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Predicting OCT biological marker 
localization from weak annotations
Javier Gamazo Tejero 1*, Pablo Márquez Neila 1, Thomas Kurmann 1, Mathias Gallardo 1, 
Martin Zinkernagel 2, Sebastian Wolf 2 & Raphael Sznitman 1

Recent developments in deep learning have shown success in accurately predicting the location of 
biological markers in Optical Coherence Tomography (OCT) volumes of patients with Age-Related 
Macular Degeneration (AMD) and Diabetic Retinopathy (DR). We propose a method that automatically 
locates biological markers to the Early Treatment Diabetic Retinopathy Study (ETDRS) rings, only 
requiring B-scan-level presence annotations. We trained a neural network using 22,723 OCT B-Scans of 
460 eyes (433 patients) with AMD and DR, annotated with slice-level labels for Intraretinal Fluid (IRF) 
and Subretinal Fluid (SRF). The neural network outputs were mapped into the corresponding ETDRS 
rings. We incorporated the class annotations and domain knowledge into a loss function to constrain 
the output with biologically plausible solutions. The method was tested on a set of OCT volumes 
with 322 eyes (189 patients) with Diabetic Macular Edema, with slice-level SRF and IRF presence 
annotations for the ETDRS rings. Our method accurately predicted the presence of IRF and SRF in each 
ETDRS ring, outperforming previous baselines even in the most challenging scenarios. Our model was 
also successfully applied to en-face marker segmentation and showed consistency within C-scans, 
despite not incorporating volume information in the training process. We achieved a correlation 
coefficient of 0.946 for the prediction of the IRF area.

Age-Related Macular Degeneration (AMD) and Diabetic Retinopathy (DR) are two of the most common eye 
diseases, with over 300 million patients at risk of losing sight worldwide1. To diagnose and manage these chronic 
retinal conditions, 30 million Optical Coherence Tomography (OCT) are taken each year, yielding micron-
resolution 3D volumes of the retina in a routine, fast, and noninvasive way. OCT has become a crucial instrument 
for establishing patient treatments and a dependable tool to validate the efficacy of novel therapeutic approaches 
to treat eye diseases.

In this context, intraretinal fluid (IRF) and subretinal fluid (SRF) are well-established markers that are directly 
linked to both AMD and DR2,3. Their identification and localization within a set of concentric rings, known as 
the Early Treatment Diabetic Retinopathy Study (ETDRS) rings4, is critical for disease assessments (see Fig. 1), 
as the different ETDRS ring regions are linked to different visual function levels (i.e., higher risk of vision loss 
when markers are in the central 1mm ring and lower risk when in the 6 mm ring). Driven by this clinical need, 
numerous methods have been proposed to automate the process of identifying markers such as IRF and SRF5, 
and the work here follows this research direction too.

Previous methods have included IRF and SRF detection and segmentation models6–9. While segmentation 
models have the advantage of quantifying IRF and SRF regions, they often require a large amount of manu-
ally annotated segmentation labels for optimal performance. To counteract this issue, some works use weak 
annotations, such as slice level labels, retinal layer positioning, and foveal distance, to achieve voxel-wise 
segmentations10. Weak annotations offer a wide range of possibilities, and therefore others have studied the 
use of bounding boxes to develop positive-aware lesion detection networks11. More relevant to our work, some 
methods only use slice-level annotations12. Here, Ma et al. presented a weakly-supervised segmentation method 
for Geographic Atrophy (GA) lesions in Spectral Domain OCT images. The method first segments the retinal 
pigment epithelium and then extracts a class activation map from multi-scale features. The final en-face binary 
segmentation of GA is obtained by refining the map with Conditional Random Fields, utilizing only slice-level 
labels with binary information about the presence of GA.

