
1. Introduction
Predicting precipitation is challenging for numerical weather prediction (NWP) models. NWP models solve 
numerically coupled partial differential equations subject to dynamic and thermodynamic laws that describe 
the atmospheric state (Schultz et al., 2021). However, precipitation generation involves complex microphysical 
processes that occur on very small scales, and that cannot be explicitly resolved in most NWP due to inade-
quate grid resolution, which might lead to large uncertainties. Such processes are inferred from parametrization 
schemes, which are generally sources of parametric uncertainty (Bauer et al., 2015). Moreover, NWP models are 
computationally expensive, particularly at a high resolution.

A major concern relates to extreme precipitation events that are expected to change in intensity and frequency 
under a changing climate, leading to higher socio-economic impacts (Donat et al., 2016; Trenberth et al., 2003). 
The skill of climate models, or more specifically general circulation models, to predict extreme events is rather 
limited due to their lack of ability to represent mesoscale processes that require higher spatio-temporal resolu-
tions (Gao & Adam Schlosser, 2019). Regional climate models can better represent topography and small-scale 
microphysical processes thanks to a higher spatial resolution (2–25  km) but are computationally expensive 
(Adewoyin et al., 2021).

With the rapid development of machine learning (ML) techniques, sophisticated deep learning (DL) models, and 
the availability of large data sets, there is an increasing interest in the weather and climate research community to 

Abstract In recent years, the use of deep learning methods has rapidly increased in many research fields. 
Similarly, they have become a powerful tool within the climate scientific community. Deep learning methods 
have been successfully applied for different tasks, such as the identification of atmospheric patterns, weather 
extreme classification, or weather forecasting. However, due to the inherent complexity of atmospheric 
processes, the ability of deep learning models to simulate natural processes, particularly in the case of 
weather extremes, is still challenging. Therefore, a thorough evaluation of their performance and robustness 
in predicting precipitation fields is still needed, especially for extreme precipitation events, which can have 
devastating consequences in terms of infrastructure damage, economic losses, and even loss of life. In this 
study, we present a comprehensive evaluation of a set of deep learning architectures to simulate precipitation, 
including heavy precipitation events (>95th percentile) and extreme events (>99th percentile) over the 
European domain. Among the architectures analyzed here, the U-Net network was found to be superior and 
outperformed the other networks in simulating precipitation events. In particular, we found that a simplified 
version of the original U-Net with two encoder-decoder levels generally achieved similar skill scores than 
deeper versions for predicting precipitation extremes, while significantly reducing the overall complexity and 
computing resources. We further assess how the model predicts through the attribution heatmaps from a layer-
wise relevance propagation explainability method.

Plain Language Summary With the increasing success of machine learning methods in Earth 
Sciences, deep learning is becoming a promising tool for building data-driven models for meteorological 
applications. Yet, predicting extreme events, such as heavy rainfall, is still challenging. Here, we present an 
intercomparison of deep learning models to assess the ability of different architectures to predict precipitation 
events. While most of the models perform relatively well, we show that U-Net-based architectures outperformed 
the rest of the models. We additionally applied explainability methods to quantify which input features are 
the most important to predict precipitation events. Overall, the relative humidity showed the highest relevance 
values, followed by both wind components, particularly in western and southern Europe.
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tackle climate-related problems using ML. ML models can extract feature representations from observed patterns 
and relate them to general meteorological situations. Moreover, ML models are computationally much cheaper 
than physically based modeling of precipitation. Recent studies have proposed different ML methods and DL 
architectures to predict precipitation at several time scales, including nowcasting, subseasonal, and seasonal fore-
cast (Civitarese et al., 2021; Hwang et al., 2019; Vandal et al., 2019). These ML applications have shown prom-
ising results for predicting precipitation (Adewoyin et al., 2021).

Data-driven approaches have become very popular in many fields of natural sciences due to their ability to learn 
and efficiently represent underlying physical processes (Rasp et al., 2020). Several studies have shown the great 
potential of convolutional neuronal network (CNN) architectures to reproduce synoptic patterns (Chattopadhyay 
et  al., 2020), weather extreme events (Liu et  al., 2016), and provide weather forecasting (Scher, 2018; Weyn 
et  al.,  2019). In particular, precipitation forecasting has been the subject of DL studies that have proposed 
advanced network architectures that can outperform conventional forecast models (Rasp et al., 2020).

The use of DL is exponentially growing in climate and weather applications, as it is in other fields. Some 
state-of-the-art architectures, such as generative adversarial networks (GANs) have shown promising results for 
nowcasting precipitation (Ravuri et al., 2021), downscaling tasks (Harris et al., 2022; Leinonen et al., 2021), and 
bias correction (Pan et al., 2021). Moreover, the success of transformers in computer vision tasks has sparked 
interest in adapting these models to climate and weather applications, as shown in Dabrowski et al. (2020) and 
Nguyen et al. (2023). For example, researchers have leveraged transformers to improve seasonal forecasts (e.g., 
Civitarese et al., 2021). Due to the wide range of DL architectures, the effort needed to adapt the models to a 
specific case study and to train them, and the pace at which new models emerge, it is almost infeasible to perform 
an exhaustive and up-to-date comparison.

Previous works have used DL to predict extreme precipitation for spatially aggregated time series (Davenport & 
Diffenbaugh, 2021; Huang, 2022) or to predict high-resolution precipitation locally (i.e., statistical downscaling) 
(Adewoyin et al., 2021; Pan et al., 2019). However, the extreme values in the predicted precipitation fields over 
a larger domain have not yet been investigated enough nor improved. Therefore, this work aims to fill this gap 
by assessing the performance of existing DL models in predicting extremes in precipitation fields over a large 
domain. Building upon recent works, we present an intercomparison of DL architectures and assess their ability 
to predict extreme precipitation events over Europe.

