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ABSTRACT: Background: Increasing evidence points
to a pathophysiological role for the cerebellum in
Parkinson’s disease (PD). However, regional cerebellar
changes associated with motor and non-motor function-
ing remain to be elucidated.
Objective: To quantify cross-sectional regional cere-
bellar lobule volumes using three dimensional
T1-weighted anatomical brain magnetic resonance
imaging from the global ENIGMA-PD working group.
Methods: Cerebellar parcellation was performed using a
deep learning-based approach from 2487 people with
PD and 1212 age and sex-matched controls across
22 sites. Linear mixed effects models compared total
and regional cerebellar volume in people with PD at each
Hoehn and Yahr (HY) disease stage, to an age- and sex-
matched control group. Associations with motor symp-
tom severity and Montreal Cognitive Assessment scores
were investigated.
Results: Overall, people with PD had a regionally smaller
posterior lobe (dmax = �0.15). HY stage-specific

analyses revealed a larger anterior lobule V bilaterally
(dmax = 0.28) in people with PD in HY stage 1 compared
to controls. In contrast, smaller bilateral lobule VII volume
in the posterior lobe was observed in HY stages 3, 4,
and 5 (dmax = �0.76), which was incrementally lower with
higher disease stage. Within PD, cognitively impaired
individuals had lower total cerebellar volume compared
to cognitively normal individuals (d = �0.17).
Conclusions: We provide evidence of a dissociation
between anterior “motor” lobe and posterior “non-motor”
lobe cerebellar regions in PD. Whereas less severe
stages of the disease are associated with larger motor
lobe regions, more severe stages of the disease are mar-
ked by smaller non-motor regions. © 2023 The Authors.
Movement Disorders published by Wiley Periodicals LLC
on behalf of International Parkinson and Movement Dis-
order Society.

Key Words: cerebellum; disease staging; MRI;
Parkinson’s disease

Introduction

Anatomical abnormalities at the cerebral cortical and
subcortical level are diffuse in Parkinson’s disease (PD),
and have been reported across all symptomatic disease
stages, in line with the progressive nature of PD.1

Although the cerebellum is recognized for its cardinal
role in motor functioning as well as various non-motor
domains,2–9 relatively little research has been dedicated
to characterizing the morphology of the cerebel-
lum in PD.
Anatomically, the cerebellum consists of two hemi-

spheres separated by the vermis, and is divided along its
superior to inferior axis into three lobes: anterior, poste-
rior, and flocculonodular. The lobes are further sub-
divided into 10 lobules, denoted by Roman numerals I–
X.10,11 The anterior lobe, comprising lobules I–V, is
largely associated with motor processes;12,13 the posterior
lobe, comprising lobules VI–IX, can be further divided
into superior (lobules VI, Crus I and II [ie, VIIA], and

VIIB) and inferior (lobules VIIIA and VIIIB) divisions that
represent non-motor and motor functional divisions,
respectively.14,15 Last, the flocculonodular lobe, compris-
ing lobule X, is implicated in the governing of eye move-
ments and body equilibrium during stance and gait.11

Perhaps surprisingly, a voxel-based morphometry
meta-analysis from 2017 revealed no differences in cer-
ebellar structure in people with PD compared to con-
trols. This was possibly explained by heterogeneous
clinical characteristics of the PD samples examined.16

Furthermore, there is evidence to suggest that hypertro-
phy of subcortical regions may occur in mild stages of
PD, which would further nuance meta-analysis find-
ings.1 Other case–control findings suggest the involve-
ment of the vermis, Crus I, and lobule VI in PD,17,18

partly supported by a longitudinal analysis demonstrat-
ing subregional cerebellar atrophy in lobules I–IV, VI,
Crus I, Crus II, VIIB, VIIIA, VIIIB, and the vermis.19