Similarly, ensembles of Convolutional Neural Networks (CNNs) have been proposed to detect IRF and 
SRF in individual slices using only binary annotations on a slice level13,14. However, by removing the need for 
segmentation annotations, these methods cannot provide any location information. In this work, we propose a 
novel weakly supervised deep learning framework that overcomes these limitations and enables the detection 
and localization of 2D OCT markets in ETDRS rings without requiring costly location information during 
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training. Specifically, our method uses binary annotations of marker presence in OCT slices during training and 
infers marker presence and marker location in ETDRS rings during test time. To do this, we introduce a pooling 
strategy where we treat our network’s convolutional feature maps in such a way as to preserve spatial relations 
that can be partially pooled for coarse localization. This is combined with a novel loss function that enforces geo-
metrically and biologically plausible solutions. This allows ring assignment to be performed as a post-processing 
step independent of the training phase. Our experiments demonstrate that our method predicts the location of 
markers in ETDRS rings with high accuracy, thereby significantly outperforming previous methods that use the 
same amount of training information.

Methods
Our objective is to train a method capable of inferring in which ETDRS ring different markers are located, but 
only using 2D OCT slices and associated slice-level binary annotations. In a 2D OCT slice, ETDRS rings cor-
respond to a set of non-continuous vertical stripes (see Fig. 1). From the placement of the ETDRS rings on the 
OCT volume, we make the following three important observations: (1) depending on where an OCT slice is 
positioned in the volume, different ETDRS rings are visible in the slice, (2) the width of different rings depends 
on where an OCT slice is positioned and (3) ring symmetry is preserved regardless of the slice position. We will 
explicitly leverage these observations to design and train our approach.

Specifically, instead of training our method to produce different outputs depending on the slice location, we 
predefined a partition of 2D OCT slices into image columns (see Fig. 2 left). That is, we will train our method to 
produce predictions for each of these columns, regardless of the specific slice location within the volume. At the 
end of this section we describe the straightforward post-processing mapping from column-level predictions to 
the ETDRS rings (as shown in Fig. 2 left).

Figure 1.   Left: View of the retina, the OCT volume (green square) and the ETDRS rings (white) which are 
virtually placed on the surface of the retina. Right: Three 2D OCT slices at different positions of the OCT 
volume. Red circles indicate IRF biological marker and the yellow rectangle indicates SRF (figure best seen in 
color).

Figure 2.   Mapping column predictions to ring predictions for the central slice of an OCT volume. The column 
layout (left) is shared among all slice positions. The ring layout (right) is specific to the slice location in the 
volume. wi,j is the contribution of ring j in the i-th column and ŷi,b is the prediction for ring i and marker b.
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Model
Formally, we partition a 2D OCT slice,  x , into C equally spaced columns. We wish to train a 
model  f : [0, 1]H×W → [0, 1](1+C)×B that maps x to a collection of probabilities ŷ , where B is the number of 
different possible types of markers to be found. For each marker b ∈ B , the collection ŷ contains both the prob-
ability of presence of b in the entire OCT slice, ŷ0,b , and the probability of presence of b in each column c ∈ C , 
denoted ŷc,b . Our training data is made of tuples (x, y0) , with OCT slice x and corresponding slice-level annota-
tions y0 ∈ {0, 1}B with no reference whatsoever to the ring or column in which they are located. A comprehensive 
list of all the variables can be found in Table S1 in the supplementary material.

Figure 3 depicts our model architecture. The input OCT slice is processed by a CNN which produces a feature 
map z ∈ R

Dz×Hz×Wz with width equal to the number of columns C = Wz . We then apply a number of pooling 
operations over the feature map z to describe the entire OCT slice as well as every column c. In particular, to 
identify markers that may appear as large or small in a given image, we set the descriptor of the entire OCT 
slice to be a 2Dz-dimensional vector d0 = [avg_pool(z), max_pool(z)] obtained as the concatenation of average 
pooling and maximum pooling over the spatial dimensions of z . Likewise, the descriptor of every column c is 
another 2Dz-dimensional vector dc = [avg_pool(z·,·,c), max_pool(z·,·,c)] obtained as the concatenation of the 
two pooling operators acting on the corresponding column of z . The descriptor vectors are then processed by a 
multi-layer perceptron (MLP) followed by an element-wise sigmoid activation to produce the final probabilities,

Training
 We use a combination of three loss terms to train our model. The first term uses the standard binary cross entropy 
(BCE) of the slice-level predictions ŷ0 with the slice-level ground-truth annotations y0,

