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A generalization of Wilsonian lattice gauge theory may be obtained by considering the possible
self-adjoint extensions of the electric field operator in the Hamiltonian formalism. In the special
case of 3D U(1) gauge theory these are parametrised by a phase \, and the ordinary Wilson theory
is recovered for \ = 0. We consider the case \ = c, which, upon dualization, turns into a theory
of staggered integer and half-integer height variables. We investigate order parameters for the
breaking of the relevant symmetries, and thus study the phase diagram of the theory, which shows
evidence of a broken Z2 symmetry in the continuum limit, in contrast to the ordinary theory.
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1. Introduction

The action of a quantum field theory is determined by the symmetries of the physical system
it is meant to model. In the Wilsonian framework of renormalization, for example, one includes in
principle all possible terms consistent with the symmetries of the theory. In the context of gauge
theories, the most important symmetries are Poincaré invariance and the gauge symmetry. On the
lattice the gauge symmetry is typically implemented exactly, while Poincaré invariance is broken
to the subgroup of lattice translations and space-time hypercubic rotations. One then expects to
recover the full Poincaré group in the continuum limit.

In the typical framework of gauge theories, one may consider different choices of action with
the gauge symmetry and lattice Poincaré symmetry, all of which converge to the same continuum
limit. In the present work we consider an example of a new type of gauge theory - in particular, a
U(1) gauge theory in three dimensions - which, despite preserving both the lattice gauge symmetry
and the lattice Poincaré invariance, has a different continuum limit than the standard Wilson-type
U(1) gauge theory. In fact, by formulating the standard U(1) gauge theory in the Hamiltonian
formalism, we see that it is natural to include an extra parameter in the theory, in this case an angle
\. This extension, which in a mathematical sense corresponds to a self-adjoint extension of the
electric field operator in the Hamiltonian formalism, would be far from obvious from a Euclidean
action perspective. In this sense, our work expands the current framework of lattice gauge theories.

In these proceedings, we first formulate the new type of U(1) gauge theory and explain how
the \ parameter is introduced. In the \ = 0 case, it reduces to the standard U(1) gauge theory,
for which we briefly review the main results in the three-dimensional case. We specialize to three
dimensions for simplicity and then consider the case \ = c, which is the only value of \ which
preserves the symmetries of the \ = 0 theory; in particular, for \ ∉ {0, c}, charge conjugation is
explicitly broken. Similarly to the standard U(1) gauge theory, the \ = c theory may be written
in terms of a dual height model, which we simulate numerically. The dual model is free of the
sign problem that appears in the path integral formulation of the \ = c theory. We investigate
appropriate order parameters for the breaking of the relevant symmetries, and we find evidence that
the \ = c theory has a broken Z2 symmetry down to the continuum limit, a feature which is absent
from the standard U(1) theory.

2. The standard compact Abelian gauge theory in 3D

In this section we briefly review some results, as well as the Hamiltonian formulation, for the
standard compact U(1) gauge theory in three dimensions.

2.1 Action formulation

The standard compact Wilson-type U(1) gauge theory in 3D is well-understood both analyti-
cally and numerically [1]. In the Villain formulation, its partition function is given by

/ =

( ∏
;∈links

∫ c

−c
3\;

) ©«
∏
?∈plaq

+∞∑
=?=−∞

ª®¬ exp

[
− 1

242

∑
?

((3\)? − 2c=?)2
]
, (1)
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where 42 is a dimensionless coupling, ; are lattice links and ? are plaquettes. Labelling the ordered
links in the plaquette ? from 1 to 4, we have (3\)? = \1 + \2 − \3 − \4. Many features of the
theory can be understood analytically by dualization. The partition function eq.(1) can be rewritten
in terms of new field variables ℎG ∈ Z which live on the sites G of the dual lattice. The end result is
that, up to some constant prefactors,

/ =

( ∏
G∈sites

+∞∑
ℎG=−∞

)
exp

−
42

2

∑
〈GH〉
(ℎG − ℎH)2

 , (2)

where ℎG ∈ Z are integer-valued scalar fields on the dual lattice, and 〈GH〉 denotes nearest neighbours.
It is precisely the integer nature of the fields which makes the theory non-trivial. If ℎG ∈ R, this
would simply be the action of a massless free real scalar field.

