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Lower alpha frequency of intraoperative frontal EEG is associated with 
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H I G H L I G H T S  

• Delirium remains a serious postoperative complication, that is difficult to treat and predict. 
• Negative correlation of frontal alpha frequency and end-tidal anesthetic exists. 
• Low frontal alpha frequency serves as a predictor for postoperative delirium. 
• Anesthetic titration on alpha frequency might help reduce postoperative delirium.  
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A B S T R A C T   

Background: Postoperative delirium (POD) is a serious complication of surgery, especially in the elderly patient 
population. It has been proposed that decreasing the amount of anesthetics by titrating to an EEG index will 
lower POD rate, but clear evidence is missing. A strong age-dependent negative correlation has been reported 
between the peak oscillatory frequency of alpha waves and end-tidal anesthetic concentration, with older pa
tients generating slower alpha frequencies. We hypothesized, that slower alpha oscillations are associated with a 
higher rate of POD. 
Method: Retrospective analysis of patients` data from a prospective observational study in cardiac surgical pa
tients approved by the Bernese Ethics committee. Frontal EEG was recorded during Isoflurane effect-site con
centrations of 0.7 to 0.8 and peak alpha frequency was measured at highest power between 6 and 17 Hz. 
Delirium was assessed by chart review. Demographic and clinical characteristics were compared between POD 
and non-POD groups. Selection bias was addressed using nearest neighbor propensity score matching (PSM) for 
best balance. This incorporated 18 variables, whereas patients with missing variable information or without an 
alpha oscillation were excluded. 
Result: Of the 1072 patients in the original study, 828 were included, 73 with POD, 755 without. PSM allowed 
328 patients into the final analysis, 67 with, 261 without POD. Before PSM, 8 variables were significantly 
different between POD and non-POD groups, none thereafter. Mean peak alpha frequency was significantly lower 
in the POD in contrast to non-POD group before and after matching (7.9 vs 8.9 Hz, 7.9 vs 8.8 Hz respectively, SD 
1.3, p < 0.001). 
Conclusion: Intraoperative slower frontal peak alpha frequency is independently associated with POD after car
diac surgery and may be a simple intraoperative neurophysiological marker of a vulnerable brain for POD. 
Further studies are needed to investigate if there is a causal link between alpha frequency and POD.   
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1. Introduction 

Delirium, a syndrome characterized by acute changes in attention, 
awareness and cognition is a frequent complication in patients under
going surgery [1]. The prevalence of postoperative delirium (POD) 
following surgery is reported to be up to 20% of patients [2,3]. Patient 
specific risk factors for developing POD include advanced age, preex
isting cognitive impairment or dementia, frailty, and cardiovascular- 
and renal disease. These predisposing factors are further influenced by 
the duration and invasiveness of the procedure, as well as duration and 
dose of anesthesia [4]. 

Patients suffering from delirium exhibit increased morbidity, higher 
rates of long-term cognitive deficits and higher postoperative mortality 
[5–8]. Furthermore, POD is associated with increased length of hospi
talization and higher costs [2,4]. Therefore POD has emerged as a sig
nificant public health concern, causing additional annual health care 
costs for patients in the US undergoing elective major surgery of an 
estimated $32.9 billion [9]. 

Effective preventive perioperative measures include avoidance of 
perioperative polypharmacy and prolonged fluid fasting, careful peri
operative pain and blood pressure management, intraoperative dexme
detomidine infusion, multimodal opioid sparing analgesia and 
monitoring the hypnotic depth of anesthesia to decrease the amount of 
anesthetics given intraoperatively [3,10]. 

While consensus is still lacking, current evidence suggests that the 
duration of electroencephalogram (EEG) burst suppression - an EEG 
pattern of deep general anesthesia - and the presence of specific EEG 
emergence trajectories may predict POD [11–16]. Despite the important 
negative result of the ENGAGES trial [17], titration of anesthesia dosing 
according to the EEG is recommended by several guidelines [18,19]. 

Commonly used anesthesia monitors transform the EEG signal into a 
single numerical value (index) purportedly reflecting the likelihood of 
consciousness, and claim to help maintain the patient in a state of un
consciousness with minimal suppression of vital functions without 
allowing surgical discomfort or pain. Nonetheless, there is a long
standing discussion if these monitors are up to this task, as systematic 
inaccuracies have been reported for the fragile and older population 
when using the BIS® monitor [20], where older patients show higher 
BIS values despite an increased age-adjusted MAC, an effect likely due to 
a more ‘awake’ looking EEG [21]. 