The second term incorporates constraints on column-level predictions based on the image-level ground-truth. 
Specifically, when a biological marker is not present in the input image, y0,b = 0 , we penalize high predicted 
probabilities for b in all the columns. On the other hand, if the marker is present, y0,b = 1 , we encourage a high 
probability for b for at least one column. Formally, we compute,

The last term imposes invariance to horizontal symmetry on the column-level probabilities. When our model 
receives a horizontally flipped image x′ , the predicted column-level probabilities ŷ′ should also be flipped, and 
therefore ŷc,b should be equal to ŷ′C−c,b for all b. To this end, we penalize a symmetric KL divergence between 
the corresponding probabilities,

Specifically, ℓ3 incorporates the symmetry of the ETDRS rings we wish to induce in our model. Note that the 
desired horizontal symmetry cannot be obtained by random horizontal image flipping augmentation, however, 
as ℓ3 enforces predictions on the columns to be consistent regardless of whether the image is flipped or not. Using 
a similar symmetry argument for ℓ1 and ℓ2 , our final loss is,

(1)ŷ0 = σ(MLP(d0)), ŷc = σ(MLP(dc)) ∀c.

(2)ℓ1(ŷ, y0) =
∑

b

BCE(ŷ0,b, y0,b).

(3)ℓ2(ŷ, y0,b) = −
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b
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1
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Figure 3.   Our proposed network architecture: usage of partial pooling to extract information from the feature 
map to infer location outputs with a set of shared-weight MLPs.
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where ŷ  and ŷ′ are the predicted probabilities for the input image x and corresponding horizontally-flipped 
version x′ , respectively. Figure 4 shows a graphical explanation for ℓ2 and ℓ3.

Inference
At test time, we can infer the layout of ETDRS rings in an OCT slice once a slice is evaluated by our network. 
This correspondence is not one-to-one, as a single ring usually contains several columns, and one column may 
be shared between two rings. To thus produce ring-level predictions, we compute the maximum of the prob-
abilities of the columns contained in each ring. For columns spanning two rings, we weigh the contribution of 
the column by the proportion of the column inside each ring, as shown in Fig. 2.

Results
We present the descriptive statistics of the training and testing sets in Table 1. The OCT data comes from the 
Dept. of Ophthalmology, Bern University Hospital (Switzerland) and was acquired using the Heidelberg Spec-
tralis system. The resolution of all slices is 496 × 512 pixels. The training and testing sets are similar in terms of 
pathologies, with the main difference being the granularity of the annotations: the training dataset only contains 
slice-level annotations for two biological markers, while the testing dataset includes additional ETDRS rings 
information at 1 mm, 3 mm and 6 mm per slice. In addition, a subset of the testing dataset has been manually 
segmented. Therefore, pixel-wise annotations for IRF and SRF are also available in 54 volumes (2646 OCT slices). 
None of the patients in this test data are present in the training data. The distribution of IRF and SRF occurrences 
in the testing dataset is given in Table 2.

Implementation and baselines
The backbone model of our method is an EfficientNet-b415 with ImageNet-initialized weights. As a preliminary 
step, we train the network alone in the task of IRF and SRF multilabel classification to produce slice-level predic-
tions, and then fine-tune the entire model as described in the Methods section with the loss function of Eq. (5). 

Figure 4.   Graphical explanation for ℓ2 and ℓ3 in a slice where IRF is present and SRF is not. In this example, 
with ℓ2 , we enforce that IRF must be present in at least one column while SRF is not found anywhere. With ℓ3 
we incorporate symmetry consistency among the flipped and the non-flipped slices.

Table 1.   Dataset description.

Training dataset Testing dataset

Number of patients 433 189

Number of eyes 460 322

Number of slices 22,723 28,322

Present pathologies Diabetic retinopathy with and without Diabetic Macular Edema (DME), and 
early, intermediate, and late AMD DME

Annotations Slice-level annotations for IRF and SRF Slice-level SRF and IRF presence annotations for the ETDRS rings at 1 mm, 
3 mm, and 6 mm
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We use a batch size of 32 slices, SGD with momentum of 0.9 and a base learning rate of 5 · 10−3 which is scaled 
by 0.99 after every epoch. The feature map z of EfficientNet-b4 is sized 1792 × 16 × 16. We perform maximum 
and average pooling per column to produce C = 16 descriptor vectors dc of dimension 2Dz = 3584 , which are 
subsequently processed by the MLP to get 16 column-level predictions. The MLP itself consists of a single linear 
layer with 2 outputs for SRF and IRF, followed by a sigmoid activation. The column-level predictions are then 
mapped to ring-level predictions as explained at the end of the Methods section.

