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Long-term pulmonary outcome of children 
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Abstract 

Objectives In patients with congenital diaphragmatic hernia (CDH) the exact functional outcome of the affected 
lung side is still unknown, mainly due to the lack of spatially resolved diagnostic tools. Functional matrix-pencil 
decomposition (MP-) lung MRI fills this gap as it measures side-specific ventilation and perfusion. We aimed to assess 
the overall and side-specific pulmonary long-term outcomes of patients with CDH using lung function tests 
and MP-MRI.

Methods Thirteen school-aged children with CDH (seven with small and six with large defect-sized CDH, defined 
as > 50% of the chest wall circumference being devoid of diaphragm tissue) and thirteen healthy matched controls 
underwent spirometry, multiple-breath washout, and MP-MRI. The main outcomes were forced expiratory volume 
in 1 second  (FEV1), lung clearance index  (LCI2.5), ventilation defect percentage (VDP), and perfusion defect percentage 
(QDP).

Results Patients with a large CDH showed significantly reduced overall lung function compared to healthy controls 
(mean difference [95%-CIadjusted]:  FEV1 (z-score) −4.26 [−5.61, −2.92], FVC (z-score) −3.97 [−5.68, −2.26],  LCI2.5 (TO) 1.12 
[0.47, 1.76], VDP (%) 8.59 [3.58, 13.60], QDP (%) 17.22 [13.16, 21.27]) and to patients with a small CDH. Side-specific 
examination by MP-MRI revealed particularly reduced ipsilateral ventilation and perfusion in patients with a large CDH 
(mean difference to contralateral side [95%-CIadjusted]: VDP (%) 14.80 [10.50, 19.00], QDP (%) 23.50 [1.75, 45.20]).

Conclusions Data indicate impaired overall lung function with particular limitation of the ipsilateral side in patients 
with a large CDH. MP-MRI is a promising tool to provide valuable side-specific functional information in the follow-up 
of patients with CDH.
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Clinical relevance statement In patients with congenital diaphragmatic hernia, easily applicable MP-MRI allows 
specific examination of the lung side affected by the hernia and provides valuable information on ventilation and per-
fusion with implications for clinical practice, making it a promising tool for routine follow-up.

Key Points 

• Functional matrix pencil decomposition (MP) MRI data from a small sample indicate reduced ipsilateral pulmonary ventilation 
and perfusion in children with large congenital diaphragmatic hernia (CDH).

• Easily applicable pencil decomposition MRI provides valuable side-specific diagnostic information on lung ventilation and 
perfusion. This is a clear advantage over conventional lung function tests, helping to comprehensively follow up patients 
with congenital diaphragmatic hernia and monitor therapy effects.

Keywords Congenital diaphragmatic hernias, Children, Pulmonary function test, Lung, Functional magnetic 
resonance imaging

Introduction
Advanced therapeutic opportunities and standardized 
treatment protocols in the acute care of patients with 
congenital diaphragmatic hernia (CDH) have remarkably 
increased overall survival rate [1, 2]. Accordingly, a major 
current challenge is to monitor and prevent chronic 
lung disease [3] in these patients. Long-term follow-up 
is especially recommended [4] in severe cases such as in 
patients with a large initial defect size demanding a patch 
repair [5–7], requirement of extracorporeal membrane 
oxygenation (ECMO) after birth, or need of respiratory 
support for more than 30 days [6, 8–10]. In addition, a 
standardised classification scheme for the classification 
of the initial diaphragmatic defect based on its size has 
been established: (A) defect entirely surrounded by mus-
cle, (B) < 50% or (C) > 50% of the chest wall circumfer-
ence is devoid of diaphragm tissue, (D) complete or near 
complete absence of the diaphragm [11].

To date, lung function follow-up of patients with CDH 
is done by lung function tests such as spirometry and 
body plethysmography, providing outcomes of the entire 
lung. However, as these are breathing tests, information 
on the side differentiation and the functionality of the 
peripheral lung tissue is lacking. Long-term studies in 
patients with CDH using lung function tests or assessing 
pulmonary symptoms and physical performance capacity 
have so far shown controversial results [3, 12–17].

Functional imaging of the lung allows for assessing the 
structure and function of the regional tissue and there-
fore to examine the lung side affected by the hernia sepa-
rately. Several studies using different approaches such 
as ventilation (V) perfusion (Q) scintigraphy [18–21], 
hyperpolarized 3He-MRI [22], and dynamic contrast-
enhanced (DCE) MRI [23–26] showed in accordance 
with morphological studies [27] a persistent reduction 
of perfusion and less subdivided, enlarged alveoli in the 
lung ipsilateral of the CDH. The disadvantage of all the 
above-mentioned techniques is the need for specialized 

set-ups including hyperpolarization equipment/infra-
structure and/or contrast agent.