Some studies have shown associations between cerebel-
lar atrophy and motor symptoms, cognitive
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dysfunction, and disease severity.16,20–22 In a recent
study, higher volume of lobule IV was associated with
a higher intensity of resting tremor and total tremor
severity in people with PD.23 Although there is some
evidence to suggest cerebellar involvement is restricted
to tremor-predominant patients,18 findings have been
inconsistent.16 More spatially precise examinations of
regional cerebellar volume in larger, more diverse sam-
ples are required to understand the PD-related changes
in cerebellar structure associated with disease staging
and its association with motor severity and cognitive
functioning.
The development of new machine learning based

approaches for optimized and automated feature-based
parcellation of the cerebellum allows for more spatially
precise, finer-grained mapping of cerebellar anatomy.24

One such approach, called automatic cerebellum ana-
tomical parcellation using u-net with locally con-
strained optimization (ACAPULCO), uses a deep
learning algorithm to automatically parcellate the cere-
bellum into 28 anatomical subunits.25 ACAPULCO
performs on par with leading approaches for auto-
matic cerebellar parcellation including CERES2, has
broad applicability to both healthy and atrophied
cerebellums, and is more time-efficient than other
approaches.25

Here, we applied the standardized ENIGMA cere-
bellum parcellation protocol (https://enigma.ini.usc.
edu/protocols/imaging-protocols/), which uses ACA-
PULCO to quantify cerebellar lobule volumes from
2847 adults with PD and 1212 controls from the
global ENIGMA-PD working group.26 We ran multi-
site mega-analyses to infer regional cerebellar volu-
metric differences people with PD compared to
controls, comparing Hoehn and Yahr (HY) stages
1, 2, 3, and 4–5 with age- and sex-matched control
groups. Relationships between total and regional cere-
bellar volume and (1) time since diagnosis, and
(2) motor symptom severity were assessed. Finally,
exploratory analyses were conducted to assess cere-
bellar volume differences between PD with and with-
out cognitive impairment.

Methods
Sample Characteristics

Twenty-two sites were included in this cross-sectional
study, totaling 2487 adults with PD and 1212 controls
(Tables 1 and 2). Clinical information from the PD sub-
jects included HY stage, time since diagnosis, age of
onset of PD, scores from the Movement Disorder Soci-
ety (MDS) sponsored revision of the Unified
Parkinson’s Disease Rating Scale part 3 (UPDRS3)
obtained in the ON or OFF state,27 medication status
(currently on or off medication) and Montreal

Cognitive Assessment (MoCA) score (Table 2).28

Individual-site inclusion and exclusion criteria are pro-
vided in Supplementary Table S1. Some sites contrib-
uted multiple cohorts from separate testing
environments including different magnetic resonance
imaging (MRI) scanning acquisitions, yielding a total of
30 samples, henceforth referred to as “cohorts” (see
“Image Processing and Analysis” section below). Dis-
ease severity was assessed using HY stages ranging
from 1 to 5, from HY1, “unilateral involvement only
usually with minimal or no functional disability,” to
HY5, “confinement to bed or wheelchair unless aided.”
The modified HY scale,29 which includes intermediate
increments of 1.5 and 2.5 to complement stage 2 was
used in 13 cohorts. We regrouped the cases so that
HY1.5 (n = 79) and HY2.5 (n = 208) individuals were
included in the HY2 group. The HY4 (n = 67) and
HY5 (n = 19) groups were merged into HY4–5, given
their smaller samples. To address the issue of some peo-
ple with PD being assessed with the original UPDRS
and some being assessed with the MDS-UPDRS, we
used a validated formula to convert original UPDRS3
scores to predicted MDS-UPDRS3 scores.30

Image Processing and Analysis: ACAPULCO
Whole-brain, T1-weighted three-dimensional volu-

metric magnetic resonance images were collected from
each participant. Scanner descriptions and acquisition
protocols for all sites are reported in Supplementary
Table S2. We treated each individual scanner and/or
data acquisition protocol used in the collection of MRI
scans as a separate cohort during statistical analysis
(see below). Each image was processed in accordance
with the ENIGMA cerebellum parcellation protocol,
as fully described elsewhere (https://enigma.ini.usc.
edu/protocols/imaging-protocols/).26 In brief, the cer-
ebellum was parcellated into 28 subregions (left and
right lobules I–III, IV, V, VI, Crus I, Crus II, VIIB,
VIIIA, VIIIB, IX, and X; bilateral vermis VI, VII, VIII,
IX, and X, and bilateral corpus medullare (central
white matter) using ACAPULCO (version 0.2.1;
https://gitlab.com/shuohan/acapulco).25 As part of
the pipeline, a measure of intracranial volume (ICV)
is calculated for each participant using Freesurfer. At
the individual-level, parcellated cerebellar masks were
quality checked for segmentation errors (ie, over or
under inclusion of individual lobules) by visual
inspection of the cerebellar mask overlaid on the
respective participants T1 image. This was followed
by quantitative identification of outlier volumes that
were greater or less than 2.698 standard deviations
from the group mean. Outlier volumes (treated as not
available) were subsequently excluded from group-
level statistical analyses.
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Statistical Analysis
All statistical analyses of cerebellar volume were car-