A promising approach is the renewed current focus on the alpha 
(8–12 Hz) oscillation in the frontal EEG. To date, associations have been 
observed between low intraoperative alpha power and subsequent 
delirium [22,23], but it remains unknown if alpha frequency is also 
associated with delirium [24]. Thus, with this secondary analysis of 
prospectively collected data we wanted to test the hypothesis if higher or 
lower peak alpha frequency is associated with postoperative delirium. 

2. Materials and methods 

The ethics committee of the canton of Bern, Switzerland, approved 
the original prospective observational study (KEK#210/15). The 
Strengthening the Reporting of Observational Studies in Epidemiology 
(STROBE) checklist for observational studies was used to guide the 
methods of the study and to structure the manuscript [25]. 

2.1. Patient selection 

A total of 1072 adult patients requiring general anesthesia for car
diac surgery with cardiopulmonary bypass (CPB) were enrolled between 
July 2016 and January 2018 as part of a prospective observational 
single-center study (ClinicalTrials.gov identifier: NCT02976584). For 
inclusion in this secondary analysis of the dataset we required the use of 
isoflurane for general anesthesia, complete data including pre-bypass 
EEG and endtidal anesthesia gas concentrations, as well as comorbid
ities. Strictly pre-bypass data were used with the aim to decrease 

confounding by CPB factors (e.g., cooling, inflammation, hemodilution). 
Due to the setup of our induction rooms, EEG recording started 
approximately an hour after induction of anesthesia in the operating 
room. Brain effect-site concentrations of isoflurane were estimated using 
a simple diffusion model with a half-time equilibrium constant (Keo) of 
120, and named CeMAC. End tidal concentrations (and thus CeMAC 
values) were available every second. To reduce systematic bias through 
changing CeMAC levels, only EEG measurements that were recorded at 
CeMAC levels between of 0.7 to 0.8 were used for the final analysis. 

2.2. EEG recordings 

EEG signals (sampling frequency of 125 Hz) were recorded using the 
Narcotrend® monitor (MonitorTechnik, Bad Bramstedt, Germany) 
which provides a bipolar derivation (FP1-TP9 in the 10–20 system, with 
FpZ as the common reference). The Narcotrend monitor also has built-in 
high (0.5 Hz) and low (45 Hz) pass filters. Some electrocardiogram 
artifact was present in the EEG, and we used an ECG minimization 
method as detailed elsewhere [26]. Periods of EEG where burst sup
pression was present (defined as amplitudes <5 μV for more than half a 
second) were not included in the analysis. As in previous analyses, EEG 
activity with absolute slopes >50 mV per 8 ms was excluded from the 
analysis as noise [26]. 

2.3. Spectral analyses 

Successive spectra were created from artifact and burst suppression- 
free sections of EEG of 20 s length with a 1 s offset using spectrogram.m 
in Matlab R2017b (The MathWorks Inc., Natick, MA, USA). We chose to 
use 625 FFT points (nfft), to allow a frequency resolution of 0.1 Hz. 
Alpha frequency was calculated as the frequency (in Hz) where spectral 
power was maximal within the extended alpha (6 to 17 Hz) range, when 
the underlying aperiodic power had been subtracted (as estimated using 
a linear regression on the spectra until 35 Hz without the power in the 
delta (0.5–4 Hz) and extended alpha ranges, see [27] for details. We 
chose the lower alpha range of 6 Hz after examination of the data, as we 
noted that the classic alpha oscillation could reach this low in our group 
of primarily elderly patients, and because isoflurane does not have such 
a prominent theta peak as with sevoflurane and desflurane. The median 
of all alpha frequency values for each patient was used in this analysis. 

2.4. Independent variables 

Demographics and comorbidities were prospectively collected. 
Comorbidities were recorded according to the EuroScore system [28]. 
Pulmonary disease was regarded as relevant at equal or more than a 
GOLD III [29]. Sodium blood levels were divided into normal and low 
range, as the maximal reported sodium value was 145 mmol/L. 

2.5. Dependent variable – postoperative delirium (POD) 

For detection of POD, the validated chart review method was used as 
a systematic retrospective approach [30]. Its sensitivity is known to be 
limited in comparison to the Confusion Assessment Method, but due to 
the study design a retrospective methodology had to be chosen. 