Unlike these techniques, non-contrast dynamic MRI 
approaches allow for the assessment of regional venti-
lation and perfusion through advanced computational 
analysis of imaging data and without patient exposure 
to any ionizing radiation, the need for contrast agents, 
or specific breathing manoeuvers [28–31]. The easy 
set-up of standard clinical MRI scanners and high 
feasibility even in young children [32, 33] make these 
techniques very attractive for use in pediatrics in vari-
ous diseases [34–37]. To the best of our knowledge, 
none of them has yet been used in a study of patients 
with CDH. Matrix-pencil decomposition (MP-)MRI is 
a promising, very robust approach ensuring high tem-
poral in addition to high spatial resolution by using 
ultra-fast sequences with highly accelerated parallel 
imaging [28, 29, 38].

Thus, with this study, we want to investigate the long-
term pulmonary outcome of patients with CDH overall 
and side-specific by using lung function tests and MP-
MRI parameters.

Methods
Study design and study population
This retrospective observational single-center study was 
conducted between 05/2017 and 10/2021 at the Chil-
dren’s University Hospital of Bern, Switzerland. During 
this period, we recruited all school-aged patients with 
a CDH diagnosis at our center. They received a stand-
ardized call-in for follow-up and were then asked to 
participate in the study (regardless of symptom sever-
ity). In the study participants, morpho-functional lung 
imaging via MP-MRI was performed in addition to 
physical examination and assessment of lung function. 
Only one patient declined to participate in the study. 
We assigned the patients with CDH to two groups: (i) 
patients with CDH with an initial defect of size category 
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A and B closed with non-resorbable sutures of the mus-
cle edges and thoracic wall without any other foreign 
material (“small CDH”), (ii) patients with CDH with an 
initial defect of size category C and D, where a dome-
shaped Gore-Tex patch or a muscle flap was sutured 
in to replace the absent diaphragm (“large CDH”). A 
control group was composed of age and sex-matched 
healthy children. The study was approved by the Ethics 
Committee of Bern, Switzerland (ID 2017-00088). All 
parents or caregivers and patients ≥ 14 years old gave 
informed written consent to participation in the study.

Data assessment
Study participants attended lung function tests and MP-
MRI on the same day in the following order: (i) nitrogen 
multiple breath washout  (N2MBW) measurement, (ii) 
spirometry/ body plethysmography, and (iii) morpho-
functional MP-MRI.

Lung function measurement
Spirometry and body plethysmography
Baseline lung function was assessed by spirom-
etry (Jaeger MasterScreen Body plethysmography, 

CareFusion). Measurements were performed accord-
ing to ERS/ATS guidelines [39]. Forced expiratory vol-
ume at one second  (FEV1), forced vital capacity (FVC), 
the ratio of  FEV1 over FVC (Tiffeneau index:  FEV1/
FVC), the total lung capacity (TLC), and the ratio of 
residual volume over total lung capacity (RV/TLC) 
were the primary outcomes. As raw values are strongly 
dependent on sex, age, height, and ethnicity of the 
subject, absolute values were converted to z-scores 
to allow further inter-individual comparisons as rec-
ommended by the European Respiratory Society and 
American Thoracic Society using the provided refer-
ence equations [40]. The lower limit of normal (LLN) 
was defined as −1.64 z-scores [40].

Multiple‑breath wash‑out
N2MBW measurements were performed to assess lung 
ventilation homogeneity. General conditions were set 
according to guidelines [41] and raw data was processed 
using the manufacturer’s software (Spiroware V 3.2.1, 
Eco Medics AG; data reloaded with Spiroware V 3.3.1) 
[42]. The main outcome was the lung clearance index 
 (LCI2.5) which was assessed in original units (turnover, 

Table 1 Study population characteristics

Data are given as absolute counts (%) or mean ± SD
1  Defined as having received a primary closure of the diaphragmatic defect
2  Defined as having required a hernia repair with a patch or a muscle flap

CDH: congenital diaphragmatic hernia; BMI: body mass index; NA: non-applicable

Small  CDH1 Large  CDH2 Healthy controls
n 7 6 13

Females/males, n (%) 3/4 (42.9/57.1) 3/3 (50/50) 6/7 (46.2/53.8)

Age at study visit 9.89 ± 3.02 10.89 ± 1.43 10.48 ± 2.51

Weight at study visit (kg) 31.44 ± 8.79 27.55 ± 4.14 36.55 ± 10.44

  z score −0.45 ± 0.71 −1.74 ± 0.85 −0.14 ± 1.08

Height at study visit (cm) 138.71 ± 16.35 137.00 ± 10.28 140.23 ± 14.58

  z score −0.17 ± 0.78 −1.25 ± 1.14 −0.61 ± 0.80

BMI at study visit 16.05 ± 1.46 14.63 ± 0.90 18.28 ± 2.87

  z score −0.56 ± 0.83 −1.48 ± 0.75 0.24 ± 1.00

Side of hernia right/left, n (%) 1/6 (14.3/85.7) 1/5 (16.7/83.3) NA

Time point of diagnosis, n (%)

