Poisson mixture
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model for windstorm clustering, in which λ(t) is expressed
as a stochastic function of time modulated by a gamma dis-
tribution (Khare et al., 2015). Note that models can be fit-
ted directly by maximizing the likelihood function (Yang and
Villarini, 2019) or indirectly by working with window event
counts (Mailier et al., 2006; Tuel and Martius, 2022a; Barton
et al., 2022).

5.2.2 Recurrence plots

All previously discussed methods share the same limitation:
they require binary time series as input, meaning that they are
designed to characterize recurrence only in a given system
state. It is not possible with such methods to explore recur-
rence in an “unsupervised” way, i.e., to automatically detect
recurrent system states or sequences of states and associated
recurrent periods. Recurrence plots (RPs) may offer a solu-
tion to this problem.

An RP is a graphical representation of a system’s self-
similarity with time (Marwan et al., 2007). Mathemati-
cally, it is defined as a two-dimensional binary matrix R ∈
{0,1}N×N , with time on both axes, that consists of pairwise
comparisons of system values:

R(i,j )=2
(
ε− d(x(ti),x(tj )

)
, (34)

with d(·, ·) a distance or similarity metric (by convention,
d(x(ti),x(ti)= 0), 2 the Heaviside step function, and ε a
similarity threshold. If d(x(ti),x(tj ))< ε, then x(tj ) and
x(tj ) are similar, and R(i,j )= 1 represents a recurrence of
the system. By definition, R is symmetric and ∀ 1≤ i ≤
N, R(i, i)= 1. A conceptual example is shown in Fig. 15a.

Before calculating R, the system x can first be reduced to
a lower-dimensional space (as in Sect. 4.2.2), for example
by projecting x onto a set of principal components (Marwan
et al., 2007; Mukhin et al., 2022). Note that R depends on
the selected similarity metric and on ε. For a given system
x, R is thus not uniquely defined. Choosing a value for ε
should be done carefully. ε should be small enough to ac-
count for real recurrences in the data but not too small to
have enough recurrences to analyze. Several rules of thumb
have been proposed in the literature (see Marwan et al., 2007,
and references therein). For instance, ε can be selected by re-
quiring an average recurrence rate of 1 %–10 %. For weather
and climate data, ε could also be selected based on physical
considerations and expert judgment.

RPs are a convenient way to visualize a system’s trajec-
tory, especially for multi-dimensional systems (like circula-
tion fields). RPs capture persistent behavior: vertical lines in-
dicate quasi-stationarity, while diagonal lines (outside of the
main diagonal) indicate recurrence. RPs can thus highlight
periods when the trajectory of a system roughly visits the
same sequence of states or parts of the state space.

Several measures have been proposed to quantify the
presence of specific patterns in RPs. They are known col-
lectively as “recurrence quantification analysis” (Marwan,

Figure 15. Detecting recurrence with recurrence plots. (a) Concep-
tual example of a recurrence plot. The red rectangle highlights a
period during which the system exhibits recurrence with three suc-
cessive similar 4 d sequences occurring over a 12 d period (high-
lighted in red). (b) Zoom over the recurrence period with the three
separate 4 d sequences highlighted by dashed green lines.

2008). Common ones include the recurrence rate:

RR=
1
N2

∑
1≤i,j≤N

R(i,j ); (35)

the determinism, which quantifies the fraction of recurrence
points forming diagonal lines of minimum length lmin:

DET=

∑
l≥lmin

lD(l)∑
l≥1lD(l)

, (36)

where D(l) is the number of diagonal lines of length l; and
the laminarity, which quantifies the fraction of recurrence
points forming vertical lines of minimum length lmin:

LAM=

∑
l≥lmin

lV (l)∑
l≥1lV (l)

, (37)

where V (l) is the number of vertical lines of length l.
All three can be used as global measures of persistence
(e.g., Ramirez-Amaro and Figueroa-Nazuno, 2006). How-
ever, these indices do not a priori discriminate between quasi-
stationarity and persistence (high values of RR, for instance,
could be due to either). To do so would require making
sure that similar time steps are separated by “0” in the RP
(Fig. 15b).

