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Methodological evaluation of original articles on radiomics and
machine learning for outcome prediction based on positron emission
tomography (PET)

Methodische Bewertung von Originalartikeln zu Radiomics und
Machine Learning für Outcome-Vorhersagen basierend auf der
Positronen-Emissions-Tomografie (PET)
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ABSTRACT

Aim Despite a vast number of articles on radiomics and ma-

chine learning in positron emission tomography (PET) ima-

ging, clinical applicability remains limited, partly owing to

poor methodological quality. We therefore systematically in-

vestigated the methodology described in publications on

radiomics and machine learning for PET-based outcome pre-

diction.

Methods A systematic search for original articles was run on

PubMed. All articles were rated according to 17 criteria pro-

posed by the authors. Criteria with > 2 rating categories were

binarized into “adequate” or “inadequate”. The association

between the number of “adequate” criteria per article and

the date of publication was examined.

Results One hundred articles were identified (published be-

tween 07/2017 and 09/2023). The median proportion of arti-

cles per criterion that were rated “adequate” was 65% (range:

23–98%). Nineteen articles (19 %) mentioned neither a test

cohort nor cross-validation to separate training from testing.

The median number of criteria with an “adequate” rating per

article was 12.5 out of 17 (range, 4–17), and this did not in-

crease with later dates of publication (Spearman’s rho,

0.094; p = 0.35). In 22 articles (22 %), less than half of the

items were rated “adequate”. Only 8 % of articles published

the source code, and 10% made the dataset openly available.

Conclusion Among the articles investigated, methodological

weaknesses have been identified, and the degree of compli-

ance with recommendations on methodological quality and

reporting shows potential for improvement. Better adherence

to established guidelines could increase the clinical signifi-

cance of radiomics and machine learning for PET-based out-

come prediction and finally lead to the widespread use in rou-

tine clinical practice.

Original Article
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Introduction

In addition to its clinical value for tumor detection and staging,
metabolic and/or molecular information derived from positron
emission tomography (PET) imaging can facilitate the prognosti-
cation of survival and the prediction of treatment outcomes in
various tumor types [1, 2, 3]. Traditionally employed image-de-
rived features comprise standardized uptake values (SUV) and
metabolic tumor volume (MTV) as well as composite metrics like
total lesion glycolysis. These metrics are most commonly derived
from manually or semi-automatically delineated regions of inter-
est. In recent years, radiomics and machine learning-based pre-
diction models have been increasingly employed to enhance the
prognostic or predictive value of PET imaging by leveraging tex-
tural information and patterns that are not directly accessible to
human readers [4, 5]. However, the increasing complexity and
feature number of such approaches, compared to the sparsity of
manually derived image features, brings with it a higher risk of ob-
taining results that are either biased or not reproducible. Finally,
despite the variety of prognostic radiomics and machine learn-
ing-based models published so far, broad clinical applicability has
still not been achieved.

Different guidelines and recommendations have been pub-
lished to define standards for radiomics and multivariable predic-
tion approaches [6, 7, 8]. A common characteristic of these
guidelines is that they propose standard practices related to both
methodological quality and the transparency of reporting. This is
a necessity, as readers, journal editors and reviewers of radiomics
and machine learning articles should be enabled to fully assess the
methodological approach. Ideally, a full description of methodo-
logical details should enable readers to repeat the experiment
themselves. For example, the TRIPOD (Transparent Reporting of
a multivariable prediction model for Individual Prognosis Or Diag-
nosis) statement has set standards for categorizing studies on
multivariable models based on the type of internal or external va-
lidation that was used. The European Association of Nuclear Med-
icine (EANM) and Society of Nuclear Medicine and Molecular Ima-
ging (SNMMI) have recently published joint recommendations on
radiomics research in nuclear medicine [6]. Lambin et al. have pro-
posed a radiomics quality score (RQS) to assess the methodologi-
cal quality of radiomics studies [7].

Using the TRIPOD criteria and RQS, Park et al. rated 77 radio-
mics studies in oncology and found that at 9.4, the mean RQS
was only 26% of the maximum score of 36. Furthermore, TRIPOD
recommendations were followed to a varying degree (2.6 % to
100%). However, only 4 % of the evaluated articles investigated
PET, and only 20 % of the studies focused on prognostic tasks
while the majority assessed diagnostic applications [9].

The RQS defines several aspects that should be considered in
radiomics analyses but does not rate or quantify the appropriate-
ness of the implementation of methods. TRIPOD recommenda-
tions are primarily focused on the transparency of reporting rath-
er than provision of methodological guidance and are not
specifically optimized for radiomics analyses.