While there are no direct existing baselines for localization of OCT biological markers with weak annotations, 
we compare our method to the following alternative baselines:

•	 Masking At test time, we mask the slice regions to only reveal relevant ETDRS rings and feed this to an 
EfficientNet trained on the slice-level detection task (as above). This masking has been done by replacing all 
pixels in the region to 0.

•	 Masking with partial convolutions (PartConvs) As in the Masking baseline but replacing all convolutional 
layers by partial convolutions16, except for those in the squeeze and excitation blocks17, so to ignore masked 
regions.

•	 Grad-CAM We use Grad-CAM18 to build a 16 × 16 heatmap for each output variable and pick the maximum 
value of each column. This serves as a column-level measurement of the presence of SRF and IRF. We use 
the pre-trained EfficientNet to obtain the final ring-level predictions by applying the same post-processing 
mapping explained at the end of the Methods section.

•	 MS-CAM12 this approach consists of two stages: first, the activations of the different features of the resolu-
tions are combined with Grad-CAM++ to obtain a pixel-wise segmentation. Second, these segmentations are 
refined using CRF on the en-face projection image. We reproduced the first stage and converted the resulting 
pixel-wise segmentation into rings.

All methods were implemented using PyTorch. Our method and the baselines were trained for 10 epochs.

Localization results
Table 2 reports the performance of all methods in terms of AUC ROC and Average Precision (AP). Our method 
achieves the highest ROC-AUC and AP for every marker and ETDRS ring. The improvement is particularly 
notable for 6 mm SRF, where our method doubles the performance of other baselines in AP. Figure 5 compares 
our method’s ROC and Precision-Recall curves and the PartConvs baseline throughout the three ETDRS rings. 
Table 2 also shows the occurrence of both biological markers in each one of the rings. IRF is present in 51.5% of 
the images in the testing set, while SRF is scarcer and present in only 2.8%. This imbalance is further exacerbated 
in the ring annotations: as depicted in Fig. 1, where the 6 mm ring is present in all the B-Scans. However, 38.4% 
have IRF in the 6 mm ring, but only 0.4% have SRF. This is explained by the fact that SRF is unlikely to be found 
in the outer rings, leading to a lower number of occurrences in the test set than IRF.

Figure 6 illustrates the performance of the different methods in several cases. We provide additional cases in 
Fig. S1 in the supplementary material.

Segmentation results
To further demonstrate the accuracy of our method in locating biological markers, we also compare our results 
to the subset of test images for which IRF and SRF ground-truth segmentations are available (2’646 OCT slices). 
For this purpose, a column is considered positive for a marker if it contains at least one pixel of that marker. 

Table 2.   Comparison of the proposed method to evaluated baselines in terms of AUC ROC and AP on the 
Location dataset for all markers on the entire slice and in the different ETDRS rings. The first row indicates the 
occurrences of each marker in this dataset. Best performing method for each biological marker is marked in 
bold.

1 mm 3 mm 6 mm Present

IRF SRF IRF SRF IRF SRF IRF SRF

Occ. (%) 13.0 2.1 31.9 1.2 38.4 0.4 51.5 2.8

AUC​

Masking 92.6 91.7 89.6 81.6 92.7 66.7 96.5 96.2

PartConvs 93.2 94.1 90.2 89.8 91.7 74.9 94.2 89.7

Grad-CAM 85.2 87.3 89.2 76.0 89.4 64.6 96.5 96.2

MS-CAM12 55.7 70.4 57.5 64.1 55.0 56.0 56.0 53.7

Ours 90.6 97.5 92.7 93.8 94.1 95.1 97.2 97.7

AP

Masking 76.9 48.3 84.2 17.2 88.5 5.6 96.1 72.3

PartConvs 81.8 60.5 85.2 21.4 88.1 8.2 94.2 38.5

Grad-CAM 88.2 68.4 86.9 25.4 78.7 7.4 96.1 72.3

MS-CAM12 70.3 38.5 64.1 14.4 54.3 1.6 55.6 3.1

Ours 92.1 86.6 93.7 52.7 88.3 19.1 96.8 77.9
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Figure 5.   ROC and Precision-Recall curves for both markers and rings with our proposed method on the 
testing dataset (solid lines). Results are compared to Partial Convolutions (dashed lines) on the same dataset.