ried out using R version 4.1.0.31 We fit linear mixed
effects regression models (LMM) using lme4 and
lmerTest packages in R, with diagnosis (ie, control or
PD), age, sex, and ICV as fixed factors and cohort as a
random intercept. The main analysis investigated differ-
ences in total cerebellar volume (sum of all 28 cerebellar
regions of interest [ROI]) and each cerebellar lobule
individually, in all people with PD versus controls,
using model 1:

Volume�DiagnosisþAgeþSexþ ICVþ1 j cohort:
ð1Þ

ICV was included to control for between-subject dif-
ferences in head size, which explains a substantial pro-
portion of inter-individual variability (of non-interest)
in brain volumetric assessments. In addition to model-
ling cohort as a random intercept in our linear mixed
models, we also ran COMBAT on our raw dataset to
correct for site-related heterogeneity. Results and com-
parisons of the results from the linear mixed models for
COMBAT-corrected data and model 1 are reported in
the Supporting Data. For HY stage-specific analyses,
we selected a subsample of controls matched on age
and sex to each HY stage. To do this, we used the
nearest neighbor-matching procedure implemented in
the MatchIt package for R,32 to select an age- and sex-
matched subsample of controls for each HY group
based on a propensity score estimated with logistic
regression (MatchIt “glm” distance measure, ratio 2, cal-
iper 0.15). Using this approach ensured that HY stages
could be qualitatively compared. Matched subsamples
were assessed using a two-sample Kolmogorov–
Smirnov test for age and the χ2 test for sex. Model
1 was repeated for each of the HY stage-specific ana-
lyses. For all analyses, results were false discovery rate
(FDR) (P < 0.05) corrected for multiple comparisons.
Cohen’s d effect sizes with 95% confidence intervals
were calculated for each of the ROIs, based on the esti-
mated marginal means and Satterthwaite’s approxima-
tion for degrees of freedom.33 Negative effect size
values correspond to people with PD having lower
values relative to controls.
We used linear mixed effects models to test for asso-

ciations between each ROI volume (and total cerebellar
volume) and (1) motor symptom severity (MDS-
UPDRS3 total score) and (2) time since diagnosis. For
these models, age, sex, and ICV were modeled as fixed
factors, and cohort as a random factor. For assessment
with motor symptom severity, our primary analysis
focused on MDS-UPDRS3 scores that were measured
during the person’s “OFF” state. If both ON and OFF
state scores were available for each individual with PD
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(n = 1 cohort), the OFF state score was selected and
used as a fixed factor in the model. Here, “OFF” state is
when the research team determines the participant
is not receiving benefit from dopaminergic treatment,
such as after a scheduled stop in therapy before the
research session.27 For these analyses, partial η2 is
reported as a measure of effect size. Finally, to assess
the relationship between cerebellar volume and cogni-
tive ability within the entire sample, we first fit a linear
mixed model with MoCA score, age, sex, MDS-
UPDRS3 score, and ICV modeled as fixed factors, and
cohort as a random factor. MDS-UPDRS3 score was
included in the model because we wanted to test for the
association between cerebellar volume and cognition
independent of disease progression. Next, we stratified
the PD group based on their MoCA scores, into cogni-
tively impaired (MoCA score <26) and cognitively nor-
mal (MoCA score ≥26) groups and fit the above linear
model to test for differences in regional and total cere-
bellar volume.34

Results
Complete Sample

Demographics

A two sample t test showed that, on average, the peo-
ple with PD were significantly older than the controls
(mean age for people with PD, 63.2; SD, 9.7; mean age
controls, 59.9; SD, 11.8; [t3697 = �8.9], P < 0.001]).
There were significantly more males in the PD group
(62%) compared to controls (52%), χ2(1, n = 3698)
= 37.6, P < 0.001.