  Prenatal 2 (28.6) 4 (66.6) NA

  < 24 h postnatal 1 (14.3) 2 (33.3) NA

  > 24 h postnatal 4 (57.1) 0 (0) NA

Fetal tracheal plug, n (%) 0 (0) 2 (33.3) NA

Age at surgery (days) 85.86 ± 171.34 2.17 ± 0.98 NA

Repair patch/muscle flap, n (%) 3/3 (50/50) NA

Gestational age (weeks) 38.19± 1.75 37.36 ± 2.68 NA

Vaginal delivery/caesearian, n (%) 5/2 (57.1/28.6) 0/6 (0/100.0) NA

Birth weight (g) 3344 ± 772 2909 ± 661 NA

Birth height (cm) 46.8 ± 7.4 48.62 ± 3.04 NA
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Table 2 Lung function outcomes of healthy controls and patients with small and large CDH

*  p < .05, ** p < .01
1  defined as having received a primary closure of the diaphragmatic defect
2  defined as having required a hernia repair with a patch or a muscle flap

Lung function parameters and functional MP-MRI parameters are given as z-scores or absolute values respectively, presented as mean ± standard deviation and 
compared by post hoc analysis of one-way ANOVA. Adjustment of CI and p values for multiple testing using Tukey  (FEV1, FVC, RV/TLC,  LCI2.5, QDP,  VQDmatch), Games-
Howell  (FEV1/FVC, VDP) and Benjamini & Hochberg  (DDIV,  DDIQ) approaches

CDH: congenital diaphragmatic hernia; CI: confidence interval; adj: adjusted; FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity; RV: residual volume; 
TLC: total lung capacity; LCI2.5: Lung clearance index, measured at classical end of nitrogen multiple-breath washout  (N2MBW) (2.5% of the normalized nitrogen 
starting concentration); TO: lung turnover (raw unit of LCI); MP-MRI: Matrix-pencil decomposition magnetic resonance imaging; VDP: percentage of the lung volume 
with impaired fractional ventilation; QDP: percentage of lung volume with impaired relative perfusion; DDIV: defect distribution index of ventilation; DDIQ: defect 
distribution index of perfusion; VQDmatch: matched defect in perfusion and ventilation (in percent)

Parameters Healthy Control Small  CDH1 Large  CDH2 Mean Difference (95%  CIadj) p  valueadj