Figure 6.   Outputs of our method and baselines on four examples. In each OCT image, we show the slice 
number (bottom right) and in which ring the marker can be found (top row). We highlight incorrect detections 
in red.
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Our method achieved AUCs over 90% for both IRF and SRF, as shown in Table 3. The low mAP for SRF can be 
attributed to its very low occurrence rate.

En‑face projection
Before the post-processing step that converts columns to rings, our method produces a coarse 1D segmentation 
per B-Scan. The projection of this output and further concatenation of all the B-Scans that compose a C-Scan 
results in the en-face projection.

In Table 4, we compared the coarse en-face projections that our method produces to the 54 manually 
segmented volumes and computed the mean area of IRF and SRF. We used a resolution of 11.72 µm/px and 
120 µm/slice in the lateral and sagittal axes respectively. The row “Expert” refers to pixelwise segmentations, and 
“16 column Expert” has been calculated by converting the pixelwise segmentation into columns, with the same 
methodology as in the previous section. We believe “16 column Expert” version is a fairer comparison because 
it provides the same amount of information as our predictions. For IRF, we obtain a mean area of 5.73 mm2 , 
being 6.29 mm2 the ground truth with 16 columns. For SRF, this number is less representative since only 25 of 
the 54 volumes contain this type of fluid.

Figure 7 shows the comparison of the predicted area per volume (blue) and the area delimited by the expert 
(red). Both figures have been calculated using the column system. Figure 8 shows qualitative results of four of 
the volumes. Here, we compare the expert en-face projection with full segmentation (c) and after column con-
version (d) to our prediction (b).

To assess the clinical relevance of our method, understood as the agreement between our approach and an 
expert-based segmentation, we built Bland-Altman plots for SRF and IRF segmentations. In Fig. 9, we compared 
our prediction for the coarse en-face segmentation to the 16-column Expert in each volume. We see that four 
volumes fall outside one standard deviation for IRF, while only two in the case of SRF.

Table 3.   Results on the segmentation dataset.

IRF SRF

ROC AUC​ 91.1 93.7

mAP 81.2 64.8

Table 4.   En-face projection results.

IRF (mm2) SRF (mm2)

Expert 3.15± 2.97 0.21± 0.63

16 column expert 6.29± 4.93 0.35± 0.89

Predicted 5.73± 5.71 0.12± 0.30

MSE: predicted vs 16 column expert 3.89± 8.90 0.46± 2.11
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Figure 7.   Expert (red) and predicted (blue) area for IRF and SRF in each one of the 54 volumes. Blue (red) 
vertical lines refer to overestimations (underestimations) of our model with respect to the Expert segmentation. 
Volumes are sorted in decreasing order of SRF area discrepancy, and that sorting is kept for IRF.
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Figure 8.   En-face projection results for the specified markers. (a) B-Scan at the location in green. (b) Prediction 
with our method. Different colors represent the uncertainty of the model. Lighter means more certain. (c) 
Expert pixelwise segmentation. (d) Expert segmentation converted into columns. Figure best seen in color.
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Figure 10 shows correlation plots for both biomarkers. For IRF, the linear regression returns R2 = 0.895 and 
a slope close to identity (1.09). On the contrary, for SRF our method achieves R2 = 0.760 and a slope of 0.30.