Through the analysis of the height model eq.(2), it has been shown analytically that 3D U(1)
gauge theory is confining at all couplings, with a mass gap < which scales as [1]

<2 =
8c2

42 exp
[
−2c22/42] , (3)

in lattice units, where 2 ≈ 0.2527, while the string tension scales as

f =
2̃

4c2<4
2 (4)

for some constant 2̃, again in lattice units. These results have found numerical confirmation [2, 3].
The continuum limit is achieved as 42 → 0. Perhaps surprisingly, the resulting continuum theory
is a free scalar field of mass < [1].

2.2 Hamiltonian formulation

In the Hamiltonian formulation of U(1) gauge theory, time is continuous while space is
discretized into a square lattice [4]. The temporal gauge �0 = 0 is chosen. Classically, one assigns
a U(1) variable to each lattice link. Thus, quantising, the Hilbert space on each link is given by the
set of square-integrable functions on U(1) and the overall Hilbert space is therefore

H =
⊗
;∈links

!2(U(1)); . (5)

The Hamiltonian of the theory can be obtained via the transfer matrix and is given by

� =
42

2

∑
;∈links

�2
; +

1
242

∑
?∈plaq

�2(*?) , (6)

where *? is the usual plaquette variable and the electric field operator �; is given on each link by
�; = −8 mmi; , where*; = exp (8i;) is the U(1) link variable. Thus one may interpret i; as an angular
position operator on the circle U(1), with �; its canonically conjugate angular momentum. The
magnetic term �2 may be chosen in different equivalent ways, similarly to the freedom available in
the choice of action. For example, �2 could be either the Wilson or Villain term for the standard
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U(1) gauge theory. There is an additional constraint on the Hilbert space, in that only those states
which satisfy the Gauss’ law constraint

�G |k〉 = 0 , �G =
∑
8

(
�G,8 − �G−8,8

)
(7)

are to be considered as physical states.

3. A new type of Abelian gauge theory

In the previous section we have seen that, in the Hamiltonian formulation, on each lattice link
the Hilbert space is formed by the square-integrable functions on U(1). Each such wavefunction
k ∈ !2(U(1)) therefore satisfies

k(2c) = k(0),
∫ 2c

0
3i |k(i) |2 < ∞ . (8)

In other words, on each link the wavefunctions are required to come back to themselves after going
around 2c in gauge field space. This, however, is not the most general choice that is consistent with
the symmetries of the theory. One may, in fact, require that the wavefunction only come back to
itself up to a twist,

k(2c) = 48 \k(0) . (9)

This choice is consistent with the gauge symmetry, so that the resulting theory still has a U(1) gauge
symmetry. In particular, the choice eq.(9) is still compatible with the Gauss law eq.(7). Another way
of understanding the choice eq.(9) is through the mathematical concept of self-adjoint extensions
[5, 6]. In the standard Wilson-type gauge theory, the electric field � = −8mi is an operator on the
single-link Hilbert space. In particular, in order to make sense of the Hamiltonian and the Gauss’
law constraint, the electric field must be self-adjoint, so that it has a complete orthonormal basis of
eigenfunctions and real eigenvalues. The choice eq.(9) is in fact the most general choice consistent
with the requirement that � = −8mi be self-adjoint.

Figure 1: A two dimensional slice of
the lattice, depicting the staggered integer
(black dots) and half-integer (white dots)
height variables.