On this basis, we set out to further explore the methodological
approaches and reporting transparency of radiomics and machine
learning articles that focus on PET-based outcome prediction

using our own set of objective and subjective rating criteria. Our
assessment was designed to resemble that of independent re-
viewers, journal editors or readers who would critically judge not
only the concordance with specific methodological aspects but
also the overall appropriateness of methods in the individual study
context and the overall reliability of results and conclusions. Fur-
thermore, we examined whether ratings improved with later
dates of publication.

Material and Methods

Search strategy

Original articles were identified by a single person (JMMR)
through a search on PubMed on July 15 and 16, 2023. Search
prompts and results are given in ▶ Table 1. Only original articles
in English that investigated outcome prediction with PET using
radiomics / textural features and/or machine learning methods
(including neural networks) for classification/regression and/or
to extract image features were considered for this analysis. Arti-
cles that investigated only a classification task (e. g., ”predicting”
histological subtypes) were not considered eligible. Date of publi-
cation was not restricted.

Rating criteria and rating process

Rating criteria and their categories / scales were created by JMMR
and RS in consensus based on the RQS [7] and TRIPOD recom-
mendations [8]. A final set of seventeen criteria was drawn up
(▶ Table 2). Some criteria were designed as binary items (e. g.,

▶ Table 1 Search prompts and total number of article results.

Search prompt Number of
articles

(artificial intelligence[Title/Abstract]) AND (PET[Ti-
tle/Abstract]) AND (outcome[Title/Abstract]) AND
(prediction[Title/Abstract])

12

(neural network[Title/Abstract]) AND (PET[Title/
Abstract]) AND (outcome[Title/Abstract]) AND
(prediction[Title/Abstract])

10

(automated[Title/Abstract]) AND (PET[Title/Ab-
stract]) AND (outcome[Title/Abstract]) AND (pre-
diction[Title/Abstract])

13

(neural network[Title/Abstract]) AND (PET[Title/
Abstract]) AND (response[Title/Abstract]) AND
(prediction[Title/Abstract])

8

neural network PSMA prediction 6

deep learning PSMA prediction 6

(neural network[Title/Abstract]) AND (PET[Title/
Abstract]) AND (survival[Title/Abstract])

36

(artificial intelligence[Title/Abstract]) AND (PET[Ti-
tle/Abstract]) AND (survival[Title/Abstract])

38

(radiomics[Title/Abstract]) AND (PET[Title/Ab-
stract]) AND (outcome[Title/Abstract])

155
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whether a separate test cohort was analyzed). Other, more sub-
jective items were rated on a 3- or 4-point scale. To facilitate the
interpretation of the results, all rating criteria were binarized into
“adequate” or “inadequate” rating categories (▶ Table 2). A de-
scription of how individual categories for each item were defined
can be found in the Supplemental Material.

A single rater (JMMR) assessed all original articles based on the
seventeen criteria. If a certain criterion could not be rated (be-
cause the article did not contain the required information), it was
rated as “unclear” and was also regarded as “inadequate”. Fur-
thermore, the sample size of the training cohort/folds and test co-
hort/folds was noted and whether data collection included pro-
spective or multicentric data. Whether the dataset and/or the
machine learning code had been published on a public repository
was also evaluated. The TRIPOD study type was identified, based
on the methodology applied in the articles. On average, around
20 minutes were required to rate an article.

Statistical analysis

Based on the Shapiro-Wilk test, a non-normal data distribution
was assumed, and the median, interquartile range (IQR), and
range were presented. The association between the date of pub-

lication and number of criteria with an “adequate” rating per arti-
cle was analyzed by Spearman correlation using SPSS version
29.0.0.0 (IBM Corporation, Armond, NY, USA). Statistical signifi-
cance was assumed at α = 0.05.

Results

Description of the original articles

A total of 107 original articles were identified through the search
process. Three of these were excluded as no full text version could
be accessed. One publication was excluded because it investiga-
ted only one single PET feature, while another article was not in-
cluded because the declared aim was solely to validate a previous-
ly published model. Two publications examining PET in the
context of Alzheimer's disease or amyotrophic lateral sclerosis
were excluded, as these differed fundamentally from all the other
articles where the focus was on oncology.

The remaining articles (n = 100), published between July 2017
and September 2023, were included in the subsequent analysis
(▶ Table 3). The cancer entities investigated comprised head and
neck cancer (n = 26) [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

▶ Table 2 List of rating criteria, their categories and the percentage of articles rated as “adequate” after binarization of the rating categories. De-
tails on the precise definitions of all categories can be found in the Supplemental Material.