2.6. Statistics 

Demographic and clinical characteristics were compared between 
the delirium and non-delirium groups by using univariable and multi
variable regression. Possible selection bias was addressed by performing 
propensity score matching (PSM) and by restricting brain concentrations 
to a CeMAC between 0.7 and 0.8, minimizing isoflurane dose effects. 
The propensity score for each individual is defined as the probability of 
developing POD given the patient’s baseline characteristics and 
comorbidities (Table 1). This incorporated 18 variables, including 
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demographic variables and comorbidities. Peak alpha frequency was not 
matched on, as this was the variable of interest. 

Multiple matching models with different matching ratios and cali
pers were evaluated to select a matching model with the overall best 
balance and the smallest reduction in the number of POD patients. 
Nearest-neighbor matching without replacement with up to five non- 
POD for each POD patient was used with a caliper of 0.2 SD of a pa
tient’s predicted propensity score. 

The nearest-neighbor matching method selects, for each treated in
dividual i, the control individual with the smallest distance in propensity 
score from individual i. Following propensity score matching, the bal
ance of the matched treated and control groups was evaluated by 
calculating variance ratios and absolute values of the standardized dif
ferences in means as well as by performing a MANOVA, which is used in 
multivariate hypothesis testing [31–33]. To depict the influence of 
propensity score matching on the differences in POD, univariable and 
multivariable regression was used before matching; t-test and chi-square 
tests were used after matching as deemed appropriate. A p value of 
<0.05 was considered significant in all applied tests. R was used for data 
handling (R version 4.2.2 (2022− 10− 31); Institute of Statistics and 
Mathematics, R Foundation of Statistical Computing) and for further 
analysis the finalfit, MatchIt and vioplot package [34]. 

Table 1 
Independent variables summary – before propensity score matching.  

Dependent: 
Delirium (no/ 
yes)  

NO YES OR 
(univariable) 

OR 
(multivariable) 

n =
755 

n =
73 

Age (years) Mean 
(SD) 

64.3 
(11.7) 

70.1 
(7.2) 

0.00 (0.00 to 
0.01, p <
0.001) 

0.00 (− 0.00 to 
0.00, p =
0.193) 

Peak Alpha 
Frequency 
(Hz) 

Mean 
(SD) 

8.9 
(1.2) 

7.9 
(1.3) 

− 0.05 (− 0.07 
to − 0.04, p 
< 0.001) 

− 0.04 (− 0.06 
to − 0.03, p < 
0.001) 

Gender (male/ 
female) 

0 571 
(91.2) 

55 
(8.8) 

– – 

1 184 
(91.1) 

18 
(8.9) 

0.00 (− 0.04 
to 0.05, p =
0.957) 

− 0.01 (− 0.05 
to 0.04, p =
0.798) 

CKD Stage (1–4) 1 189 
(96.4) 

7 
(3.6) 

– – 

2 406 
(90.4) 

43 
(9.6) 

0.06 (0.01 to 
0.11, p =
0.013) 

0.03 (− 0.02 to 
0.08, p =
0.293) 

3 111 
(92.5) 

9 
(7.5) 

0.04 (− 0.02 
to 0.10, p =
0.227) 

− 0.01 (− 0.08 
to 0.06, p =
0.842) 

4 49 
(77.8) 

14 
(22.2) 

0.19 (0.11 to 
0.27, p <
0.001) 

0.10 (0.01 to 
0.18, p =
0.028) 

CVI (none/TIA 
or Stroke 
without/with 
hemiplegia) 

0 685 
(92.1) 

59 
(7.9) 

– – 

1 56 
(83.6) 

11 
(16.4) 

0.08 (0.01 to 
0.16, p =
0.019) 

0.06 (− 0.01 to 
0.13, p =
0.111) 

2 14 
(82.4) 

3 
(17.6) 

0.10 (− 0.04 
to 0.23, p =
0.162) 

0.01 (− 0.12 to 
0.14, p =
0.889) 

Arteriopathy 
(none/ 
peripheral/ 
carotid) 

0 642 
(92.4) 

53 
(7.6) 

– – 

1 57 
(85.1) 

10 
(14.9) 

0.07 (0.00 to 
0.14, p =
0.044) 

0.04 (− 0.03 to 
0.11, p =
0.319) 

2 56 
(84.8) 

10 
(15.2) 

0.08 (0.00 to 
0.15, p =
0.039) 