Spirometry n = 13 n = 7 n = 6

   FEV1 (z-score) 0.40 ± 0.93 −0.33 ± 1.04 −0.73 (−2.01 to 0.54) 0.33

0.40 ± 0.93 −3.86 ± 1.43 −4.26** (−5.61 to −2.92) < 0.0001

−0.33 ± 1.04 −3.86 ± 1.43 −3.53** (−5.04 to −2.01) < 0.0001

  FVC (z-score) 0.43 ± 0.80 −0.51 ± 1.29 −0.94 (−2.57 to 0.68) 0.33

0.43 ± 0.80 −3.54 ± 2.30 −3.97** (−5.68 to −2.26) < 0.0001

−0.51 ± 1.21 −3.54 ± 2.30 −3.03** (−4.95 to −1.09) 0.002

   FEV1/FVC (%) 87.26 ± 5.67 89.25 ± 5.45 1.99 (−4.86 to 8.84) 0.73

87.26 ± 5.67 77.25 ± 11.39 −10.01 (−24.95 to 4.94) 0.18

77.25 ± 11.39 −12.00 (−27.02 to 3.02) 0.11

Body plethysmography n = 13 n = 6 n = 6

  TLC (z-score) 0.62 ± 0.87 −0.61 ± 1.21 −1.23* (−2.42 to −0.04) 0.04

0.62 ± 0.87 −0.96 ± 0.87 −1.58** (−2.77 to −0.39) 0.008

−0.61 ± 1.21 −0.96 ± 0.87 −0.35 (−1.74 to 1.04) 0.81

  RV/TLC (%) 27.81 ± 6.58 28.38 ± 4.36 0.57 (−6.71 to 7.84) 0.98

27.81 ± 6.58 45.82 ± 5.36 18.01** (10.73 to 25.28) < 0.0001

28.38 ± 4.36 45.82 ± 5.36 17.44** (8.92 to 25.95) 0.0001

N2MBW n = 13 n = 6 n = 5

   LCI2.5 (TO) 6.17 ± 0.35 6.71 ± 0.49 0.54 (−0.06 to 1.15) 0.09

6.17 ± 0.35 7.29 ± 0.76 1.12** (0.47 to 1.76) 0.0008

6.71 ± 0.49 7.29 ± 0.76 0.58 (−0.17 to 1.32) 0.15

MP-MRI n = 13 n = 7 n = 6

  VDP (%) 15.53 ± 4.55 15.03 ± 1.49 −0.50 (−4.07 to 3.07) 0.93

15.53 ± 4.55 24.12 ± 3.46 8.59** (3.58 to 13.60) 0.002

15.03 ± 1.49 24.12 ± 3.46 9.09** (4.54 to 13.64) 0.002

  QDP (%) 14.53 ± 2.91 14.41 ± 4.17 −0.12 (−3.97 to 3.73) > 0.99

14.53 ± 2.91 31.75 ± 2.88 17.22** (13.16 to 21.27) < 0.0001

14.41 ± 4.17 31.75 ± 2.88 17.34** (12.76 to 21.90) < 0.0001

   DDIV (arb. unit) 1.06 ± 0.62 1.53 ± 1.38 0.47 (−0.43 to 0.87) 0.49

1.06 ± 0.62 2.51 ± 0.48 1.45** (0.82 to 2.13) 0.002

1.53 ± 1.38 2.51 ± 0.48 0.98 (−0.05 to 1.98) 0.08

   DDIQ (arb. unit) 0.82 ± 0.50 1.58 ± 1.92 0.76 (−0.23 to 0.72) 0.21

0.82 ± 0.50 5.49 ± 1.58 4.67** (2.94 to 6.29) 0.0002

1.58 ± 1.92 5.49 ± 1.58 3.91** (1.94 to 6.13) 0.01

   VQDmatch (%) 2.05 ± 1.89 2.31 ± 2.39 0.26 (−2.52 to 3.05) 0.97

2.05 ± 1.89 12.02 ± 3.24 9.97** (7.04 to 12.91) < 0.0001

2.31 ± 2.39 12.02 ± 3.24 9.71** (6.40 to 13.02) < 0.0001
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TO) required to lower tracer gas concentration to 2.5% 
of the initial value. We applied systematic quality control 
on all  N2MBW trials [43]. Per patient, we calculated the 
mean  LCI2.5 value of at least two acceptable trials to use 
in further analysis. An  LCI2.5 value of 7.1 TO was defined 
as the upper limit of normal (ULN) [44].

MP‑MRI data acquisition and evaluation
MRI examinations including structural and functional 
scans were performed on a clinical 1.5T whole-body 
scanner (MAGNETOM Aera, Siemens Healthineers). 
For functional scans a multi-slice 2D time-resolved 
ultra-fast balanced steady-state free precession (uf-
bSSFP) pulse sequence was used, i.e. the entire chest 
volume was covered from posterior to anterior with 
around 8 to 14 coronal slices, and a voxel size of 3.3 mm 
× 3.3 mm × 12 mm in supine position during free tidal 
breathing [45]. At each slice location, 150 images were 
sequentially acquired for approximately 50 seconds with 
a frame rate of 3.3 images per second (110 ms acquisi-
tion time per single image and 190-ms interval between 

consecutive images) [45]. The image series acquired was 
registered to a fixed baseline image in the mid-respir-
atory state to compensate for respiratory motion [46] 
and the lung parenchyma was segmented automatically 
[47]. Data were further processed with the matrix pencil 
(MP) algorithm [28]: Voxel-wise spectral analysis of the 
amplitudes of periodic lung parenchyma signal inten-
sity modulations caused by respiration (frequency cor-
responding to respiratory rate) and pulsatile blood flow 
(frequency corresponding to pulse rate) was used to 
calculate quantitative ventilation and perfusion maps of 
the lung [28, 38]. Lung regions with the fractional venti-
lation or perfusion amplitude below 0.70 of the median 
of all pixels inside a local region of interest (segmented 
lung area on the corresponding coronal slice) were 
considered to show impaired fractional ventilation or 
impaired perfusion respectively [28, 38].

The main outcomes were ventilation defect percent-
age (VDP) and perfusion defect percentage (QDP), which 
equal the relative amount of lung volume with impaired 
fractional ventilation resp. relative perfusion [28, 38]. 

Fig. 1 Lung function in healthy controls and patients with small and large CDH. Individual values in (A)  FEV1 (z-score), (B) FVC (z-score), (C)  FEV1/
FVC (%), (D) TLC (z-score), (E) RV/ TLC (%), (F)  LCI2.5 (TO). The group level is presented as grey boxplots (median, lower, and upper quartile, whiskers 
extending to at most 1.5*interquartile range). p values are the results of post hoc analysis of one-way ANOVA and are corrected for multiple testing. 
small CDH: congenital diaphragmatic hernia with primary closure; large CDH: congenital diaphragmatic hernia with patch or flap repair;  FEV1: 
forced expiratory volume in 1 second; FVC: forced vital capacity; TLC: total lung capacity; RV: residual volume;  LCI2.5: Lung clearance index, measured 
at classical end of nitrogen multiple-breath washout (2.5% of the normalized nitrogen starting concentration); TO: turnover (raw unit of LCI)
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Further, the relative volume of regions with matched 
defects in perfusion and ventilation  (VQDmatch) was 
quantified. The homogeneity of defect distribution for 
ventilation and perfusion was assessed by the defect dis-
tribution index DDI  (DDIV(Ventilation) and  DDIQ(Perfusion), 
resp.) [48]. The DDI increases with the defect areas being 
more clustered as it takes into account how densely and 
how far away defect voxels are located from each other.