Ablation results
We conduct an ablation study to quantify how the different loss terms in Equation 5 affect the method’s perfor-
mance. Table 5 shows the AUC ROC and AP of all predicted outputs as a function of what loss terms are included 
when training. The first and fourth rows, labeled with l1 , correspond to using the traditional Cross Entropy loss, 
which does not make use of any column constraint. l2 and l3 do impose these constraints as described in Method. 
On average, there is an improvement of 5.4% ROC AUC (18.0% AP) after the addition of column constraints, 
which is further increased to 7.6 and 19.1%, respectively, with horizontal symmetry.

Discussion
The proposed method achieved satisfactory results in all ETDRS rings and studied biological markers. Our 
method outperforms the compared baselines for every marker and ETDRS ring, confirming our hypothesis that 
feature maps can be used to coarsely identify marker locations.

We note, however, that, in terms of AP, the prediction performance for SRF in the 3 mm and 6 mm rings is 
significantly lower than other reported values for all methods. As discussed in the Results section, it is unlikely 
to find SRF in the outer rings, leading to a lower number of occurrences of this biological marker. This in turn 
strongly reduces the precision of the methods as soon as there are just a few false positive detections. The associ-
ated AUC ROC scores do not exhibit this behavior since they include false positive rates.

The segmentation results in Table 3 show that the proposed method is robust even before our post-processing 
mapping for coarse biomarker localization, meaning that the post-processing step is transparent to the perfor-
mance of the model.

The ablation studies in Table 5 suggest that not only is the architecture itself important ( l1 ) but so is enforcing 
coherence in the column outputs with the slice labels (i.e. l2 ). In the case of SRF at 3 mm and 6 mm, this provides 
a significant performance increase without reducing the performances of other outputs. For SRF, AP increases by 
41.2% at 3 mm and 43.4% at 6 mm, while close to no difference is seen for IRF, where the results with l1 already 
outperform some of the baselines. This boost at the outer rings is highly beneficial as the presence of biological 
markers in these rings (especially SRF) is highly scarce, therefore making it harder to train appropriately for. In 

0 5 10 15 20
16 Column Expert (mm2)

0

5

10

15

20
P
re
di
ct
ed

(m
m

2
)

IRF

Identity: x = y

Regression: 1.09x+−1.15
Measurements

0 1 2 3 4 5
16 Column Expert (mm2)

0

1

2

3

4

5

P
re
di
ct
ed

(m
m

2
)

SRF

Identity: x = y

Regression: 0.30x+ 0.02
Measurements

Figure 10.   Correlation plots for IRF and SRF.

Table 5.   Ablation study. We quantify the performance of our method when using using only the terms { ℓ1 }, 
{ ℓ1 , ℓ2 } or { ℓ1 , ℓ2 , ℓ3 } in our loss functions. Significant values are in bold.

1 mm 3 mm 6 mm Present

IRF SRF IRF SRF IRF SRF IRF SRF

AUC​

ℓ1 88.0 90.7 90.2 81.9 92.6 73.7 96.5 96.2

ℓ1, ℓ2 87.8 96.9 90.1 92.3 92.2 91.7 96.5 95.9

ℓ1, ℓ2, ℓ3 90.6 97.5 92.7 93.8 94.1 95.1 97.2 97.7

AP

ℓ1 91.5 71.4 91.7 29.4 85.8 13.8 96.1 72.3

ℓ1, ℓ2 90.9 84.8 91.7 41.5 86.5 24.4 96.3 77.1

ℓ1, ℓ2, ℓ3 92.1 86.6 93.7 52.7 88.3 19.1 96.8 77.9
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our testing dataset, acquired with a variety of eyes and patients, only 113 out of 28’322 B-Scans showed SRF in 
the 6 mm ring. Finally, including l3 brings modest but consistent gains when l1 and l2 are already used.

Compared to other methods, our model is more robust than the baselines, giving more reliable results even 
in hard situations where previous methods struggle. Grad-CAM is the go-to method in virtually all weakly 
supervised segmentation methods for OCT, which rely on a CAM-based approach with various architectures. 
In this line, MS-CAM12 proposes an architecture that leverages the activations of the different feature resolutions 
of the backbone and then combines them with Grad-CAM++. Segmentations are then refined using CRF on 
the en-face projection image. For a fair comparison with our method, which does not use C-Scan information, 
we implemented only the first stage. The results (Table 2 show a performance worse than other baselines, with 
a strong difference in more difficult scenarios. For SRF at the 6 mm ring, MS-CAM achieves 1.6 AP, compared 
to 19.1 with our method. We believe that CRF refinement plays a major role in MS-CAM by reducing the over-
segmentation produced by the first stage. Over-segmentation leads to false positive predictions in our set-up, 
which reduces Average Precision.