0.04 (− 0.03 to 
0.12, p =
0.224) 

Diabetes (none/ 
NIDDM/ 
IDDM) 

0 608 
(91.0) 

60 
(9.0) 

– – 

1 90 
(93.8) 

6 
(6.2) 

− 0.03 (− 0.09 
to 0.03, p =
0.378) 

− 0.04 (− 0.10 
to 0.02, p =
0.224) 

2 57 
(89.1) 

7 
(10.9) 

0.02 (− 0.05 
to 0.09, p =
0.599) 

− 0.02 (− 0.10 
to 0.05, p =
0.560) 

Sodium 
(normal/low) 

1 729 
(91.5) 

68 
(8.5) 

– – 

2 26 
(83.9) 

5 
(16.1) 

0.08 (− 0.03 
to 0.18, p =
0.144) 

0.08 (− 0.02 to 
0.18, p =
0.125) 

BMI Mean 
(SD) 

27.4 
(4.8) 

27.5 
(4.8) 

0.00 (− 0.00 
to 0.00, p =
0.770) 

0.00 (− 0.00 to 
0.01, p =
0.391) 

Liver Disease 
(no/yes) 

0 673 
(90.9) 

67 
(9.1) 

– – 

1 82 
(93.2) 

6 
(6.8) 

− 0.02 (− 0.09 
to 0.04, p =
0.485) 

− 0.01 (− 0.07 
to 0.05, p =
0.682) 

Alcohol abuse 
(no/yes) 

0 639 
(91.9) 

56 
(8.1) 

– – 

1 116 
(87.2) 

17 
(12.8) 

0.05 (− 0.01 
to 0.10, p =
0.078) 

0.04 (− 0.01 to 
0.10, p =
0.101) 

Reduced LVEF 
(no/yes) 

0 560 
(92.7) 

44 
(7.3) 

– – 

1 195 
(87.1) 

29 
(12.9) 

0.06 (0.01 to 
0.10, p =
0.011) 

0.03 (− 0.01 to 
0.07, p =
0.192) 

Pulmonary 
Hypertension 
(no/yes) 

0 653 
(91.8) 

58 
(8.2) 

– –  

Table 1 (continued ) 

Dependent: 
Delirium (no/ 
yes)  

NO YES OR 
(univariable) 

OR 
(multivariable) 

n =
755 

n =
73 

1 102 
(87.2) 

15 
(12.8) 

0.05 (− 0.01 
to 0.10, p =
0.099) 

0.02 (− 0.04 to 
0.07, p =
0.600) 

Weight 
Intervention 
(isolated 
CABG or 
Valve/2 
procedures/3 
procedures) 

0 270 
(92.8) 

21 
(7.2) 

– – 

1 210 
(95.9) 

9 
(4.1) 

− 0.03 (− 0.08 
to 0.02, p =
0.217) 

− 0.03 (− 0.08 
to 0.03, p =
0.322) 

2 201 
(88.2) 

27 
(11.8) 

0.05 (− 0.00 
to 0.10, p =
0.063) 

0.00 (− 0.05 to 
0.06, p =
0.871) 

3 74 
(82.2) 

16 
(17.8) 

0.11 (0.04 to 
0.17, p =
0.002) 

0.02 (− 0.07 to 
0.11, p =
0.686) 

Pulmonary 
Disease (no/ 
yes) 

0 671 
(91.9) 

59 
(8.1) 

– – 

1 84 
(85.7) 

14 
(14.3) 

0.06 (0.00 to 
0.12, p =
0.042) 

0.02 (− 0.04 to 
0.08, p =
0.540) 

Previous 
Surgery (no/ 
yes) 

0 689 
(92.1) 

59 
(7.9) 

– – 

1 66 
(82.5) 

14 
(17.5) 

0.10 (0.03 to 
0.16, p =
0.004) 

0.05 (− 0.02 to 
0.12, p =
0.132) 

Acute 
Endocarditis 
(no/yes) 

0 727 
(91.4) 

68 
(8.6) 

– – 

1 28 
(84.8) 

5 
(15.2) 

0.07 (− 0.03 
to 0.16, p =
0.191) 

0.05 (− 0.05 to 
0.15, p =
0.289) 

Recent MI (no/ 
yes) 

0 661 
(91.4) 

62 
(8.6) 

– – 

1 94 
(89.5) 

11 
(10.5) 