Total and Regional Cerebellum Volume

There were no significant between-group differences
in total (gray and white) cerebellar volume in people
with PD versus controls (P > 0.05 FDR). ROI analyses,

however, revealed significantly lower gray matter vol-
ume in people with PD in three cerebellar lobules with
small effect sizes (dmin = �0.11, dmax = �0.15, all
P < 0.05 FDR) (Figure 1). Effects were localized to the
superior posterior lobe, specifically left and right VIIB
and right Crus II. There were no significant between-
group differences for the remaining cerebellar lobules
(Supplementary Table S3). An additional sensitivity
analysis with an age and sex-matched subsample of
1195 people with PD (49% female; mean age, 60.2;
SD, 9.8) and 1195 controls (51% female; mean
age, 61.0; SD, 10.5) revealed lower volume of left and
right VIIB and right Crus II in PD, with similar effect
sizes (see Supplementary Table S4).

Associations with Time since Diagnosis, Motor
Symptom Severity, and MoCA Scores

A total of 2297 people with PD had time since diag-
nosis scores available for analysis and 1189 had MDS-
UPDRS3 scores obtained in the OFF state. There was
no significant association between time since diagnosis
and total or regional cerebellar volume, in PD partici-
pants (all PFDR > 0.05). There were no significant asso-
ciations between overall motor symptom severity and
total or regional cerebellar volume. A trend negative
relationship between motor symptom severity and total
cerebellar volume was observed (PFDR = 0.06). Given
the known role of the cerebellar motor lobe (particu-
larly lobules IV and V) in resting tremor in PD,23,35 we
examined associations between left and right lobule V
volume and total left and right tremor MDS-UPDRS3
subscale scores. In addition, associations with rigidity
and bradykinesia subscale scores were assessed. Meth-
odological details can be found in the Supporting Data.
Results showed a significant negative correlation
between right limb tremor and right cerebellar lobule V
volume in the full sample (P = 0.02). In HY1

TABLE 2 Demographic and clinical characteristics of the HY samples

HY stage n
Age,

years (SD)
Sex, %
female

Age at
onset (SD)

Time since
Diagnosis, y

MoCA
score (SD) MDS-UPDRS3 (SD)

HY1 354 58.7 (9.1) 43 56.2 (10.2) 2.5 (2.8) 27.2 (2.5) OFF state: 16.1 (8.7)
ON state: 16.0 (7.3)

HY2 1252 63.2 (9.1) 37 58.8 (10.0) 4.5 (4.5) 26.3 (3.0) OFF state: 29.9 (11.6)
ON state: 30.0 (14.6)

HY3 291 65.8 (9.7) 43 57.2 (12.3) 8.6 (6.4) 23.9 (4.0) OFF state: 39.0 (13.9)
ON state: 40.3 (16.0)

HY4–5 86 67.0 (10.1) 45 54.0 (11.8) 13.0 (6.2) 20.1 (5.0) OFF state: 56.3 (12.8)
ON state: 55.4 (18.8)

Note: HY stage information not available for all people with Parkinson’s disease.
Abbreviation, HY, Hoehn and Yahr; MDS-UPDRS3, Movement Disorder Society sponsored revision of the Unified Parkinson’s Disease Rating Scale part 3; MoCA, Montreal
Cognitive Assessment; SD, standard deviation.
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(n = 148), there was a significant positive correlation
between left limb rigidity (P = 0.02) and right limb
rigidity (P = 0.03) and right lobule V volume.
In the total PD sample, 1252 individuals had MoCA

and MDS-UPDRS3 scores available for analysis. There
was a significant positive association between total cer-
ebellar volume and MoCA score, independent of time
since diagnosis in people with PD (PFDR = 0.002). Com-
pared to cognitively normal people with PD (n = 846),
cognitively impaired people with PD (n = 473) showed
significantly lower total cerebellar volume (d = �0.17,
95% [�0.02, �0.30]; P = 0.01). Post hoc analyses
showed that this finding remained significant after
adjusting for motor symptom severity and time since
diagnosis.