Statistical analysis
As the first step, we focused on analyzing data that 
corresponds to the entire lung without differentiation 
between the lung sides. We compared outcomes of lung 
function tests  (FEV1, FVC,  FEV1/FVC, TLC, RV/TLC, 
 LCI2.5) and MP-MRI parameters applied to the lung as 
a whole (VDP, QDP,  DDIV,  DDIQ,  VQDmatch) between 
groups (healthy controls, small CDH, large CDH) using 
one-way ANOVA and corresponding post-hoc analy-
sis (details given in the online supplement (OLS)). Age 
as a potential confounder did not differ significantly 

between the three groups and was therefore not imple-
mented as a covariate in the final model.

Furthermore, we assessed differences in MP-MRI 
outcomes (VDP, QDP,  DDIV,  DDIQ, and  VQDmatch) 
between the affected (CDH-) and non-affected lung 
side. We tested whether these side differences varied 
between the groups (healthy controls, small CDH, large 
CDH) using a two-way repeated measures ANOVA 
with interaction between group and lung side and cor-
responding post hoc analysis (details given in the OLS). 
When quantifying VDP and QDP per lung side, we 
assessed the allocation of DPs to the right or left lung: 
the number of voxels with impaired ventilation or per-
fusion, respectively, per side was related to the number 
of voxels of the whole lung.

To investigate possible associations between lung func-
tion outcomes and functional MRI parameters, Spear-
man’s correlation coefficients (ρ) were calculated. We 
used the Benjamini-Hochberg procedure to correct for 
multiple comparisons.

Fig. 2 MP-MRI parameters in healthy controls and patients with small and large CDH. Individual values in (A) VDP (%), (B) QDP (%), (C)  VQDmatch (%), 
(D)  DDIV (arb. unit), and (E)  DDIQ (arb. unit). The group level is presented as grey boxplots (median, lower, and upper quartile, whiskers extending 
to at most 1.5*interquartile range). p values are results of post-hoc analysis of one-way ANOVA and corrected for multiple testing. MP-MRI: Matrix 
pencil decomposition magnetic resonance imaging; small CDH: congenital diaphragmatic hernia with primary closure; large CDH: congenital 
diaphragmatic hernia with patch or flap repair; VDP: percentage of the lung volume with impaired fractional ventilation; QDP: percentage 
of the lung volume with impaired relative perfusion;  VQDmatch: matched defect in perfusion and ventilation (in percent);  DDIV: defect distribution 
index of ventilation;  DDIQ: defect distribution index of perfusion; DP: defect percentage
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Analysis was conducted in R version 4.1.2 [49]. A p 
value < 0.05 was considered statistically significant. Fig-
ures were produced using ggplot2 [50].

Results
Study population
We included thirteen patients with CDH of whom 
seven had a small and six a large initial defect size. The 
mean (range) age at the study visit was 9.9 years (4.7 
to 13.6) in the small CDH group and 10.9 years (9.4 
to 13.0) in the large CDH group. None of the patients 
included had received ECMO therapy or invasive ven-
tilation until the age of 30 days. The control group con-
sisting of thirteen subjects was matched for sex and 
age (mean 10.5 years, range 5.7 to 15.0). Details on 
demographic and clinical characteristics are shown in 
Table 1 and Supplemental Table S1.

Overall assessment of lung function and MP‑MRI outcomes
Spirometry, body plethysmography, and MBW
In patients with a large CDH,  FEV1 z-score, and FVC 
z-score were significantly reduced in the post hoc analysis 

compared with healthy controls and patients with a small 
CDH, but  FEV1/FVC was not. TLC z-score was sig-
nificantly reduced in patients with CDH only compared 
with healthy controls. Moreover, in the post hoc analysis, 
patients with a large CDH had significantly higher (worse) 
RV/TLC and  LCI2.5 values than healthy controls and, 
regarding RV/TLC, also than patients with a small CDH. 
Detailed results are given in Table  2, Fig.  1, and Supple-
mental Table  S2 (all ps of underlying one-way ANOVA  
< 0.0009, shown in the OLS, Supplemental Table S3).

MP‑MRI
For each MP-MRI outcome, post hoc analysis showed 
a significant functional impairment in patients with a 
large CDH compared to healthy controls and patients 
with a small CDH, respectively.  DDIV was only signifi-
cant between the large CDH group and healthy controls. 
Detailed results are given in Table 2, Fig. 2, and Supplemen-
tal Table S2 (all p’s of underlying one-way ANOVA < 0.007, 
shown in the OLS, Supplemental Table  S3). Additional 
regression analysis to adjust for orthopedic sequelae (sco-
liosis, pectus excavatum) in patients with large CDH was 
performed, and overall results did not change.