Szeskin et al.19 use vertical pixel-wide columns in OCT slices to classify atrophic regions. Each B-Scan is par-
titioned into columns and fed with contiguous slices into a convolutional neural network, which outputs a binary 
label. The results are projected onto the infrared imaging image and are used to identify and segment atrophy 
lesions. Although this work looks similar to ours, it differs in the training scheme: while we only use slice-level 
annotations, allowing us for independent coarse segmentation per slice; the method proposed by Szeskin et al.19 
uses per volume labeling in the form of IR image segmentation. Schlegl et al.10 focuses on voxel-wise segmenta-
tion and, while their output could be used for location as well, the method differs in intent and uses voxel-wise 
ground truth labels to train. Because our method uses only 2D slices and much weaker annotations, we believe 
it is not a comparable baseline.

Finally, the analysis of the en-face projection and segmentation results in Table 3, as well as Figs. 9 and 10, 
shows two aspects: (1) The outperformance of our model over the baselines does not depend on the post-process-
ing step and (2) although both the training and inference act per B-Scan, the method is reliable and consistent 
when applied to all the slices in a volume. The Bland–Altman plot in Fig. 8, along with the correlation plot in 
Fig. 10, show that our area predictions per volume strongly agree with the Expert segmentation in the case of 
IRF. For SRF, this task remains challenging, and our method tends to underestimate the en-face area, as proved 
by the slope of 0.30 in the linear regression and the corresponding Bland-Altman plot. However, the end goal of 
our method is not to have an accurate segmentation of the en-face, but it comes as a byproduct.

We demonstrated that slice-level labels are sufficient to locate biological markers in ETDRS rings for OCT 
scans if weak constraints are enforced on the loss function. Furthermore, we confirmed that it is possible to 
modify the pooling strategy of a standard convolutional network to perform coarse localization without annota-
tions. The method has proven to be more reliable than other baselines, even in hard situations where the number 
of training samples is scarce, as shown in Table 2. The ablation experiments in Table 5 demonstrate that the new 
terms in the loss function, especially l2 , are key to the performance of the model, producing consistent gains in 
all scenarios. Moreover, even if our method has only been presented with individual B-Scans during training, 
with no sense of complete volumes, it is capable of outputting volume-wise consistent predictions, as depicted in 
the segmentation and en-face projection results (Table 3 and Table 4 respectively). Lastly, there is no constraint 
in the loss function with regard to the markers that can be located. Therefore, the described approach could 
potentially be used to locate any biological marker as long as class labels are available.

Our approach has some limitations. Most notably, the granularity of the output before post-processing is 
constrained by the resolution of the feature maps. A more granular output would most likely improve the preci-
sion of the method. However, achieving such high-resolution feature maps collides with the main intention of 
classification neural networks, which are conceived to reduce the dimensionality of the inputs before the final 
linear layer. Another limitation comes from the variety of biological markers that have been tested. Due to labe-
ling capacity and present pathologies in the data, only IRF and SRF were tested. Although the proposed method 
is agnostic to this aspect and potentially should behave equally with a larger cohort of markers, a more detailed 
study is required to confirm it.

Conclusion
We have presented a method to locate markers in ETDRS rings for OCT scans by relying solely on slice-level 
annotations. By enforcing weak constraints on the loss function and modifying the pooling strategy of a stand-
ard convolutional network, we show that our method can learn to localize coarsely without annotations. To our 
knowledge, no other work has done so in the context of retinal imaging, and we have demonstrated that our 
approach achieves significant performance improvements over straightforward and state-of-the-art baselines. 
Further research will be focused on extending this to obtain per-pixel segmentation.

Data availability
The datasets generated during and/or analyzed during the current study are not publicly available as they are 
part of ongoing studies but are available subject to terms and conditions from the corresponding author on 
reasonable request.
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