HY Stage Analyses
The matching procedure selected 689 controls to

match the 345 HY1 participants, 1018 controls
to match the 1018 HY2 participants, 557 controls to
match the 281 HY3 participants, and 164 controls
to match the 82 HY4–5 participants. The included con-
trols partially overlapped across stage analyses. Two
1-way ANOVAs across the four HY stage groups rev-
ealed significantly longer time since diagnosis and lower
MoCA scores with increasing HY stages (Table 2).

HY1 versus Controls

Compared to controls, HY1 participants did not
show significant differences in total cerebellar volume
(PFDR > 0.05). ROI analyses, however, revealed HY1
participants showed a higher volume of left and right
lobule V in the anterior lobe (d = 0.23, 95% [0.10,
0.35] and d = 0.28, 95% [0.13, 0.42], respectively; all
PFDR < 0.05) (Figure 2; Supplementary Table S5).

HY2 versus Controls

HY2 participants did not show significant differences
in total cerebellar volume or regional cerebellar volume,
compared to controls (P > 0.05 FDR) (Supplementary
Table S6).

HY3 versus Controls

Compared to controls, HY3 participants showed sig-
nificantly lower total cerebellar volume (d = �0.15,
95% [�0.02, �0.31]). ROI analyses revealed lower
gray matter volume of superior posterior lobe regions
left and right lobule VIIB (d = �0.31, 95% [�0.12,
�0.50] and d = �0.35, 95% [�0.15, �0.53]) and right
Crus II (d = �0.25, 95% [�0.09, �0.42]); all
PFDR < 0.05 (Supplementary Table S7).

HY4–5 versus Controls

HY4–5 participants showed significantly reduced
total cerebellar volume compared to controls
(d = �0.42, 95% [�0.09, �0.76]). As in HY3, HY4–5
participants also showed a significantly lower volume
of left and right lobule VIIB compared to controls, but
of a larger magnitude (left d = �0.76, 95% [�0.44,
�1.1] and right d = �0.76, 95% [�0.42, �1.1]); all
PFDR < 0.05. In addition, there was a significantly
lower volume of the inferior posterior lobule left VIIIB
(d = �0.45, 95% [�0.13, �0.78]) (Figure 3; Supple-
mentary Table S8).

Post Hoc Analyses
HY Side-by-Side Comparison

Additional analyses comparing HY stages side-
by-side showed significantly larger bilateral left and
right lobule V in the HY1 group versus HY4–5 group

FIG. 1. Atlas-based effect size (Cohen’s d) map, Montreal Neurological Institute (MNI)-based coronal slices (top: y = �72; bottom: y = �54) and forest
plots (Cohen’s d +/� 95% confidence interval) of the significant between-group differences for all people with Parkinson’s disease (PD) versus con-
trols. Negative effect sizes reflect people with PD < controls. Regions significant at PFDR corrected < 0.05 are depicted in red. [Color figure can be viewed
at wileyonlinelibrary.com]
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(PFDR < 0.05) (see Supplementary Figure S1). The left V
lobule in HY1 was also significantly larger than in
HY2 and HY3 groups (PFDR < 0.05). Lobule VIIB was
significantly smaller in the HY4–5 group bilaterally
compared to HY1 and HY2 groups (all PFDR < 0.05).
The right VIIB lobule was also significantly smaller in
the HY3 group compared to the HY1 group
(PFDR < 0.05).