The context of this work is the comparison of models for the prediction of daily precipitation for the same day 
as the inputs, that is, without temporal extrapolation of the evolution of the weather situation. The objective is, 
therefore, not to forecast precipitation for a given lead time, but to establish a statistical relationship between 
meteorological variables and the concomitant precipitation. Within this framework, we assess the ability of the 
different models to infer precipitation extremes resulting from different synoptic-scale situations. Although not 
providing temporal extrapolation, such an approach is interesting for bypassing or improving the prediction of 
precipitation by NWP, which is uncertain and computationally intensive, or by climate models, whose resolutions 
are most often inappropriate for explicitly modeling precipitation.

While our primary focus is to test the model performance to capture precipitation extremes, we also examine the 
DL performance for precipitation estimates. Contrasting with most of the existing literature where the domain of 
interest focused on precipitation over the U.S. (e.g., Davenport & Diffenbaugh, 2021; Pan et al., 2019), here we 
present a model comparison over the European domain. The skills of the models are compared for the prediction 
of the precipitation amount over the entire domain as well as for the probability of exceedance of the 95th (i.e., 
heavy precipitation) and 99th (i.e., extreme precipitation) percentiles. In addition, a baseline model was used 
to benchmark the performance of the selected DL architectures. The baseline consists in a random forest (RF) 
model (Breiman, 2001), which is applied point-wise. RF is a common and robust algorithm that has been previ-
ously applied to predict precipitation (e.g., A. J. Hill & Schumacher, 2022; G. R. Hill et al., 2022; Wolfensberger 
et al., 2021).

In the second step, we select the best architecture based on the skill scores, and we apply an eXplainable artificial 
intelligence (XAI) (Montavon et al., 2018) method to provide further physical insights about the connections 
between the inputs and the predictions obtained from the model. Specifically, we apply a layer-wise relevance 
propagation (LRP) (Bach et al., 2015) method to interpret how the network predicts precipitation events, that is, 
we assess the most important variables in the inputs that helped the model to make a specific prediction. Based 
on such relevance, we additionally test the effect of the number of input features on the network performance.



Water Resources Research

OTERO AND HORTON

10.1029/2023WR035088

3 of 18

The rest of the paper is organized as follows: Section 2 discusses previous related work; the data and methods 
are introduced in Section 3; Section 4 shows the results, and the main conclusions are summarized in Section 5.

2. Related Works
Recently, many studies have proposed using sophisticated ML methods to improve precipitation estimates in 
various contexts, such as precipitation nowcasting (Ayzel et al., 2019) and post-processing of NWP precipitation 
output (Hess & Boers, 2022). This section reviews the most relevant studies closely related to our objectives and 
methodology.

Davenport and Diffenbaugh (2021) analyzed extreme precipitation days (above 95th percentile) over the U.S. 
Midwest and their links to large-scale atmospheric circulation patterns using a CNN with daily sea level pressure 
and geopotential height anomalies as input fields (Table 1). The model architecture consisted of two convolu-
tional layers, each followed by a max-pooling layer, a dense 16-neuron layer, and a final classification layer of 
extreme and nonextreme precipitation days. The CNN showed high accuracy (91%) for the identification of 
extreme precipitation days, although some extreme events were not captured. The authors suggested that addi-
tional variables representing smaller-scale processes might improve the model performance. Moreover, due to 
the differences in the seasonal distribution of precipitation during extreme events, they pointed out the relevance 
of incorporating temporal information.

Building upon the work of Davenport and Diffenbaugh (2021), Huang (2022) proposed a self-attention augmented 
convolution mechanism for short-term extreme precipitation forecasting over the U.S. Midwest. The network 
consisted of two attention-augmented convolutional layers, a max-pooling, and a dropout layer. The proposed 
model outperformed classical convolutional models by 12%. However, a limitation to capturing some extreme 
events was acknowledged, likely due to localized processes for which additional information (e.g., variables) 
might be required.

Focusing on precipitation downscaling to point locations, Pan et al. (2019) proposed a CNN model as an alter-
native to parameterization schemes for numerical precipitation estimation. They built a CNN model based on 
convolutional and pooling layers using the geopotential height at several pressure levels and the total column 
water (TCW) as inputs (at a 3-hourly time step; see Table 1). The extracted features were flattened and processed 
by two final dense layers. The authors tested the CNN in different locations across the U.S. and showed that the 
CNN outperformed the reanalysis precipitation products and classical statistical methods. However, the model 
underestimated large precipitation values.

Similarly, Shi  (2020) evaluated the performance of ML methods, including CNNs, for statistical downscal-
ing of extreme precipitation in three Asian regions. They compared two DL architectures: RaNet, with three 

Study Nb SLP Z T SH RH U/V TCW/PW

Davenport and Diffenbaugh (2021) 2 1× 500 – – – – –

Huang (2022) 2 1× 500 – – – – –

Pan et al. (2019) 4 – 500 – – – – 1×

850

1,000

Shi (2020) 30 – 300 300 – 300 300 –

500 500 500 500

700 700 700 700

850 850 850 850

925 925 925 925

1000 1,000 1,000 1,000

Note. The variables are: sea-level pressure (SLP), geopotential height (Z), air temperature (T), specific humidity (SH), relative humidity (RH), the zonal and meridional 
wind components (U/V), and the total column water vapor (TCW). The column “Nb” contains the number of variables used. The table values for Z, T, SH, RH, and 
U/V represent the pressure levels selected (hPa).

Table 1 
Meteorological Variables Used by the Selected Studies
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convolutional layers and five fully connected layers, and RxNet, a more complex model with 58 layers, including 
residual connections similar to the original Xception model (Chollet, 2017). The results showed that deep CNN 
with an intermediate-level complexity structure (e.g., RaNet) generally performed better than a more complex 
architecture (e.g., RxNet). Moreover, while the CNNs well captured the precipitation extremes in the subtropical 
regions, they performed poorly in the tropical regions, illustrating the challenge of representing extreme precip-
itation in certain regions.