0.02 (− 0.04 
to 0.08, p =
0.522) 

0.03 (− 0.03 to 
0.09, p =
0.350) 

Aneurysmatic 
Thoracic Ao 
(no/yes) 

0 634 
(93.2) 

46 
(6.8) 

– – 

1 121 
(81.8) 

27 
(18.2) 

0.11 (0.06 to 
0.16, p <
0.001) 

0.09 (0.02 to 
0.16, p =
0.009) 

Data are expressed as mean and standard deviation, or as count and percentage 
as appropriate. OR = odds ratio; CKD = chronic kidney disease; CVI = cere
brovascular insult; TIA = transient ischemic attack; NIDDM/IDDM = non-insulin 
dependent diabetes mellitus/insulin dependent diabetes mellitus; BMI = body- 
mass-index; LVEF = left ventricular ejection fraction; CABG = coronary artery 
bypass grafting; MI = myocardial infarction; Ao = aorta. 
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3. Results 

Of the 1072 cardiac surgical patients in the database, 244 patients 
were excluded from further analysis. In 17 patients EEG data was 
missing, and in 109 patients, the end-tidal volatile concentrations were 
not stable long enough to determine an accurate effect site concentra
tion. In 53 patients no frontal alpha oscillation could be detected and 
another 65 patients had either one or more missing comorbidity values 
or a history of dementia (which has known EEG alterations at baseline). 
This resulted in a total of 828 patients for the final analysis – 73 with 
POD and 755 without (Fig. 1). 

Table 1 presents continuous data as mean and standard deviations or 
counts and percentages, per level for categorical data prior to propensity 
matching, as well as odds ratios. At the univariable level, 10 of the 19 

independent variables show a significant association with the dependent 
variable POD before performing PSM. On the multivariable level only 
three variables presented a significant association with POD: Peak alpha 
frequency, chronic kidney disease (CKD) and an aneurysmatic thoracic 
aorta requiring surgery. 

Following PSM there were no significant differences remaining be
tween the matched groups of POD versus non-POD, with the standard
ized mean difference not exceeding 0.25, no variance ratio outside the 
range of 0.5–2, and a non-significant MANOVA test (P = 0.996) (Fig. 2). 
Of the 755 non-POD patients, 494 were not suitable for matching, 
whereas only 6 POD patients could not be matched of the 73 POD pa
tients. After correcting for the group imbalances through matching the 
findings of the difference in peak alpha frequency persisted (Table 2). 
The detailed distribution of peak alpha frequencies for matched patients 

Fig. 1. Flow chart of data selection.  
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are presented in Fig. 3. 
Hence, our main finding demonstrates that patients with POD have 

lower intraoperative peak alpha frequencies (mean 7.9 Hz) than non- 
POD patients (mean 8.8 Hz). This intraoperative pattern of peak alpha 
is statistically significant before and after performing PSM. 

The white dot represents the median, the thick black bar in the center 
the interquartile range, the black line the rest of the distribution. On 
each side of the black line is a kernel density estimation to show the 
distribution shape of peak alpha frequency. Wider sections of the violin 
plot represent a higher probability that members of the population will 
take on the given value; the thinner sections represent a lower 
probability. 

4. Discussion 

We detected a clinically important association of lower peak alpha 
frequencies in frontal EEGs of patients undergoing isoflurane anesthesia 
who subsequently developed POD. The effect was present at univariable 
and multivariable levels, as well as before and after PSM adjusting for 
clinically important confounding factors known to be associated with 
POD [35]. These encompass consistent risk factors such as increasing 
age, history of stroke, CKD, and especially end stage renal disease [36]. 
All these independent variables were significantly differently distributed 
between POD and non-POD groups in our patient population before 
PSM, but not afterwards. 

Several risk factors for POD are also part of the EuroScore, a pre
dictive score for mortality risk after cardiac surgery [28]. EuroScore 
factors had been prospectively collected for the primary study and could 
be used to create the matching pairs for this secondary analysis. The 
mean age of patients with POD in previous studies ranges from 68 to 78 
years [37,38]. Likewise, prevalence of delirium increases with wors
ening CKD, increasing up to approximately 40% in surgical patients, 
depending on surgical discipline and procedure [39–43] and up to over 

60% in non-surgical patients suffering CKD in stage IV-V [44,45]. 
Another known risk factor of POD is cardiovascular surgery itself, 

supposedly stemming from inflammatory responses to the invasive 
procedure [35,46–49]. Decreased brain function or reserve and a higher 
vulnerability for cerebral hypoperfusion may be possible mechanisms 
[38]. 