RPs can also detect local recurrence in time. With RPs, one
can extend the counting approach introduced in Sect. 5.1.1 to
multiple-day sequences of complex multi-dimensional data.
Specifically, to search for sequences of p steps that recur over
periods of q steps (0< p < q), we can simply define a re-
currence index RIp,q (t) as the number of diagonal lines of

https://doi.org/10.5194/esd-14-955-2023 Earth Syst. Dynam., 14, 955–987, 2023



978 A. Tuel and O. Martius: Methods for S2S weather persistence

Figure 16. Two major 3 d recurring sequences of atmospheric circulation (Z500) over Europe during summer obtained by clustering the
≈ 30 21 d windows with RI3,21(t)≥ 2 with the PAM algorithm. Stippling (hatching) indicates atmospheric blocking (cyclone) frequency
anomalies larger than 30 %. Similarity is measured with the SSIM index, with a similarity threshold ε in Eq. (34) of 0.25 (corresponding to
a recurrence rate of ≈ 5 %). Note that successive panels (a–f) are 1 d apart.

Table 2. The same as Table 1 but for recurrence methods.

Method Section Type Definition Features Limitations

Window counts 5.1.1 State Absolute event counts over windows of
length τ

Simple, impact-driven approach; re-
quires a fixed timescale

Basic characterization of recurrence
(e.g., no statistical significance)

Dispersion
metrics

5.1.2 State Characterize the degree of deviation
in the distribution of event counts at
a fixed timescale from homogeneous
Poisson series

Statistical approach to recurrence Not related to marginal event fre-
quency; seasonality can make statistical
significance assessment difficult

Ripley’s K 5.1.3 State Counts the average number of events in
the neighborhood of a given event

Statistical approach to recurrence; sim-
ple visualization of recurrence across
timescales; direct link to event counts
(impacts)

Seasonality can make statistical signifi-
cance assessment difficult

Inter-event
times

5.1.4 State Asymptotic characterization of the dis-
tribution of inter-event times

Statistical approach to recurrence; dis-
criminates short- and heavy-tailed dis-
tributions, where short-tailed ones are
consistent with no-memory processes
(recurrence occurs by chance)

Physical interpretation may be complex

Event count
modeling

5.2.1 State Fit a statistical model to N (τ ) (event
counts over windows of length τ ), e.g.,
Poisson model

Requires a fixed timescale τ ; allows us
to model the effects of covariates on re-
currence

Requires statistical assumptions on the
distribution of event counts

Recurrence
plots

5.2.2 Global/
State/
Episodic

The 2D binary matrix R describing
system self-similarity at all time
steps: R(i,j )= 1 if and only if
d(x(ti ),x(tj ))≤ ε; several global or
local metrics can be defined

Requires a similarity threshold (ε); very
versatile approach that can be applied to
any kind of data

Can be complex to implement and may
require custom metrics depending on
the application

length p in the sub-matrix of R indexed by [t, t+p]×[t, t+q]
(Fig. 15b). To make sure that distinct occurrences of the same
sequence are separated, we can require diagonals to be sep-
arated by a minimum number of days (2 in Fig. 15b). It is
also possible to allow for short breaks (e.g., one step) in the
diagonals.

RPs have recently gained attention in a range of disci-
plines that deal with complex systems (Goswami, 2019) but
only rarely in environmental sciences. Ramirez-Amaro and
Figueroa-Nazuno (2006) investigated the recurrence proper-
ties of major teleconnection patterns with RPs. Yiou et al.
(2018) indirectly relied on RPs to identify the most recur-
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rent states of North Atlantic circulation at the intra-seasonal
timescale. Adeniji et al. (2018) used RPs to analyze the re-
currence characteristics of hourly wind speed in Nigeria, and
Ray et al. (2019) did so to investigate daily temperature and
humidity data across India. Recently, Mukhin et al. (2022)
used RPs to detect weather regimes in the Northern Hemi-
sphere. In Fig. 16, we show results obtained for 3 d sequences
of similar upper-level circulation patterns over Europe in
summer. We calculate RIp,q (t) with p = 3 d and q = 21 d
and identify the two most common sequences among the
≈ 30 21 d windows with RIp,q (t)≥ 2. The method identi-
fies recurring blocks and cyclones over Scandinavia as the
most frequent recurring sequences of circulation patterns.
The results appear physically meaningful since counts of in-
dividual blocks and cyclones during the corresponding win-
dows range from 1–2 (for blocks) and 4–11 (for cyclones).
More accurate patterns could possibly be obtained by choos-
ing more than two clusters, but the results of Fig. 16 are only
meant to illustrate the potential of the method.