Table 3 MP-MRI outcomes according to lung side in healthy controls and patients with small and large CDH

*  p < .05, ** p < .01
a  right lung side in healthy controls
b  left lung side in healthy controls
1  defined as having received a primary closure of the diaphragmatic defect
2  defined as having required a hernia repair with a patch or a muscle flap

Lung function parameters and MP-MRI parameters are given as absolute values, presented as mean ± standard deviation and compared by post hoc analysis of two-
way repeated measures ANOVA. Adjustment of CI and p values for multiple testing using Bonferroni correction.  ncontrol = 13;  nsmall CDH=7;  nlarge CDH = 6

MP-MRI: Matrix-pencil decomposition magnetic resonance imaging; CDH: congenital diaphragmatic hernia; CI: confidence interval; adj: adjusted; VDP: percentage of 
the lung volume with impaired fractional ventilation; QDP: percentage of lung volume with impaired relative perfusion; DDIV: defect distribution index of ventilation; 
DDIQ: defect distribution index of perfusion; VQDmatch: matched defect in perfusion and ventilation (in percent)

Parameters Group Non‑affected  sidea Affected  sideb Mean Difference
(95%  CIadj)

p  valueadj

VDP (%) Control 8.62 ± 2.67 6.91 ± 2.52 −1.70 (−3.64 to 0.23) 0.09

Small  CDH1 6.65 ± 2.39 8.38 ± 2.42 1.73 (−3.96 to 7.41) > 0.99

Large  CDH2 4.68 ± 2.08 19.44 ± 2.45 14.80** (10.50 to 19.00) 0.0002

QDP (%) Control 6.79 ± 2.45 7.74 ± 1.18 0.95 (−0.99 to 2.90) 0.59

Small CDH 4.75 ± 1.76 9.66 ± 5.03 4.91 (−2.88 to 12.70) 0.25

Large CDH 4.13 ± 6.60 27.61 ± 8.60 23.50* (1.75 to 45.20) 0.04

DDIV (arb. unit) Control 1.57 ± 0.78 2.60 ± 2.12 1.03 (−0.50 to 2.56) 0.26

Small CDH 1.20 ± 0.40 3.92 ± 3.63 2.72 (−1.75 to 7.19) 0.27

Large CDH 2.06 ± 2.39 5.07 ± 1.71 3.01 (−2.66 to 8.68) 0.36

DDIQ (arb. unit) Control 1.06 ± 0.69 2.14 ± 1.40 1.08* (0.25 to 1.91) 0.01

Small CDH 1.01 ± 0.52 3.53 ± 3.91 2.52 (−2.71 to 7.76) 0.49

Large CDH 2.72 ± 5.09 9.59 ± 5.13 6.88 (−6.39 to 20.10) 0.38

Control 1.72 ± 1.83 2.45 ± 2.44 0.73 (−0.73 to 2.18) 0.57

Small CDH 0.70 ± 0.43 4.22 ± 5.34 3.52 (−3.28 to 10.30) 0.42

Large CDH 1.18 ± 1.20 22.11 ± 7.71 20.93** (8.40 to 33.50) 0.006
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Lung side‑specific assessment of MP‑MRI outcomes
Differences in VDP, QDP, and  VQDmatch between the 
two lung sides varied among the groups. A signifi-
cant impairment of ventilation and perfusion of the 
CDH-affected lung side compared to the contralateral 
side was found only in the large CDH group (mean 
difference): VDP (%) 14.80, padj  = 0.0002; QDP (%) 
23.50, padj = 0.04 and  VQDmatch (%) 20.93, padj = 0.006. 
Detailed results are shown in Table 3, Fig. 3, Fig. 4, and 
Supplemental Table  S4-S6 (all ps of underlying two-
way repeated measures ANOVA < 0.0001, presented 
in the OLS, Supplemental Table  S5). Both patients 
who had received a fetal tracheal plug were part of the 
large CDH group and their outcomes (both, overall 
and side-specific) did not differ from the other patients 
with a large CDH.

Association of lung function and MP‑MRI outcomes
Within the group of patients with CDH, there was a sig-
nificant association of  FEV1 z-score and VDP, QDP, and 
 VQDmatch of the affected side. The same applies to RV/
TLC. Furthermore, the FVC z-score and VDP of the 

affected side correlated significantly. Detailed results 
are shown in Fig. 5 and Supplemental Table S7.

Discussion
Summary
In this study, we used functional MP-MRI to follow up 
patients with CDH and thus assessed overall lung function 
but also lung side-specific information. Our results, based on 
a small sample, indicate the following: (i) patients with a large 
CDH had significantly reduced outcomes in both, lung func-
tion tests and functional MP-MRI parameters compared to 
healthy controls as well as to patients with a small CDH; (ii) 
overall deficits in patients with a large CDH were accompa-
nied by a pronounced ventilation and perfusion impairment 
of the affected lung side; and (iii) ventilation and perfusion of 
the remaining lung tissue expanding into the thoracic cavity 
after a patch or flap repair does not function properly.