Rating criteria Categories Adequate
articles (%)

Adequate Inadequate

Validity of the results

Homogeneous patient cohort? Yes Rather yes Rather no No 64

Presence of selection bias? No Rather no Rather yes Yes 88

Is the frequency of classes balanced? Yes Rather yes Rather no No 65

Training and testing split consistently (to prevent data leakage)? Yes Rather yes Rather no No 64

Clearly defined research question(s)? Yes Rather yes Rather no No 98

Clear main/primary endpoint for model training? Yes Rather yes Rather no No 86

Adequate statistical method for the primary endpoint? Yes Rather yes Rather no No 77

Comparison with established biomarkers? Yes No 65

Machine learning description informative? Yes Rather yes Rather no No 64

Generalizability of the results

Risk of overfitting? Low Average High 62

Separate test cohort / cross-validation present? Yes No 81

Robustness of results reported (e. g., resampling or confidence
interval)?

Yes No 39

Independent/external cohort used for testing? Yes No 23

Results and conclusion

Is the presentation of results comprehensible? Yes Rather yes Rather no No 90

Are the results informative? Yes Rather yes Rather no No 72

Adequate conclusion with regard to validity? Yes Rather yes Rather no No 73

Adequate conclusion with regard to generalizability? Yes Rather yes Rather no No 59
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22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], lung cancer
(n = 20) [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55], gastrointestinal or hepatobiliary tumors
(n = 15) [56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70], lymphoma (n = 13) [3, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82], gynecological tumors (n = 7) [83, 84, 85, 86, 87, 88, 89],
prostate cancer (n = 5) [90, 91, 92, 93, 94], breast cancer (n = 3)
[95, 96, 97], brain tumors (n = 3) [98, 99, 100], sarcoma (n = 2)
[101, 102], melanoma (n = 2) [103, 104], multiple myeloma
(n = 2) [105, 106], salivary gland tumors (n = 1) [107] and pleural
mesothelioma (n = 1) [108], respectively.

The median sample size of the training cohort/folds was 86
(IQR, 49–172; range, 20–1049). Nineteen articles (19%) reported
neither a test cohort nor cross-validation to separate training from
testing data. In the other 81 articles, the median sample size of
the test cohort (fold in case of cross-validation) was 40 (IQR, 20–
85; range, 1–887). A test sample size of one in two articles was
due to bootstrapping. This is considered adequate by the TRIPOD
recommendations (study type 1b).

In 8 articles (8 %), the machine learning code was published,
while in 10 (10%) the datasets were made publically available.

Rating results

The median proportion of articles per criterion with “adequate”
rating was 65% (IQR, 63–84), ranging from 23% (criterion: “Inde-
pendent/external cohort used for testing?”) to 98 % (criterion:
“Clearly defined research question(s)?”).

The median number of criteria with an “adequate” rating per
article was 12.5 (IQR, 9–14; range, 4–17). Two articles [12, 42]
were rated “adequate” in all 17 criteria, whereas 22 articles
(22%) had an “adequate” rating in less than half of the items (≤ 8
of 17 items). The number of criteria with an “adequate” rating per
article was not associated with the date of publication (Spear-
man’s rho, 0.094; p = 0.35; ▶ Fig. 1).

Detailed results item-by-item for all articles are available as
open data in the Zenodo repository https://doi.org/10.5281/zeno
do.8284734.

Discussion

The aim of this investigation was to analyze the appropriateness of
methodological approaches and their description in studies on
radiomics or machine learning analysis in PET-based outcome pre-
diction. To this end, a multi-dimensional set of seventeen items
was drawn up and applied to 100 articles retrieved from a sys-
tematic PubMed search. On average, we found that per criterion
a median of 65% of articles achieved an “adequate” rating.

The fraction of 65 % adequate articles per criterion based on
the comprehensive review may seem high, but it should be noted
that the criteria and rating categories used were designed to re-
flect scientific reality and are not an idealized situation. This is un-
derlined by the observation that two articles [12, 42] achieved an
“adequate” rating for all 17 criteria assessed by us. Like us, Park et
al. examined 77 articles on radiomics but reported that at 9.4, the
average RQS was only 26.1 % of the maximum of 36 [9]. As we
used different rating criteria, these results can only be compared
at the level of individual items. Like that of Park et al., our analysis
showed that most of the studies reserved a separate cohort or
used cross-validation for testing (here: 81 %; Park et al.: 90 %).
However, it is worth noting that 19% did not do so, which means
that the corresponding results are purely exploratory and cannot
be generalized. Neither should they be applied in clinical routine
practice without prior validation. Most articles used adequate sta-
tistical (discrimination) methods for the primary endpoint, such
as area under the curve (AUC) or concordance index (77%). Park
et al. reported even higher adherence (99 %), probably because
most studies analyzed by Park et al. were diagnostic studies that
usually use binary endpoints and can rely on the AUC. We also
found that resampling was employed to examine the robustness
of results by only 39 % of the studies examined (this was similar
to Park et al.: 30%). Validation/testing with an independent (exter-
nal) dataset was unfortunately not frequently observed (23 %),
and datasets or source codes were rarely made available (10 and
8%, respectively), which is in line with Park et al. (external valida-
tion: 18%; open science: 4 %).