6 Summary and outlook

Weather persistence on S2S timescales has been a topic of re-
search since the early days of meteorology. Quasi-stationary
or recurrent behavior are common features of weather dy-
namics and are strongly related to fundamental physical pro-
cesses, weather predictability and surface weather impacts.
Studying weather persistence is therefore important for the-
oretical and practical reasons. One challenge is that per-
sistence remains a very broad concept that relates to dif-
ferent behaviors in dynamical systems. We propose a ty-
pology/structure for the broad concepts related to persis-
tence. Namely that persistence is used to describe the aver-
age behavior of a system across its whole trajectory (global
persistence), to refer to specific segments of this trajectory
(episodic persistence) or to qualify the behavior of particular
system states (state persistence).

A wide range of methods has been introduced in the liter-
ature to describe persistence in weather and climate series,
and several exist for each type of persistence. They offer
many distinct and often complementary perspectives on per-
sistence. Some methods quantify persistence in a statistical
framework, which can be very relevant for weather forecast-
ing. Others focus instead on persistent periods, including sta-
tistical flukes; this is a useful approach for risk assessment,
but it is one that says nothing about the overall behavior of
the series. Other methods still aim to identify which weather
patterns tend to be more persistent than others.

The diversity of existing methods presented in this review
reflects the fact that persistence is a multi-faceted concept.
While we can agree on a general definition of the concept,
many options exist when it comes to actually quantify per-
sistence in real-world data. Though different methods may be
related, each sheds light on a particular aspect of persistence.

What is meant by persistence cannot be dissociated from the
metric used to quantify it. The choice of method should be
guided by the end goal, whether it is process understanding,
risk and impact assessment, or predictability. Future research
should nevertheless perhaps consider testing the robustness
of results to the choice of persistence metric more systemat-
ically. This could be particularly important for better charac-
terizing potential trends in persistence under climate change
and their associated impacts. As a final note, while we cen-
tered our review on S2S persistence, most of the methods we
discussed apply in principle to other timescales, be they sub-
daily or multi-decadal. What really differs is how to define
the system to analyze (daily time steps may not be relevant
for inter-annual variability, for instance) and interpret persis-
tence.

Code availability. R code implementing several of the meth-
ods presented in this paper is available at https://github.com/
Quriosity129/persistence (Tuel, 2023). Code to calculate the dy-
namical system metrics (Sect. 4.2.4) is available for R at https:
//github.com/thaos/dtheta (Thao, 2021) or from the R package
CSTools (Perez-Zanon et al., 2022) and for Python at https:
//github.com/yrobink/CDSK (Robin, 2021). The structural simi-
larity index (SSIM) can be calculated with the Python package
scikit-image (van der Walt et al., 2014).

Data availability. We illustrate some of the methods (Figs. 3, 6, 8,
11 and 16) with data from the ERA5 reanalysis (Hersbach et al.,
2020; available from https://doi.org/10.24381/cds.bd0915c6). We
use geopotential height at 500 hPa and 2 m temperature for the
months of June, July and August and over the 1979–2020 period.
We remove their seasonality and long-term trends by normalizing
the data with a moving 30 d, 7-year window (as in Pfleiderer and
Coumou, 2018). The calculation of the blocking and cyclone in-
dices in Fig. 16 is described in Tuel and Martius (2022a).
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