Adewoyin et  al.  (2021) developed TRU-NET (Temporal Recurrent U-Net), a DL model based on a U-Net 
(Section 3.2.1) architecture and featuring a novel 2D cross-attention mechanism to account for the spatio-temporal 
nature of weather processes. It relies on Convolutional Long Short-Term Memory cells, more specifically Convo-
lutional Gated Recurrent Units. Their objective is to improve the prediction of high-resolution precipitation for 
climate models, which provide low-resolution outputs. They propose a fused temporal cross attention as a better 
aggregation strategy than averaging the six-hourly data to a daily time step. They show that TRU-NET outper-
forms other models, including U-Net, but notice that it under-predicts high precipitation events (>20 mm/day).

Recently, Hess and Boers (2022) showed that a U-Net-based network, using NWP ensemble simulations as input 
features, captures well heavy rainfall events. They applied DL as a post-processing step to correct biases in the 
NWP-predicted rainfall. They proposed a frequency-based weighting of the loss function that combines a contin-
uously weighted mean squared error (MSE) with a multiscale structural similarity measure, which improved the 
training for high values when using both metrics separately.

3. Data and Methods
3.1. Data

The input variables and the precipitation fields were retrieved from the ERA5 (Hersbach et al., 2020) reanaly-
sis. Reanalyses are produced using a single version of a data assimilation system coupled with a forecast model 
constrained to follow observations over a long period. They provide multivariate outputs that are physically 
consistent, also for variables that are not directly observed (Gelaro et al., 2017). ERA5 is the state-of-the-art 
reanalysis at the time of writing and was shown to outperform other reanalyses for predicting precipitation using 
a simpler statistical downscaling method (Horton, 2021). ERA5 provides data with high temporal (hourly) and 
spatial (0.25°) resolutions.

The weather variables used as input to the DL model should be robust, that is, not depend too much on the NWP 
or climate model, for the DL model to be transferable to other model outputs (Adewoyin et al., 2021). We thus 
selected frequently used variables: geopotential height (Z), air temperature (T), relative humidity (RH), TCW, 
and both wind components (U, V). All variables were selected at six pressure levels, that is, 300, 500, 700, 850, 
925, and 1,000 hPa, except the TCW, which has a single vertical dimension. To reduce the computational costs of 
training all the networks (see Section 3.2), the spatial resolution of ERA5 data was degraded to 1°. Additionally, 
the variables were temporally aggregated at a daily time step. The domain on which these variables are used is: 
latitude = (30, 75) and longitude = (−25, 30) (Figure 1).

The precipitation data were also extracted from ERA5 over the same domain and spatial resolution (1°) and 
aggregated to a daily time step. Our study period is from 1979 to 2021. In this work, heavy precipitation events are 
identified based on the 95th percentile of the total distribution (1979–2021; the thresholds would be on aver age 
0.1 mm lower on the training period) for each grid cell (i.e., pixel-wise definition). Similarly, extreme precipi-
tation events are defined as those days exceeding the 99th percentile (Figure S1 in Supporting Information S1).

3.2. Methods

3.2.1. Deep Convolutional Neural Networks: Selected Architectures

CNNs have proven successful in different applications in climate science, including extreme weather forecasting 
(Liu et al., 2016; Racah et al., 2016), clustered weather patterns prediction (Chattopadhyay et al., 2020), precipi-
tation nowcasting (Shi et al., 2015, 2017), or extreme precipitation (Davenport & Diffenbaugh, 2021; Shi, 2020). 
They are a type of neural network designed to process high-dimensional data, such as images or geospatial data 
(LeCun & Bengio, 1995). They have become tremendously popular due to their ability to automatically learn 
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spatial hierarchies of features, from low to high-level patterns (Goodfellow et al., 2016). The principle of CNN 
relies on a mathematical operation called convolution, a specialized linear operation used for feature extraction 
(Goodfellow et al., 2016). CNNs usually consist of three types of layers: (a) convolutional layers that perform 
the convolution operation, (b) pooling layers that reduce the dimensionality of the inputs, and (c) fully connected 
layers. The first two types of layers extract and condense the feature information used by dense layers. A typical 
CNN architecture is often composed of successive convolutional and pooling layers.

Building on CNNs, the popular U-Net, which was originally introduced by Ronneberger et  al.  (2015) for 
biomedical image segmentation, has shown good performance in climate applications, such as post-processing 

Figure 1. Correlation patterns between the ground truth and the predictions during the testing period (2016–2021) for the best architectures (left), intersection over 
union (IoU) for the occurrence of heavy precipitation events (from the regressor model) (middle), and IoU for heavy precipitation events (from the classifier model) 
with an exceeding probability >0.5.
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weather forecasts (Grönquist et al., 2021; Hess & Boers, 2022), downscal-
ing (e.g., Adewoyin et al., 2021) and precipitation nowcasting (e.g., Trebing 
et al., 2021). Larraondo et al. (2019) tested several encoder-decoder configu-
rations and found the best results with U-Net-based architectures to forecast 
total precipitation using geopotential height as input. In Weyn et al. (2020), 
the authors used a U-Net architecture and mapped the input grid values to 
a cubed-sphere achieving a good performance to forecast complex surface 
temperature patterns from a few input atmospheric state variables. The U-Net 
architecture consists of two parts: a contracting path to capture the context 
(encoder) and a symmetric expanding path that enables precise localization 
(decoder). The encoder part is composed of stacked convolutions and pool-
ing operations to extract the features, while the decoder part combines these 
features (through skip connections) with the upscaled output to reconstruct 
the spatial information. The encoder-decoder network enables propagating 
high-resolution features from the contracting path that are combined with the 
upscaled output (Ronneberger et al., 2015).