Discussion

In the largest, most comprehensive assessment of
regional cerebellar volume in PD to date, we show evi-
dence of regionally specific alterations in anterior and
posterior cerebellar lobe volume in PD associated with
different clinical stages of the disease. Whereas less
severe disease stages (HY1) were associated with larger
anterior “motor” lobe regions, more severe disease
stages (HY3, HY4–5) were associated with lower vol-
umes principally weighted to posterior “non-motor”
lobes of the cerebellum. Lobule VIIB showed a non-
linear pattern of lower volume with each HY-increment
bilaterally, with the most significant group differences
in HY4–5 compared to controls. Total cerebellar vol-
ume was significantly lower in PD participants with
cognitive impairment compared to cognitively normal
PD, independent of motor symptom severity.
The spatial non-uniformity of cerebellar volume dif-

ferences associated with disease staging suggests a
targeted involvement of motor cerebellar pathways dur-
ing the earlier course of the disease and non-motor cer-
ebellar pathways in the later stages of the disease. Our
finding of larger bilateral lobule V in HY1 is partially
supported by previous work demonstrating higher ante-
rior lobe volume in PD.23 Although we found no signif-
icant relationship between MDS-UPDRS3 total score
and lobule volume, we showed in a subset of the PD
sample that alterations of anterior lobe volume in peo-
ple with PD map onto specific motor symptoms of the
disease. Specifically, greater total right limb tremor was
associated with smaller right anterior lobule V volume,
although this finding was not significant in the (much
smaller) HY1 group. Our observations sit apart from
previous structural and functional MRI studies that
report a positive correlation between cerebellum ante-
rior lobe volume and severity of total tremor,23 as well
as tremor-related activity and severity of rest tremor in
PD.36 Moreover, our findings are in line with a previ-
ous study showing a negative correlation between the
cerebellum lobe VIIB and tremor severity in PD.37

These contradicting observations are possibly explained
by interindividual differences in the pathophysiology of
tremor that determine the level of cerebellar influence.38

The suggested opposite relationship between cerebellar
volume and tremor versus rigidity may relate to the

known inverse relationship between rigidity and tremor
symptoms in people with PD.39 Collectively, our find-
ings suggest that anterior lobe morphology is related to
two core motor symptoms and supports the clinical rel-
evance of these findings.
Higher anterior (motor) lobe volume in people with

PD early in the disease course may be reflective of pre-
morbidly larger anterior lobes, that retains their abnor-
mal size in the early disease stage. It has been shown
that genetic vulnerability to PD is associated with
increased cortical surface area40 and higher ICV41 and
that people with PD, on average, have higher ICV com-
pared to controls.1 These findings are suggestive of a
neurodevelopmental component (ie, brain overgrowth)
underlying PD, which may explain selectively larger
regions such as the cerebellum and thalamus. It is also
possible that enlarged anterior lobes in PD are a conse-
quence of hypermetabolic activity in response to dys-
regulated subcortical circuits of the basal ganglia.42,43

The anterior lobe of the cerebellum is preferentially
connected to motor-related regions of the cerebral cor-
tex, including the premotor and motor cortex, through
feedforward (corticopontine projections) and feedback
(cerebello-thalamo-cortical) closed loops. Until recently,
the motor loops of the cerebellum and basal ganglia
were thought to be anatomically separate and to per-
form distinct motor functions.44 However, anatomical
tracing studies in rats and monkeys have shown evi-
dence for two disynaptic projections from the cerebel-
lum to the striatum via the thalamus, and from the
subthalamic nucleus (STN) to the cerebellum via the
pontine nucleus, implying two-way communication
between the cerebellum and basal ganglia.45,46 Tempo-
rary hypertrophy (eg, synaptogenesis) of the anterior
lobe of the cerebellum could be driven by afferent and
efferent cerebellar projections; first, abnormally high
STN activity is thought to play a major role in the
expression of motor features and leads to abnormal
excitement of the cerebellar cortex.47 Second, PD
tremor specifically has been linked to basal ganglia-
mediated hyperactivation of the cerebellothalamic
pathway,36,48 and may be contingent on higher tha-
lamic volume in early PD.1 Critically, our findings sug-
gest that higher anterior lobe volume in PD is not
sustained over time and diminishes with progression of
the disease.
In contrast to the anterior lobe, posterior lobe volume