Prolonged periods of burst suppression activity in the intraoperative 
EEG has been associated with higher incidence of POD in mostly 
retrospective studies [50–53]. In contrast, RCTs have reported varying 
results, with the most recent and largest study not supporting a causal 
link between burst suppression and POD [17]. Interestingly, in this study 
30-day mortality and use of vasopressors was significantly higher in the 
group with more burst suppression. Although recommended by several 
medical societies, the intraoperative use of EEG anesthesia monitors and 
the proposed index guided anesthesia management – with the aim of 
avoiding or reducing low index levels or burst suppression and subse
quent POD – is being critically questioned by some authors 
[13,18,19,54]. Given that the main commercially available DOA mon
itors exhibit markedly discordant index values when provided with 
identical raw EEG traces that show clear patterns of emergence [55], this 
criticism is not without warrant. 

There is an increasing focus on the relationship between the alpha 
oscillation and POD, although to date this has focused on alpha power, 
not frequency. Lower power has been associated with an increased rate 
of POD [56–58] as have low levels of alpha connectivity [59]. Moreover, 
low frontal alpha power is also associated with an increased propensity 
for burst suppression, independent of patient’s chronological age and 
therefore representing a higher likelihood for postoperative neuro
cognitive disorders like POD [23]. 

With regards to frequency, the alpha oscillation is known to slow to 
both increasing anesthetic dose and with age [24,60,61]. Although not 
the same as the frontal alpha during anesthesia, the occipital alpha 
oscillation that occurs during the awake state is clearly slower in 

Fig. 2. Balance of independent variables before and after propensity score matching.  
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patients with various cognitive disorders such as Alzheimer’s disease, 
depression, and anxiety [62–64]. Slower awake alpha frequency has also 
been associated with higher postoperative pain [65]. Of interest, a 
slower alpha frequency during propofol anesthesia has been associated 
with altered cerebral autoregulation [66] but to our knowledge our 
current analysis is the first to examine possible associations between 
alpha slowing during anesthesia and POD. 

Besides guiding anesthesia by rather unreliable processed EEG 
indices [55], investigators are examining other EEG markers, such as 
slow wave saturation [67–70], maximizing alpha power 
[22,23,27,52,71,72], or avoiding burst suppression [17]. Our approach 
of looking into peak alpha frequency is founded on the well described 
effects of changes of the anesthetic concentration on our target organ, 
the brain [24] and the pathophysiological background of surgery trig
gered neuroinflammation [73–75], neurotransmitter imbalances (espe
cially acetylcholine) [76–83], disruption of neural networks [84–86] 
and microvascular dysfunction [87] resulting in inadequate oxygen and 
nutrient supply to brain cells, affecting their function [88,89] and 
leading to slower brain waves. This slowing of the alpha oscillation in 
POD suffering patients may be interpreted as a sign of a vulnerable brain 
or as a real causal influencing factor that could be approached to lower 
the incidence of POD [57]. 

4.1. Limitations 

It should be noted that our results are derived from a secondary 
analysis of prospectively collected data and not a randomized clinical 
trial (RCT). This implies an overestimated effect of peak alpha frequency 
on POD, which has been shown in multiple studies comparing the results 
of retrospective versus prospective randomized studies [90–92]. How
ever, by including a larger number of patients of a vulnerable cardiac 
surgical population with a high event rate for delirium and taking care of 
study bias and confounding factors through creating well balanced 
groups through propensity score matching, we were able to simulate 
conditions similar to a RCT. 

The diagnosis of POD in our patients was based on chart review. This 
approach may underestimate the true event rate as discussed in detail by 
Inouye and colleagues and translates into a predictable uncertainty not 
significantly effecting our hypothesis creation [30]. When pre-existing 
neurological disorders such as Alzheimer’s disease are followed by 
POD, this method proves to be less reliable than the direct detection of 
delirium using the CAM test. As a consequence, patients with such 
comorbidities were excluded from this analysis. 

It is also known that changes in the slope of the aperiodic component 
of the EEG can cause shifts in alpha frequency [93] but the magnitude of 
changes are far less than the clinical effect of around 1 Hz that we 
observed. 

Table 2 
Independent variables summary – after propensity score matching.  