Comparison with literature
We found lower  FEV1 and elevated  LCI2.5 values in patients 
with a large CDH defect; this is in accordance with previ-
ous studies showing that among patients with CDH, those 
with a patch repair or large initial defect size show impaired 

Fig. 3 MP-MRI parameters in healthy controls and patients with small and large CDH, separated by lung side. Individual values for the ipsilateral 
lung side (affected) and the contralateral lung side (non-affected) in (A) VDP (%), (B) QDP (%), (C)  VQDmatch (%), (D)  DDIV (arb. unit) and (E)  DDIQ 
(arb. unit). In healthy controls, the left lung side was compared to the right lung side. The group level is presented as grey boxplots (median, 
lower, and upper quartile, whiskers extending to at most 1.5*interquartile range). p values are the results of post hoc analysis of two-way repeated 
measures ANOVA and corrected for multiple testing. MP-MRI: Matrix pencil decomposition magnetic resonance imaging; small CDH: congenital 
diaphragmatic hernia with primary closure; large CDH: congenital diaphragmatic hernia with patch or flap repair; VDP: percentage of the lung 
volume with impaired fractional ventilation; QDP: percentage of the lung volume with impaired relative perfusion;  VQDmatch: matched defect 
in perfusion and ventilation (in percent);  DDIV: defect distribution index of ventilation;  DDIQ: defect distribution index of perfusion; DP: defect 
percentage; non aff.: non-affected, contralateral lung side; aff.: affected, ipsilateral lung side
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lung function in early and long-term follow-up [7, 13]. In 
patients with a large defect size of category C or D,  FEV1pp 
was decreased by 12.9% (95% CI: −21.7%, −4.2%) to 17.6% 
(95% CI: −24.9%, −10.3%) compared to patients with a smaller 
defect size of category A or B [13]. Similarly, in our study group, 
the  FEV1pp was 37.74% (95% CI: −55.18%, −20.29%) lower 
in patients with a large CDH compared to those with a small 
CDH. However, our results in  FEV1/FVC, TLC, and RV/TLC 
in this patient group suggest a decrease in  FEV1 due to reduced 
vital capacity upon hyperinflation rather than an obstruction. 
Further results reported in the literature are inconsistent, in 
some studies an effect of defect size on long-term lung function 
outcome or exercise capacity respectively was not detectable 
[12] or disappeared after one year of age [7].

Regarding functional MRI we found that relative 
impairment of ipsilateral ventilation and perfusion 
was highest in patients with a large CDH. In patients 
with a small CDH, there was no significant difference 

in ventilation or perfusion between the lung sides. 
These findings are in line with recent scintigraphy data 
that showed reduced ipsilateral perfusion [19] and a 
particularly frequent ipsilateral V/Q mismatch [18] 
in patients with patch repair compared to those with 
direct repair (i.e. large and small CDH). Also, previous 
studies using functional lung MRI (DCE, 3He) found 
less subdivided, enlarged alveoli, and reduced ipsilat-
eral perfusion in patients with CDH [22–26, 51]. In 
our study, we show that in patients with a large CDH 
ipsilateral impairment of ventilation and perfusion is 
densely clustered (high  DDIV and  DDIQ) and overlap-
ping in accordance with the Euler-Liljestrand-effect 
(high  VQDmatch). From a technical point of view, MP-
MRI offers the advantage of assessing local ventila-
tion and perfusion in parallel [28, 29, 38], whereas 3He 
or DCE MRIs are limited to one of these two func-
tional aspects [52, 53]. However, in line with other 

Fig. 4 Example of MP-MRI images in (A) a healthy control, (B) a patient with a small CDH, and (C) a patient with a large CDH. A: 11.9-year-old, 
healthy boy  (VDPleft (%) = 8.42,  VDPright (%) = 10.92,  QDPleft (%) = 6.18,  QDPright (%) = 7.24). B: 8.7-year-old, female patient with small CDH (primary 
closure of the diaphragmatic defect) on the anatomically left side, marked by white arrow  (VDPaffected (%) = 8.26,  VDPnon-affected (%) = 7.39,  QDPaffected 
(%) = 9.97,  QDPnon-affected (%) = 6.47). C: 9.9-year-old, female patient with large CDH (flap repair of the diaphragmatic defect) on the anatomically 
left side, marked by white arrow  (VDPaffected (%) = 17.74,  VDPnon-affected (%) = 7.84,  QDPaffected (%) = 32.11,  QDPnon-affected (%) = 1.53). For each case 
study, morphological images are given in (a). Overlaid on morphological images are: fractional ventilation maps (b), relative perfusion maps (c), 
and masks representing areas with impaired ventilation and impaired perfusion (d, e). On the heat maps, a change of colour range towards dark 
blue indicates severe impairment of lung function. Further individual outcome values are provided in Supplemental Table S6. CDH: congenital 
diaphragmatic hernia; MP-MRI: Matrix pencil decomposition magnetic resonance imaging; VDP: percentage of the lung volume with impaired 
fractional ventilation; QDP: percentage of lung volume with impaired relative perfusion; non aff.: non-affected, contralateral lung side; aff.: affected, 
ipsilateral lung side
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non-contrast dynamic MRI approaches, MP-MRI does 
not allow measurement of absolute pulmonary air or 
blood flow [28, 29, 38]. Instead, low ventilation or per-
fusion relative to the remaining lung of the patient is 
detected and the amount of lung volume affected is 
quantified. This method has by now been established 
for the investigation of lung function in various dis-
eases [34–37], even though direct comparability of 
outcome values is limited due to varying protocols 
for scan and analysis. In view of this, our study ben-
efits from the direct inclusion of healthy controls and 
beyond, we ensured comprehensive assessment by 
using a multi-slice sequence covering the whole lung.