Recently, Trebing et al. (2021) proposed an adapted U-Net with a combina-
tion of attention modules and depthwise-separable convolutions for precip-

itation nowcasting. Introducing an attention mechanism into the convolutional neural network structure has 
also become popular in image segmentation processes (Oktay et al., 2018). In particular, the Attention U-Net 
proposed by Oktay et al. (2018) exploits the use of attention gates added to the encoder-decoder structure. This 
soft-attention mechanism is implemented for the skip connections. The attention gates actively suppress activa-
tions in irrelevant regions and, thus, reduce the number of redundant features. The authors showed that the use 
of attention gates improved the prediction performance of U-Net as the model learned to focus on useful features 
information, enhancing the accuracy of the network in locating tissues and organs, in the medical context.

Among the DL models presented in the literature for predicting precipitation, we have selected a number of 
representative studies closely related to our objectives. Given that our approach and model domain differ from 
the selected original studies, we have adapted the original architectures to our purpose. We classified the methods 
into three classes: 2D CNN models, U-Net architectures, and 3D CNN models. Table 1 summarizes the inputs 
originally used in the selected studies, and Table 2 lists the different structures assessed in this work and their 
corresponding number of parameters. Below, we briefly describe the models considered in our study.

In the 2D CNN class, we considered the model from Davenport and Diffenbaugh  (2021) (hereafter named 
Dav-orig), which includes two convolutional layers with 16 3 × 3 filters, followed by two 2 × 2 max-pooling 
with a stride of 2. In the original configuration, a dense 16-neuron layer follows the convolution and max-pooling 
layers, followed by a final classification layer providing the probability of the outcomes. To predict a spatial 
precipitation field over the European domain, we added a decoder part made of a dense layer, two deconvolution 
layers, and a final convolution layer, symmetrically to the original model. Based on this architecture, we tested 
the use of a latent space of dimension 64 instead of 16 (Dav-64). Then, we considered the architecture from Pan 
et al. (2019, here named Pan-orig), which consisted of two convolutional and pooling layers followed by two 
consecutive dense layers. As in the previous model configurations, a symmetrical decoder part was added to 
keep the spatial dimensions. Following the architectures described above, we additionally tested a convolutional 
encoder-decoder made of two layers, with a latent space of dimension 64 (CNN-2l). Further experiments with 
additional layers were conducted but were not successful.

Then, based on the success shown by U-Net in diverse applications, we added this architecture to our analyses. 
We considered the original U-Net structure as proposed by Ronneberger et al.  (2015), which consists of four 
levels (U-Net4), but also assessed shallower versions with three (U-Net3), two (U-Net2) and one (U-Net1) levels. 
The shallower versions have substantially fewer parameters to calibrate (Table 2). We also tested whether the 
inclusion of attention gates improves the accuracy of simulating extreme precipitation events (U-Net-att).

Finally, we included a 3D CNN, namely the RaNet architecture as proposed by Shi (2020). This model consists of 
three 3D CNN layers (using three-dimensional filters) and four fully connected layers, followed by a symmetric 
decoder part of upscaling layers that allows reconstructing the output into its original size. The use of this archi-
tecture allows us to further assess the performance of 3D CNN against 2D CNN.

Type Variant Nb input fields Nb parameters Latent dimension

2D-CNN Dav-orig 31 51,721 16

Dav-64 31 178,105 64

Pan-orig 31 238,054 60

CNN-2l 31 746,345 64

U-Net U-Net4 31 31,071,169 1,024

U-Net3 31 7,724,481 512

U-Net2 31 1,883,841 256

U-Net1 31 421,697 128

U-Net-att 31 37,514,533 1,024

3D-CNN RaNet 30 1,859,627 256

Table 2 
The Different Model Structures Assessed in This Work With the Number of 
Input Fields and Parameters
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3.2.2. Models Implementation

While our primary goal is to assess the model performance to reproduce precipitation extremes, we also tested 
the prediction of precipitation amounts. Therefore, the implemented models were assessed for different objec-
tives: (a) for the prediction of the precipitation estimates, (b) for the occurrence of heavy precipitation (i.e., 
>95th percentile), and (c) for the occurrence of extremes (>99th percentile). The configuration of the models 
is the same in all cases, the only difference being the activation function of the last layer. A rectified linear unit 
(ReLU) that ensures nonnegative output values is used for predicting the precipitation amount, and a sigmoid is 
applied for predicting the probability of heavy/extreme events. It is important to note that the models were trained 
independently for the three different targets. The loss function used was the MSE for the prediction of precipita-
tion estimates and the weighted binary cross-entropy for the occurrence of extremes (with weights computed to 
balance both classes). These scores were computed pixel-wise and averaged over the domain. An early stopping 
strategy has been used, with a maximum of 200 epochs. For all models, dropout and spatial dropout for the 
convolutional layers have been used.

A class was written in Python to generate the different model architectures with multiple options and handle 
common tasks, such as an eventual initial zero-padding when necessary and output cropping. The code is public-
ity available at https://github.com/ML-precip/precip-predict. It also sets the final activation layer to ReLU for the 
precipitation estimates or sigmoid for the probability of extremes. The models were implemented using Keras 
(Chollet et al., 2015) and designed according to the description in the related paper.

The input data is a tensor of shape 46 × 56 × 31; 31 represents the number of atmospheric fields (i.e., channels): 
six fields for Z, RH, T, U, V, and one for TCW; 46 × 56 represents the spatial dimensions (latitude × longitude) of 
the domain considered. All models use the same number of channels (i.e., 31), except the RaNet model, for which 
TCW was excluded as 3D variables are required. The training period ranges from 1979 to 2005, and validation 
from 2006 to 2015. The testing period runs from 2016 to 2021. The model performance is assessed through 
standard metrics (see Section 4.1). It is important to note that there is no temporal lag between the predictors and 
the predictand, as our primary goal is to assess the ability of DL architectures to extract synoptic and mesoscale 
information and establish relationships to estimate precipitation.