Up until now, we have modified only the domain of
definition of the electric field operator, i.e. the Hilbert
space of the theory. In fact, requiring that the wavefunc-
tions satisfy eq.(9) in this case is equivalent, by a basis
change, to havingwavefunctions which satisfy eq.(8) with
a modified electric field operator �; → �; + \

2c . Start-
ing from the Villain form of the magnetic term �2 of
the Hamiltonian, we then modify it, similarly to the elec-
tric field, in such a way to preserve both the structure of
small fluctuations and the overall Euclidean lattice cubic
symmetry in the partition function. Since we aim to un-
derstand the resulting theory numerically, we obtain the
partition function from the Hamiltonian. We then dualize the partition function, as we’ve seen
in Section 2 for the standard U(1). We note that for \ ≠ 0, the original partition function has a
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sign problem which is absent from the dualized partition function expressed in terms of the dual
variables.

Among the possible values of \, only the \ = c theory preserves all the symmetries of the
\ = 0 theory; in particular, for \ ∉ {0, c} charge conjugation is explicitly broken. We therefore
focus on the \ = c case, for which the dualized partition function is that of a height model,

/ =

( ∏
Geven

∑
ℎG ∈Z

) ©«
∏
Godd

∑
ℎG ∈Z+1/2

ª®¬ exp
−
42

2

∑
〈GH〉
(ℎG − ℎH)2

 , (10)

where each lattice site at position ®G = (G0, G1, G2) in lattice units is said to be even or odd according
to the parity of G0 + G1 + G2. The height variables ℎG are integer on even lattice sites and half-integer
on odd lattice sites. The staggering is isotropic in space-time; each integer variable is surrounded
by half-integer nearest neighbours in all directions, and viceversa. This should be contrasted with
the case of quantum link models, where a similar dualization can be performed but the staggering
only occurs in the space directions [7]. An example of a staggered lattice in two dimensions is
shown in figure 1, however in our case we work in three dimensions and the staggering is in all
directions. The partition function eq.(10) should be contrasted with the dual partition function for
the standard U(1) theory, eq.(2); the two are identical except for the nature of the height variables,
which for the latter are all integer-valued.

4. Symmetries and order parameters

The theory described by the partition function eq.(10), i.e. the dualized \ = c 3D U(1) gauge
theory, has several symmetries:

1. Global Z-invariance: ℎG → ℎG + 2 where 2 is any constant integer. This preserves both the
action and the integer and half-integer nature of the height variables.

2. Z2 charge conjugation �: ℎG → −ℎG . Again this preserves both the action and the nature of
the height variables.

3. Z2 shift symmetry (: ℎG → ℎG+` + 1
2 where ` is any direction. Since shifting by one lattice

spacing in any direction replaces integer height variables with half-integers and vice-versa,
we add a half-integer shift in order to restore their nature.

4. Translations by an even number of lattice spacings. These preserve the nature of the height
variables and therefore do not require any further staggering.

5. Euclidean cubic symmetry. The action is isotropic with respect to lattice rotations and
reflections in any of the three directions.

The global Z-invariance should be thought of as a redundancy in our description of the system,
whereby we are free to set the overall height of the system [1]. We will therefore require that all
observables be invariant under the global Z-symmetry.

5
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Figure 2: Left: Histogram of the operator$( normalized by the volume+ at 42 = 0.70. Right: Susceptibility
of $( normalized by +2 as a function of 42 for several volumes, with a fit of the large-volume data to the
form � exp (−�/42). The double-peaked structure at large volume (left) and scaling as +2 (right) indicates
spontaneous breaking of the ( symmetry.

We now construct order parameters for the possible breaking of the ( and � symmetries. We
consider first the observable

$�( =
∑
G

(−1)GℎG =
∑
G even

ℎG −
∑
G odd

ℎG , (11)

which is sensitive to both ( and �, under either of which it changes sign. We note that $�( is
indeed invariant under the global Z-symmetry, and moreover, it is a sum of local observables.