The TRIPOD statement and RQS provide a list of methods or re-
port elements that should be observed. However, beyond simply
following such a checklist of recommendations, authors should

▶ Table 3 General characteristics of the articles analyzed.

Characteristics Number of
articles

Total 100

Type of image analysis (categories based on [6])

Only hand-crafted radiomics 50

Radiomics and machine learning for prediction
(“hybrid radiomics”)

46

Only machine learning for prediction 4

Year of publication

2017 1

2018 7

2019 13

2020 15

2021 20

2022 29

2023 15

Prospective data included 19

Multicentric data included 30

TRIPOD study type

1a 15

1b 26

2a 31

2b 8

3 16

Unclear (considered equivalent to type 1a) 4
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also report how rigorously the methods were implemented be-
cause simply using tools such as cross-validation or feature selec-
tion does not guarantee their proper implementation to comple-
tely prevent data leakage. We think that authors should make
every effort to enable readers to understand the way that such
crucial methodological steps were actually realized. Positive ex-
amples included articles that used flow charts to visualize the se-
paration of training/test and other methodological steps. How-
ever, we found that key aspects were often not sufficiently
covered by the articles (“informative” machine learning descrip-
tion in only 64% of articles).

One example of a RQS criterion that may – formally speaking –
be fulfilled by many articles is the use of a multivariable analysis
such as Cox regression. In many of the investigated articles, Cox
regression was used for feature selection or to investigate the in-
dependent value of predictors. However, proper implementation
requires that weights are kept unchanged between training and
testing. Otherwise, retraining would invalidate the training/test-
ing separation approach. Unfortunately, this was often not stated.
In general, descriptions of machine learning methods are rarely
given in sufficient detail (or supported by open data code) to al-
low other researchers to reliably reproduce the selected features
and final results.

In studies with multiple endpoints (e. g., progression yes/no,
progression-free survival, and overall survival), the authors should
specify the endpoint used for training. If a binary endpoint was
used, several of the investigated studies reported multiple per-
formance metrics (e. g., AUC and accuracy) and omitted to state
clearly, which of the mentioned performance metrics was used to
gauge model training.

We identified aspects in methodology or reporting that are not
(fully) covered by the TRIPOD statement or the RQS: the balance/
imbalance of outcomes, an overall assessment of the risk of over-

fitting (in the light of sample size, feature selection methods, and
loss of performance from training to testing) or the adequateness
of conclusions. We strongly feel that these criteria are also impor-
tant factors for judging the validity of radiomics results. The pro-
posed set of criteria is therefore useful for reviewers of radiomics
and machine learning articles for PET-based predictions.

In order to objectify our criteria, we have included descriptions
of all subjective rating categories (Supplemental Material), which
should enable readers to understand and interpret our findings.
We also point out the limitations of our approach and state which
standards were required for an “adequate” rating. We hope that
these descriptions will improve the reproducibility of the rating.
It is furthermore worth noting that a single person rated the arti-
cles, and subjective ratings may be influenced by personal expec-
tations and demands on the quality of radiomics papers. Further-
more, inter-rater variability could not be determined. Our analysis
and its transferability to other analyses is biased, because we used
our own set of rating criteria and categories. However, our find-
ings on specific items that are also part of the RQS were compar-
able to Park et al. [9], indicating the validity of the single observer
assessment at least for these criteria.

Regardless of the potential subjectivity of the evaluation crite-
ria, the observation remains that the average rating, which is a
measure of the quality of the paper, did not change (improve)
over the time period 07/2017 to 09/2023. Notably, the TRIPOD
statement was published in 2015 [8] and the RQS in 2017 [7]. Still,
the impact of these recommendations on how radiomics and ma-
chine learning analyses are performed and reported in the context
of outcome prediction with PET appears to be limited. Consider-
ing that the clinical applicability of radiomics analyses remains
low, despite the large number of published models, improve-
ments are clearly needed.

▶ Fig. 1 Correlation between date of publication (grid: months) and percentage of criteria per article that were rated as “adequate” (the maximum
of 17 criteria would correspond to 100%). Solid line: linear fit.
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Conclusion

The methodological quality and reporting transparency of the in-
vestigated papers on radiomics and machine learning for PET-
based outcome prediction often appeared inadequate. Authors
and reviewers of such articles should aim at enabling the reader
to reproduce the results and to this end, certain critical quality
criteria must be met (e. g., clear identification of event rates, the
endpoint and primary performance metric used for model train-
ing, and a clear description of the separation of training/testing
to identify potential data leakage). Better adherence to previously
published recommendations is imperative to finally enable the
widespread use of radiomics and machine learning in routine clin-
ical practice.
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