3.2.3. Baseline Model

To compare the performance of the DL models with more traditional methods, a RF model (Breiman, 2001) was 
used as a baseline. The RF was fed with the same input data and trained/tested on the same periods as the DL 
architectures. As RF models do not predict spatial fields by nature, one model was here trained per pixel of the 
domain and then used to predict for that same pixel. Then, all predicted pixel-wise time series were aggregated 
into maps to provide daily fields.

As with the DL models, two different kinds of contexts were considered: the prediction of (a) the precipitation 
amount using a regressor RF and (b) the occurrence of heavy/extreme events (95/99th percentile) using a classi-
fier. In the last case, the weights between event occurrence and non-occurrence were balanced. Different values 
of the maximum depth of RFs, which is an important parameter to avoid overfitting, have been tested, and the 
optimal one (4) was further used. Additional parameters, such as the number of trees (number of estimators) and 
the number of predictors (features) were set by default.

3.2.4. Feature Importance: Layer-Wise Relevance Propagation

We used a LRP approach, an XAI method applicable to ML models (e.g., Montavon et  al.,  2018), to better 
understand the importance of the input variables for heavy precipitation events, that is, which variables are 
more important for the network to make a prediction. Among the existing DL interpretation methods, LRP is 
a backward propagation technique used for explaining complex network outputs. The LRP creates heatmaps, 
which in our case help identify the most relevant regions of the input for predicting a heavy precipitation event 
(Barnes et al., 2022). Different LRP rules have been presented in recent literature for geoscience applications 
(e.g., Davenport & Diffenbaugh, 2021; Toms et al., 2020). Here, we tested three popular LRP rules, namely:  (a) 
the LRPz that redistributes the contributions of each input to the neuron activation as they occur (Montavon 
et al., 2018) (b) the LRPα−β rule with α = 1 and β = 0, which identifies locations for which higher activation values 
positively contribute to a likely output (i.e., predicted class); thus, with this formulation, only positive contribu-
tions to the neural network output are tracked; and (c) LRP composite (LRPcomp) (Kohlbrenner et al., 2020) that 
combines the LRPz and the LRPα−β.

https://github.com/ML-precip/precip-predict
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Preliminary analysis showed that in our case, the LRPz rule lead to generally noisy results, which might happen 
when using deep networks (Mamalakis et  al.,  2022). While we observed similar heatmaps when comparing 
LRPα−β and the LRPcomp rules, the LRPcomp exhibited the highest correlation with the ground truth (not shown). 
Thus, unless noted, the results presented hereinafter refer to the LRPcomp rule.

The LRP produces a map with the same dimensions as the input, where the pixel values indicate the importance 
of the predicted class. A total of 31 maps (i.e., 31 input variables) are obtained for each day. Then, we computed 
composite maps (for each input feature separately) by calculating for every pixel the average value of the rele-
vance of a specific input feature for all days with an extreme event within the training period. To this end, we 
considered a larger area of influence for each pixel by calculating the averages of the maximum relevance within 
a small spatial domain for each feature when an event occurred:

𝑅𝑅 =
1

𝑁𝑁𝑖𝑖

∑

max(𝑅𝑅 ± 𝑧𝑧) 

where z represents the number of the closest pixels to calculate the relevances at each grid cell. We performed 
additional sensitivity analyses for different values of z and decided to use z = 3 as a good compromise to account 
for local processes that might be relevant for pixel-wise precipitation events. It is important to note that the aver-
ages of the relevances were calculated for the true extremes.

As detailed below (see Section 4.3), after selecting our best model for predicting precipitation, we apply the 
most suitable LRP rule to examine the importance of the input features for simulating heavy precipitation events. 
Based on the relevance values obtained for the training sample, we ranked the predictors by their average rele-
vance. These values were obtained by averaging the composite maps produced for each input feature. Then, 
we conducted a number of experiments for differing subsets of predictors to examine the role of the number of 
features in the network performance.

4. Results
4.1. Networks Performance

We trained the models separately for predicting precipitation amounts (i.e., as a regression task) and precipitation 
events (i.e., as a classification task). In the first case, we assessed the prediction of the precipitation amount with 
the RMSE, and we further estimated the predicted threshold exceedances (95th and 99th percentile for each pixel) 
to compute the precision and recall scores (Table 3 for the 95th percentile and Table 4 for the 99th percentile). 
The U-Net outperformed the rest of the models for predicting precipitation amounts (lower RMSE) and provided 
the highest precision and recall scores when assessing the threshold exceedances. Its optimization also stops 
earlier than other models (not shown). However, while using an attention gate in U-Net showed an improvement 
for medical image data sets (Oktay et al., 2018), this was not the case in our application, as the results showed 
similar performances with or without the attention gates, with slightly improved precision observed in extreme 
precipitation case (see Table 4). Therefore, the attention gates were not further used in the following analyses.

The prediction skills for heavy and extreme precipitation events were evaluated in terms of the AUC (ROC under 
curve area), precision, and recall scores based on a probability threshold of 0.5. Tables 5 and 6 show the score 
values obtained for classifying both heavy (>95th) and extreme (>99th) precipitation events.

Similarly to the regression case, the results show clearly that U-Net, which has significantly more trainable 
parameters, is the best to predict precipitation extremes. However, a difference between both settings becomes 
obvious: when trained for the prediction of extremes, the model's outputs result in a much higher recall than when 
trained for the precipitation amount while presenting a lower precision. The models trained for the extremes 
predict them better than when trained for the whole precipitation distribution (Table 4), but overestimate the 
number of extreme events (i.e., Table 6). It can be expected that balancing the weights differently in the weighted 
binary cross-entropy will result in other recall and precision scores.