An observable which is sensitive to ( but not � is more difficult to construct, since it must also
be Z-invariant and the sum of local terms. We chose the observable $( to be

$( =
∑

2∈cubes

∑
G∈2
(−1)G (ℎG − ℎ̄2)2 , (12)

where the sum is first over all unit cubes in the lattice and then over all sites G belonging to cube 2
with the relevant parity. The cube average ℎ̄2 is defined as

ℎ̄2 =
1
8

∑
G∈2

ℎG . (13)

The observable $( is invariant under charge conjugation � but changes sign under the shift
symmetry (. We note that a theory whose phase diagram was characterized by order parameters
for the breaking of charge conujugation and one-site shift symmetry was already considered in the
context of quantum link models [7].

5. Numerical simulation

We simulated the staggered height model numerically using a multi-cluster algorithm [8]. We
investigated a range of couplings from 42 = 0.3 up to 42 = 2.0 on !3 lattices from ! = 32 up to

6
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Figure 3: Left: Histogram of the operator$�( normalized by the volume at 42 = 0.70. Right: Susceptibility
of $�( normalized by +2 as a function of 42 for several volumes. A single histogram peak at large volumes
(left) and scaling smaller than +2 (right) indicates an unbroken �( symmetry.

! = 256. We computed the observables $( and $�( and show the relevant data in figures 2 and
3. We expect the continuum limit to emerge as 42 → 0, as in the case of the standard U(1) gauge
theory.

Focusing on figure 2, we see that the susceptibility of $( , appropriately normalized by the
volume squared, is essentially volume-independent for a wide range of coupling 42, indicating that
the ( symmetry is spontaneously broken. This is confirmed by the histogram, which shows two
clearly defined peaks which become sharper with increasing volume. As the coupling becomes
smaller, finite volume effects cause the ( symmetry to be restored. However, we see that this
happens for decreasing values of 42 as the volume is increased, which indicates that this is likely a
finite-volume effect. Moreover, the function 5 (42) = � exp (−�/42), inspired by eq.(3), provides
an excellent fit to the data and would imply that the symmetry is broken for all couplings. We
interpret the data to mean that the ( symmetry (shift by one lattice spacing) is broken for all values
of the coupling 42. It is important to note that translations by an even number of lattice spacings
remain unbroken, so that we still expect a translational invariant theory in the continuum limit.

The data for the $�( observable, on the other hand, is shown in figure 3. In this case the
susceptibility normalized by +2 decreases with the volume, which is indicative that at least one
of ( or � is unbroken. The decrease with the volume is less apparent in the central region of the
right-hand side of figure 3, but the histogram in figure 3, taken at 42 = 0.70 (in this region) shows
that, while two peaks seem to be forming for small volumes, they merge in the center around zero
for bigger volumes. We therefore interpret the data to mean that the � symmetry remains unbroken
for all couplings.

Overall, we therefore see evidence that the continuum limit of the unstaggered model, obtained
as 42 → 0, has a Z2 broken symmetry which remains unbroken in the standard Wilson-type U(1)
gauge theory. It is conceivable that the broken shift symmetry may manifest itself in terms of the
internal degrees of freedom of the continuum theory. It would be interesting to obtain an effective
description of the \ = c theory in the continuum and compare with the \ = 0 case, which, as we
have seen in Section 2, is described in the continuum by a massive free scalar.
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6. Conclusions

We have shown that U(1) gauge theory may be extended by the addition of an extra non-
perturbative parameter \, in a way which preserves both the gauge symmetry and the Euclidean
hypercubic symmetry. We considered the theory in three dimensions for \ = c and dualized it to
obtain a height model free of the sign problem which affects the original theory. We find evidence
that the \ = c theory has a broken Z2 symmetry which is absent from the standard U(1) gauge
theory, and therefore describes a different continuum limit.

We are currently performing additional numerical work to compute other quantities for the
staggered height model, such as the mass gap and the string tension. It would also be worthwhile
to understand the universality class corresponding to the continuum limit of the \ = c theory, and
understand the nature of the effective theory that describes it.

Other interesting extensions of the present work involve studying the theory in different dimen-
sions (for example in 4D) or at values of \ ∉ {0, c} and, perhaps more importantly, understanding
the theoretical framework and performing numerical simulations in the non-Abelian case.
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