We also found a correlation between  FEV1 z-score and 
ipsilateral ventilation as well as perfusion. So far, correlations 
between lung function outcomes and outcomes of func-
tional imaging techniques have only been shown for ipsi-
lateral perfusion parameters  (FEV1pp and pulmonary blood 
flow (PBF);  FVCpp and PBF [24];  FEF25-75pp and scintigraphy 
perfusion [21]). Thus, our data show a function-function 
association between two very different methods: spirometry 
measuring airflow and volumes at the mouth and MP-MRI 
measuring ventilation impairment at a regional level.

Strengths and limitations
The greatest strength of our study is the comprehen-
sive follow-up assessment using lung function tests 
and functional MP-MRI of patients with CHD. We 
could compare both, spatially resolved perfusion and 
ventilation data of the lungs to outcomes of lung func-
tion tests. Further, we could investigate differences in 
long-term outcomes between patients with a small and 
a large CDH compared to healthy controls.

The main limitation of our study is the small sam-
ple size, and that the group of patients with a small 
CDH might represent a peculiar selection with a very 
mild course of disease. Thus, results should be seen as 
indicative only and generalized with caution. However, 
the findings on differences in lung-side specific impair-
ment in the large CDH group are promising, as they are 
pathophysiologically reasonably explainable and even 
statistically significant using a conservative approach 
with adjusted p-values. The small side differences of the 
MP-MRI outcomes found in the healthy controls need 
to be further investigated. As the main conclusion of 
this manuscript is based on very pronounced side dif-
ferences, we consider it to be unaffected by this issue.

Fig. 5 Association of lung function and MP-MRI outcomes of the lung side affected in patients with CDH. Individual values plotted by (A)  FEV1 
(z-score) and VDP (%), (B)  FEV1 (z-score) and QDP (%), (C)  FEV1 (z-score) and  VQDmatch (%), (D) RV/TLC and VDP (%), (E) RV/TLC and QDP (%), 
and (F) RV/TLC and  VQDmatch (%). Values of both, patients with a small CDH (primary closure of the diaphragmatic defect) and a large CDH (patch 
or flap repair of the diaphragmatic defect) are included. Lines represent simple linear regression (ρ = Spearman’s correlation coefficient). The 
Benjamini-Hochberg procedure has been applied to correct p-values for multiple comparisons. MP-MRI: Matrix pencil decomposition magnetic 
resonance imaging; CDH: congenital diaphragmatic hernia;  FEV1: forced expiratory volume in 1 second; VDP: percentage of the lung volume 
with impaired fractional ventilation; QDP: percentage of lung volume with impaired relative perfusion;  VQDmatch: matched defect in perfusion 
and ventilation (in percent); aff.: affected, ipsilateral lung side; RV: residual volume; TLC: total lung capacity
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Physiological considerations and implications for clinical 
practice
Previous results on the long-term outcome of patients with 
CDH are to some extent contradictory. We were able to illus-
trate the strong contrast between the functionality of the ipsi- 
and the contralateral lung side in patients with reduced lung 
function. Thus, spatially resolved functional lung imaging pro-
vides a clear diagnostic advantage compared to regular lung 
function parameters such as spirometry and multiple-breath 
washout. While the assessed increased ipsilateral ventilation 
impairment might be partially affected by the measurement 
technique in combination with reduced diaphragmatic mobil-
ity, the result on perfusion, whose detection is clearly inde-
pendent of diaphragmatic movement, confirms the results 
described. However, of course, a tissue biopsy would be desir-
able to confirm this conclusion. To date, it is unclear whether, 
in patients with a large initial defect size, the ipsilateral limita-
tions are primarily due to altered fetal lung development or to 
decreased catch-up growth of the lung tissue including airways 
and vessels after patch or flap repair because of low diaphrag-
matic mobility [54]. In addition, other co-existing clinical con-
ditions such as scoliosis or chest wall disorders might amplify 
respiratory restrictions. In this context, it might be particularly 
important to improve body posture and strengthen the respira-
tory muscles of the ipsilateral side by regular physiotherapy [15, 
55]. Systematic long-term follow-up of patients with CDH tak-
ing lung side-specific assessment into account is indeed needed 
to clarify this issue. In this regard, MP-MRI is a promising 
tool since it is radiation free—therefore suited for regular (e.g., 
yearly) follow-up, does not require the administration of con-
trast agents, and is performed under free-breathing making it 
feasible already in infants and young children.

Conclusions
In our study, we analyzed functional MP-MRI data on lung 
ventilation and perfusion in a small sample of patients with 
CDH. Our results confirm expected differences in func-
tionality between the ipsi- and contralateral lung side in 
patients with large CDH. This indicates the importance of 
not only assessing overall lung function in patients with 
CDH but also performing a spatially resolved examination 
of the lung. Thus, MP-MRI is a promising tool for future 
follow-up or intervention studies in patients with CDH.
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