When comparing the variants per type, Pan-orig performs better than other 2D CNN variants, and different U-Net 
variants show similar scores, depending on the metric used. We have selected U-Net2 due to its ability to provide 
similar performance with fewer parameters.

We further analyze the ability of the DL models to represent the spatial distribution of precipitation events realisti-
cally. To do so, we first select the best network from each type (see Table 2) according to the scores obtained above. 
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Then, we calculated the correlation patterns between the model outputs and the truth to quantify the ability of the 
networks to capture the spatial distribution of precipitation amounts. Additionally, the metric intersection over union 
(IoU) to evaluate the model's performance to classify heavy events (Prabhat et al., 2021; Wang et al., 2023) is calcu-
lated. The IoU was also quantified by considering an extreme event to be occurring for any probability higher than 
0.5. The U-Net architecture shows the highest correlation values, followed by the Pan-orig and the RF models (see 
Figure 1). The RaNet architecture shows the lowest correlation values, pointing out a lower ability of the network to 
represent here the spatial distribution of precipitation. Similar conclusions can be derived from the IoU (Figure 1): 
the highest values correspond to the U-Net architecture. Table 7 shows the spatial averages of the metrics illustrated 
in Figure 1. In agreement, the spatial distribution of the metrics calculated for the extreme precipitation case showed 
the highest correlation and IoU values for the U-Net architecture (Figure S2 in Supporting Information S1).

Next, we also examine the predictions of the different models for the day with the highest amount of observed 
precipitation exceeding the 95th and the 99th percentiles during the test period and over the considered domain, 
that is, we selected the day (13 October 2018) with the highest number of grid cells exceeding the respec-
tive percentile. The meteorological context during that day was characterized by a large long-lived extratropical 
cyclone in the Atlantic that became a powerful posttropical system resulting in heavy precipitation in several 
regions in Western Europe. As in Figure 1, this analysis is performed for the best DL model.

Type Variant id RMSE train RMSE test Precision train Precision test Recall train Recall test

Random forest RF4 2.66 2.93 0.73 0.66 0.27 0.23

2D-CNN Dav-orig 3.19 3.33 0.55 0.51 0.21 0.19

Dav-64 2.73 2.91 0.60 0.58 0.42 0.38

Pan-orig 2.44 2.59 0.73 0.71 0.40 0.37

CNN-2l 2.30 2.65 0.69 0.61 0.53 0.45

U-Net U-Net4 1.43 1.72 0.79 0.76 0.70 0.65

U-Net3 1.40 1.74 0.79 0.75 0.74 0.67

U-Net2 1.41 1.69 0.83 0.80 0.66 0.62

U-Net1 1.58 1.75 0.82 0.81 0.63 0.60

U-Net-att 1.42 1.73 0.80 0.77 0.71 0.65

3D-CNN RaNet 3.01 3.30 0.60 0.53 0.16 0.14

Note. Precision and recall are computed for the exceedance of the 95th percentile. The best scores are highlighted in bold.

Table 3 
Scores of the Tested Models When Trained to Predict the Precipitation Amount

Type Variant id RMSE train RMSE test Precision train Precision test Recall train Recall test

Random forest RF4 2.66 2.93 0.67 0.28 0.09 0.05

2D-CNN Dav-orig 3.19 3.33 0.33 0.14 0.02 0.02

Dav-64 2.73 2.91 0.58 0.45 0.14 0.10

Pan-orig 2.44 2.59 0.65 0.61 0.29 0.25

CNN-2l 2.30 2.65 0.69 0.57 0.31 0.21

U-Net U-Net4 1.43 1.72 0.83 0.77 0.56 0.46

U-Net3 1.40 1.74 0.81 0.76 0.56 0.47

U-Net2 1.41 1.69 0.83 0.78 0.58 0.48

U-Net1 1.58 1.75 0.81 0.79 0.47 0.42

U-Net-att 1.37 1.73 0.86 0.79 0.55 0.41

3D-CNN RaNet 3.01 3.30 0.57 0.31 0.07 0.03

Note. Precision and recall are computed for the exceedance of the 99th percentile. The best scores are highlighted in bold.

Table 4 
Scores of the Tested Models When Trained to Predict the Precipitation Amount
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Figures 2 and 3 show the results of the models trained for the prediction of the precipitation amount (two first 
columns) and the results of the models trained for the prediction of the occurrence of extremes (last column). From 
Figure 2 it can be seen that, in general, most of the models simulate fairly well heavy precipitation events, and 
most of them show consistent patterns when compared with the truth (i.e., ERA5). The differences between the 
models become larger when comparing their performance in capturing extreme precipitation events (Figure 3). 
While the overall scores obtained for the baseline RF model show a close performance to some of the best 
DL architectures (e.g., Pan-orig), the RF represents poorly the spatial distribution of the selected precipitation 
event, compared to the DL models. This highlights the ability of CNN to extract the spatial information, being 
more efficient in treating complex spatial features. In that case, it can be observed that a U-Net-based architec-
ture (UNET2) is superior and reproduces the closest pattern to the truth. In agreement with the skill scores in 
Tables 3–6, the UNET2 outperforms the rest of the models for both the amount of precipitation and the threshold 
exceedances.

4.2. Assessment of U-Net Variants

Motivated by the good performance of U-Net in simulating precipitation events, we conducted further experi-
ments to assess the predictive capabilities of several U-Net-based architectures for precipitation events.