Dependent: Delirium (no/yes)  NO YES p-value 

n = 261 n = 67 

Age (years) Mean 
(SD) 

68.9 
(9.0) 

69.6 
(7.2) 

0.555 

Peak Alpha Frequency (Hz) Mean 
(SD) 

8.8 
(1.3) 

7.9 
(1.3) 

<0.001 

Gender (male/female) 0 201 
(77.0) 

50 
(74.6) 

0.803 

1 60 
(23.0) 

17 
(25.4)  

CKD Stage (1–4) 1 32 
(12.3) 

7 
(10.4) 

0.662 

2 163 
(62.5) 

41 
(61.2)  

3 37 
(14.2) 

8 
(11.9)  

4 29 
(11.1) 

11 
(16.4)  

CVI (none/TIA or Stroke without/ 
with hemiplegia) 

0 219 
(83.9) 

54 
(80.6) 

0.568 

1 31 
(11.9) 

11 
(16.4)  

2 11 (4.2) 2 (3.0)  
Arteriopathy (none/peripheral/ 

carotid) 
0 207 

(79.3) 
50 
(74.6) 

0.629 

1 22 (8.4) 8 
(11.9)  

2 32 
(12.3) 

9 
(13.4)  

Diabetes (none/NIDDM/IDDM) 0 217 
(83.1) 

56 
(83.6) 

0.996 

1 20 (7.7) 5 (7.5)  
2 24 (9.2) 6 (9.0)  

Sodium (normal/low) 1 248 
(95.0) 

62 
(92.5) 

0.621 

2 13 (5.0) 5 (7.5)  
BMI Mean 

(SD) 
27.7 
(4.9) 

27.4 
(4.8) 

0.626 

Liver Disease (no/yes) 0 242 
(92.7) 

61 
(91.0) 

0.839 

1 19 (7.3) 6 (9.0)  
Alcohol abuse (no/yes) 0 205 

(78.5) 
53 
(79.1) 

1.000 

1 56 
(21.5) 

14 
(20.9)  

Reduced LVEF (no/yes) 0 172 
(65.9) 

43 
(64.2) 

0.904 

1 89 
(34.1) 

24 
(35.8)  

Pulmonary Hypertension (no/yes) 0 211 
(80.8) 

53 
(79.1) 

0.883 

1 50 
(19.2) 

14 
(20.9)  

Weight Intervention (isolated CABG 
or Valve/2 procedures/3 
procedures) 

0 84 
(32.2) 

20 
(29.9) 

0.719 

1 39 
(14.9) 

9 
(13.4)  

2 102 
(39.1) 

25 
(37.3)  

3 36 
(13.8) 

13 
(19.4)  

Pulmonary Disease (no/yes) 0 224 
(85.8) 

54 
(80.6) 

0.384 

1 37 
(14.2) 

13 
(19.4)  

Previous Surgery (no/yes) 0 231 
(88.5) 

57 
(85.1) 

0.578 

1 30 
(11.5) 

10 
(14.9)  

Acute Endocarditis (no/yes) 0 251 
(96.2) 

64 
(95.5) 

1.000 

1 10 (3.8) 3 (4.5)  
Recent MI (no/yes) 0 219 

(83.9) 
56 
(83.6) 

1.000  

Table 2 (continued ) 

Dependent: Delirium (no/yes)  NO YES p-value 

n = 261 n = 67 

1 42 
(16.1) 

11 
(16.4)  

Aneurysmatic Thoracic Aorta (no/ 
yes) 

0 194 
(74.3) 

45 
(67.2) 

0.306 

1 67 
(25.7) 

22 
(32.8)  

Data are expressed as mean and standard deviation, or as count and percentage 
as appropriate. CKD = chronic kidney disease; CVI = cerebrovascular insult; TIA 
= transient ischemic attack; NIDDM/IDDM = non-insulin dependent diabetes 
mellitus/insulin dependent diabetes mellitus; BMI = body-mass-index; LVEF =
left ventricular ejection fraction; CABG = coronary artery bypass grafting; MI =
myocardial infarction; Ao = aorta. 
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5. Conclusions 

In this cardiac surgical patient population, a slower frontal alpha 
frequency under general anesthesia with isoflurane was independently 
associated with postoperative delirium and might be a simple intra
operative pathophysiological marker of a vulnerable brain for ultimately 
developing POD, or a potential tool for anesthesiologists to lower the 
incidence of POD. 
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