was significantly lower in the PD group relative to con-
trols and showed incremental decreases with more
severe disease staging. Lobule VIIB, which showed the
largest differences across stages, is a “non-motor”
region of the cerebellar cortex and is preferentially con-
nected to prefrontal and posterior parietal regions of
the cerebral cortex.13,49 Functional mapping studies
ascribe this region to language and attentional pro-
cesses.9,14 Functionally, this region is also part of the
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frontoparietal resting state network, which is selectively
vulnerable to neurodegeneration and has been impli-
cated in PD with and without associated cognitive
decline.50 Our findings align with an ongoing
neurodegenerative process in the posterior lobe; each
HY increment replicates the pattern of lower volume in
bilateral VIIB from the previous stage, denoted by
larger group differences and further substantiated by
statistically significant differences between disease
stages. Notably, our findings were associated with the
clinical state (disease stage), but not with time since
diagnosis (disease duration). It remains unclear whether
this cerebellar degeneration results from primary
disease-related pathology or, if it is a secondary conse-
quence of cortical and basal ganglia degeneration and
associated progressive loss of functional capacity.
The association between worse cognitive performance

and smaller cerebellar volume supports a growing body
of empirical evidence for an instrumental role of the
cerebellum in cognitive (non-motor) functioning in
PD.16,51 Notably, this relation was not specific to any
lobule, indicating a general relationship with cerebellar
degeneration as the disease advances. Indeed, each
increment of the HY stages was characterized by worse
cognitive performance, motor performance, and longer

time since diagnosis. Future studies of functional con-
nectivity changes of cerebellar lobules with the cerebral
cortex across disease stages in PD and their associations
with particular domains of cognition may yield insight
into the functional reorganization of the cerebellum
that occurs with disease progression and associated
cognitive decline.
We found no associations with time since diagnosis,

which seems counterintuitive in view of the progressive
nature of PD. Of note, is that the time between disease
onset, symptom presentation, and clinical diagnosis
may differ substantially across individuals with PD,
depending on sex and type of symptoms.52,53 Time
since diagnosis may not, therefore, be a fully represen-
tative estimate of disease duration and severity. A
recent meta-analysis of functional imaging studies in
PD similarly found no significant relationship with time
since diagnosis.51

Some limitations deserve attention. First, using cross-
sectional data limits the strength of inferences we can
make on disease progression and precludes our ability
to track diagnostic accuracy over time. Although we
cannot rule out the possibility that a small number of
individuals with atypical forms of parkinsonism were
included in our patient group, our large sample

FIG. 2. (Left) Atlas-based effect size (Cohen’s d) map and MNI-based coronal slices (top: y = �62; bottom: y = �48) of the significant between-group
differences for Hoehn and Yahr (HY)1 participants versus controls. Regions significant at PFDR corrected < 0.05 are depicted in blue. (Right) Effect sizes
for left (top) and right (bottom) lobule V cerebellar volume associated with each disease stage. Negative values reflect lower volume in the Parkinson’s
disease group compared to controls. Bars represent 95% confidence intervals. [Color figure can be viewed at wileyonlinelibrary.com]
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provides high confidence that the findings are represen-
tative of the PD population. Moreover, we show dis-
ease patterns that agree with expected ongoing
degeneration and that largely replicate our previous
findings.1 Second, not all clinical measures were avail-
able for all cohorts, resulting in smaller samples for
these analyses. Non-uniformity in the definition of OFF
state for the MDS-UPDRS3 across sites confounds the
interpretability of the results. Similarly, variability in
the medication washout period between sites and across
individuals may have influenced disease severity mea-
sures. The retrospective study design limits our ability
to deeply investigate relationships between specific
symptom domains and cerebellar structure, and control
for the possible confounding of comorbidities (eg, alco-
hol abuse, nutritional deficiencies, and cerebrovascular
disease). Third, whether the findings are PD-specific or
overlap with related neurodegenerative diseases (eg,
multiple system atrophy, progressive supranuclear
palsy, and dementia with Lewy bodies) remains to be
investigated.
In conclusion, we provide evidence of cerebellar

structural alterations in PD, characterized by a dissocia-
tion between anterior and posterior cerebellar lobe

involvement that is associated with disease staging. Our
results suggest that the changes in cerebellar volume are
temporally ordered, with larger anterior “motor” lobe
regions earlier in the course of the disease, and smaller
posterior “non-motor” lobes in later stages. This study
underscores the importance of incorporating the cere-
bellum into neurobiological models of PD.
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associated with each disease stage. Negative values reflect lower volume in participants compared to controls. Bars represent 95% confidence inter-
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