Type Variant id AUC train AUC test Precision train Precision test Recall train Recall test

Random forest RF4 0.90 0.86 0.27 0.27 0.93 0.85

2D-CNN Dav-orig 0.90 0.89 0.18 0.18 0.86 0.83

Dav-64 0.95 0.93 0.24 0.24 0.92 0.88

Pan-orig 0.96 0.95 0.30 0.30 0.92 0.89

CNN-2l 0.97 0.94 0.26 0.25 0.96 0.89

U-Net U-Net4 0.99 0.98 0.36 0.36 0.99 0.96

U-Net3 0.99 0.98 0.39 0.39 0.99 0.95

U-Net2 0.99 0.98 0.38 0.38 0.99 0.96

U-Net1 0.99 0.98 0.39 0.39 0.98 0.96

U-Net-att 0.99 0.98 0.38 0.38 0.98 0.95

3D-CNN RaNet 0.90 0.88 0.18 0.18 0.89 0.84

Note. Precision and recall are computed for the exceedance of the 95th percentile. The best scores are highlighted in bold.

Table 5 
Scores of the Tested Models When Trained to Predict Precipitation Extremes

Type Variant id train AUC test AUC train Precision test Precision train Recall test Recall

Random forest RF4 0.90 0.89 0.05 0.06 0.98 0.95

2D-CNN Dav-orig 0.94 0.92 0.05 0.05 0.90 0.85

Dav-64 0.97 0.96 0.08 0.08 0.94 0.88

Pan-orig 0.98 0.97 0.09 0.09 0.98 0.94

CNN-2l 0.97 0.94 0.08 0.07 0.96 0.88

U-Net U-Net4 0.99 0.99 0.17 0.18 0.99 0.97

U-Net3 0.99 0.99 0.17 0.17 0.99 0.97

U-Net2 0.99 0.99 0.16 0.16 0.99 0.98

U-Net1 0.99 0.99 0.17 0.17 0.99 0.97

U-Net-att 0.99 0.98 0.16 0.16 0.99 0.97

3D-CNN RaNet 0.93 0.89 0.05 0.05 0.92 0.80

Note. Precision and recall are computed for the exceedance of the 99th percentile. The best scores are highlighted in bold.

Table 6 
Scores of the Tested Models When Trained to Predict Precipitation Extremes
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4.2.1. Sensitivity to the Number of Input Features

In this section, we further explore the role of the number of inputs. Inputs that 
may bring redundant or unnecessary information can increase the complexity 
of the model while not improving its skill. To do so, we conducted several 
sensitivity analyses to test whether reducing the number of inputs would 
lead to comparable results to the full model that uses 31 input features with 
a considerable number of trainable parameters (see Table  2). One of the 
greatest potentials of XAI methods is that they highlight the most impor-
tant features that help the model make accurate predictions. Therefore, we 
rely on the relevance values obtained from the LRPcomp to apply a forward 
selection procedure. We can expect the model performance to increase as the 
relevant features identified by the LRPcomp are added. Our aim is to analyze 
the necessary number of inputs that would lead to a reasonably good model 
performance while reducing computational efforts.

A typical forward/backward stepwise selection procedure where the predictors are included/removed one at a 
time would be computationally expensive. Thus, the predictors were included in the models five at a time accord-
ing to the ranking provided by the LRP. We first explore the sensitivity of the XAI method to the depth of the 
U-Net networks (see Figure 4). Overall, we found a similar ranking of the most important features according to 
the XAI method when applied to the different U-Net depths.

Next, we assess the model performance in terms of number of inputs. To keep this analysis concise and to limit 
computational costs, the forward selection procedure is only applied to the selected network (U-Net2), which is 
characterized by good performances and a lower number of parameters. The U-Net2 is then trained separately 
for six predictor subsets.

As stated in the previous section, we evaluate the prediction skill of heavy precipitation events through the cate-
gorical skill scores commonly used for classification problems and can be obtained from the contingency table. 
The AUC, precision, and recall scores were calculated for both training and test data sets. Figure 5 illustrates the 
results corresponding to the U-Net architectures used in the experiments for different subsets of predictors. It can 
be observed that the performance of the network is considerably lower for a small group of features and improves 
when increasing the number of predictors. Overall, we observed a steady improvement in the model performance 
when increasing the number of input features up to an optimal around 20. Additional inputs are found less rele-
vant as they do not contribute to improving the prediction. It should be noted that these optimums likely depend 
on the random seed, and some variability is expected between different random seeds. These results show anyway 
that more data does not always mean better performance. Based on Figures 4 and 5, the predictors that are less 
informative for the precipitation prediction are the air temperature (T) and the geopotential height (Z). While this 
last one is often considered as key in weather forecasting, it is here superseded by the wind components that do 
also contain information on atmospheric circulation.

4.3. Interpretability: LRP

The LRPcomp previously used was also mapped to visualize which features are important for the U-Net network to 
predict heavy precipitation events in the different geographical regions. Note that for the interpretability analysis, 
we focus on the network that showed the best performance (i.e., UNET2). We first examined the composite LRP 
maps (Section 3.2.4) for all heavy events occurring during the training period (1979–2005). These maps highlight 
the relevant features at a pixel scale for predicting heavy precipitation at that same pixel (Figure 6). Note that a 
zero-input baseline predicts a very small precipitation amount (0.3 mm max; 0.086 mm on average), which indi-
cates no spatial structure except some noise and border effects and a probability of occurrence of extreme events 
equal to zero (not shown).

From Figure 6, it can be observed that some features show an extended area of relevance inland (e.g., RH fields). 
Overall, the RH shows the highest values, followed by both wind components, particularly in western and south-
ern Europe. The high relevance of the wind components in some areas reflects the dependence between extreme 
precipitation events and strong wind conditions due to the same mesoscale and/or synoptic features, as shown by 
previous studies (Martius et al., 2016). For example, one can observe the higher relevance values of the zonal and 
meridional wind in the Iberian Peninsula, which often experiences concurrent extreme precipitation and winds 

Model Correlation IoU IoU

Random forest 0.70 19.52 31.62

Pan-orig 0.76 36.20 28.78

U-Net2 0.90 51.51 39.27

RaNet 0.52 10.56 17.05

Note. The best scores are highlighted in bold.

Table 7 
Average Values of the Metrics Illustrated in Figure 5: Correlation 
Coefficients, Intersection Over Union (IoU) for the Occurrence of Heavy 
Precipitation Events (From the Regressor Model) and IoU for Heavy 
Precipitation Events (From the Classifier Model) Exceeding a Probability 
>0.5
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Figure 2. First row: true values of the precipitation amount and the corresponding threshold exceedance for the 95th 
percentile. Next rows: the prediction of each model for the same date, in terms of precipitation amount (first column), the 
corresponding threshold exceedance (second column), and the probability of the occurrence of heavy precipitation (third 
column).
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Figure 3. First row: true values of the precipitation amount and the corresponding threshold exceedance for the 99th 
percentile. Next rows: the prediction of each model for the same date, in terms of precipitation amount (first column), the 
corresponding threshold exceedance (second column), and the probability of the occurrence of extreme precipitation (third 
column).
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Figure 4. Ranked relevances (averages) obtained for heavy precipitation events in the training sample (1979–2005) for each U-Net architecture (Table 2).

Figure 5. Scores obtained using different input subsets for the selected best U-Net, UNET2. Left plots show the scores corresponding to the model performance to 
predict precipitation amounts. Right plots show the scores of the model performance to predict heavy precipitation.
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conditions, mostly related to extratropical cyclones and their atmospheric fronts (Hénin et al., 2021). We can also 
distinguish the relevance of the wind components for the alpine region, which is known to be related to heavy 
precipitation events due to the orographic forcing of air masses that transport moisture from the Mediterranean. 
This influence of the atmospheric circulation comes in pair with the moisture information, heavily represented 
by the RH variable at 700 hPa (RH700).

Additionally, we examined the predictors relevance for specific extreme precipitation events (see Figures S3 and S4 
in Supporting Information S1). In these examples, the network only highlights one area of relevance where the inputs 
have major weights. Such areas of relevance appear to be associated with the location of the highest relative precipi-
tation amount (e.g., Figure S4 in Supporting Information S1), that is, the network finds the most relevant geographi-
cal regions at the same location as the heavy precipitation event evolves. This is also reasonable as a shallower U-Net 
(two encode-decoder levels) was used, and local relevant areas are used. Moreover, the LRP analysis indicates that 
the local predictors contain enough information to predict the event and that no remote information is needed.

5. Conclusions
The use of ML has exponentially grown in the past years in a wide number of fields. In particular, DL methods 
have shown enormous potential to address complex Earth Science problems, which might be useful in tack-
ling climate change-related issues. Here, we have presented an intercomparison of existing architectures used 
to predict precipitation, either for aggregated precipitation or spatial precipitation fields. Due to the wide range 
of DL architectures, we here focused on a selected set of networks. The architectures used were classified into 

Figure 6. Composite relevance maps for heavy precipitation events (>95th percentile) derived from the best U-Net architecture during the training period (1979–2005) 
for each feature.



Water Resources Research

OTERO AND HORTON

10.1029/2023WR035088

16 of 18

three classes: 2D CNN models, U-Net architectures, and 3D CNN models. To benchmark the performance of 
the selected DL architectures, we applied a point-wise Random Forest as a baseline model. We examined the 
prediction skill not only to simulate heavy and extreme precipitation events but also to predict the amount of 
precipitation over the European domain. For the interpretability of the networks, we applied a layer-wise propaga-
tion  technique, which was further used as a tool for feature selection to test the importance of the number of input 
parameters on the model performance. It is important to note that while some of these DL topologies have been 
previously presented in the literature, the original application slightly differs from ours, and more importantly, 
the original configuration was adapted to our purposes (e.g., in each case, we added a decoder part to preserve 
the spatial dimensions of the input data).

In general, most of the analyzed DL were able to reproduce reasonably well the occurrence of precipitation 
events. However, we found that U-Net-based networks generally outperformed the rest of the tested architectures 
by a large margin, which is in line with previous studies (Hess & Boers, 2022; Larraondo et al., 2019) that used 
a U-Net architecture to simulate precipitation. In general, the skill scores that measure the precision to classify 
heavy precipitation events (i.e., >95th percentile) were higher than those obtained for extreme precipitation 
events (i.e., >99th percentile), due to the unbalanced number of classes where the number of extremes is signif-
icantly reduced in the training data.

While the original U-Net already showed a good performance, we found that a shallower network, in terms of 
number levels compared to the original architecture, would be sufficient to classify heavy precipitation events 
correctly. This likely means that, for this spatial resolution and with no temporal extrapolation, most of the 
information needed to predict precipitation is available at the location where the precipitation occurs. Our results 
showed that in such a context, a shallower U-Net, which significantly reduces the number of trainable parameters 
and the computation time, is able to predict precipitation events fairly well.

We additionally conducted a number of experiments on U-Net-based configurations to examine how the number 
of inputs plays a role in the performance of the model. As expected, the network showed the poorest performance 
when using only a few input variables. The optimal number of inputs for this application seems to be around 20, 
after which no substantial improvement was found.

We hope that our comparison analysis can help guide future studies on precipitation prediction in the choice of 
the DL architecture and can highlight the good performance of U-Net networks in predicting precipitation fields 
and the probability of extremes. Additionally, a shallower U-Net was found to perform as well as the original 
architecture while having substantially fewer parameters. The use of LRP for the selection of the most relevant 
predictors is an approach that can also be used in other contexts, and that is less computationally intensive than 
typical forward/backward stepwise selection procedures. We plan to extend this work by focusing on downscaling 
tasks and exploring alternative and state-of-the-art architectures, including the utilization of GANs.

Data Availability Statement
The ERA5 data is available for download at the Copernicus Climate Change Service (Hersbach et al., 2020; 
Store, 2023). The code used for the analysis is available in Horton and Otero (2023).
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