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We present a lattice determination of the leading-order hadronic vacuum polarization (HVP)
contribution to the muon anomalous magnetic moment, aHVPμ , in the so-called short and intermediate
time-distance windows, aSDμ and aWμ , defined by the RBC/UKQCD Collaboration [Phys. Rev. Lett. 121,
022003 (2018)]. We employ gauge ensembles produced by the Extended Twisted Mass Collaboration
(ETMC) with Nf ¼ 2þ 1þ 1 flavors of Wilson-clover twisted-mass quarks with masses of all the
dynamical quark flavors tuned close to their physical values. The simulations are carried out at three values
of the lattice spacing equal to ≃0.057, 0.068 and 0.080 fm with spatial lattice sizes up to L ≃ 7.6 fm. For
the short-distance window we obtain aSDμ ðETMCÞ ¼ 69.27ð34Þ × 10−10, which is consistent with the

recent dispersive value of aSDμ ðeþe−Þ ¼ 68.4ð5Þ × 10−10 [Colangelo et al., Phys. Lett. B 833, 137313

(2022)]. In the case of the intermediate window we get the value aWμ ðETMCÞ ¼ 236.3ð1.3Þ × 10−10, which

is consistent with the result aWμ ðBMWÞ ¼ 236.7ð1.4Þ × 10−10 [Borsanyi et al., Nature (London) 593, 51
(2021)] by the BMW Collaboration as well as with the recent determination by the CLS/Mainz group of
aWμ ðCLSÞ ¼ 237.30ð1.46Þ × 10−10 [Cè et al., Phys. Rev. D 106, 114502 (2022)]. However, it is larger than

the dispersive result of aWμ ðeþe−Þ ¼ 229.4ð1.4Þ × 10−10 by approximately 3.6 standard deviations. The
tension increases to approximately 4.5 standard deviations if we average our ETMC result with those by
BMW and CLS/Mainz. Our accurate lattice results in the short and intermediate windows point to a
possible deviation of the eþe− cross section data with respect to Standard Model predictions in the low- and
intermediate-energy regions but not in the high-energy region.
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I. INTRODUCTION

The anomalous magnetic moment of the muon aμ ≡
ðg − 2Þ=2 is one of the most precisely determined quantities
in physics, both experimentally and theoretically. It is a
crucial quantity for which a long-standing tension between
the experimental value and the Standard Model (SM)
prediction might provide important evidence for new
physics beyond the SM. The Fermilab Muon g − 2 experi-
ment (E989) has recently published the results of the
analysis of the run-1 data collected in 2018 [1–4], finding
a remarkable good agreement with the previous E821
measurement at Brookhaven National Laboratory [5].
The current experimental world average [1]

aexpμ ¼ 116592061ð41Þ × 10−11 ð1Þ

has a relative uncertainty of 0.35 ppm. The ongoing data
analysis of the second and third runs at Fermilab will allow
one to further reduce the uncertainty on the experimental
value by a factor of 4, and a forthcoming experiment at
Japan Proton Accelerator Research Complex (E34) [6] is
expected to reach a similar precision.
From the theoretical side, the dominant source of

uncertainty in the determination of aμ comes from the
leading-order hadronic vacuum polarization (HVP) term
aHVPμ of order Oðα2emÞ and, to a less extent, from the
hadronic light-by-light scattering contributions of order
Oðα3emÞ. The most precise prediction for the HVP con-
tribution has been obtained till now using a data-driven
approach, in which the HVP contribution is reconstructed
from the experimental cross section data for electron-
positron annihilation into hadrons, using dispersion rela-
tions and assuming only SM physics at high energy [7–12].
Such dispersive analyses find [13] a value of

aHVPμ ðdispÞ ¼ 6931ð40Þ × 10−11; ð2Þ

which corresponds to an overall uncertainty on aμ of 0.37
parts per million (ppm). The difference between the
experimental result of Eq. (1) and the value aSMμ , obtained
by using Eq. (2) for the HVP contribution, is

Δaμ ¼ aexpμ − aSMμ ¼ 251ð41Þð43Þ × 10−11

¼ 251ð59Þ × 10−11; ð3Þ

where the first error is from the experiment and the second
one from the theory [13]. The difference given in Eq. (3)
corresponds to a discrepancy of 4.2 standard deviations
(4.2σ). To match the accuracy of the upcoming experi-
mental results, it is very important to check the result of the
dispersive analysis using different methods and to reduce
the theoretical uncertainty. To this end a complementary
and powerful approach to compute the HVP term is
provided by lattice QCD (LQCD) [13]. In the LQCD

formulation, aHVPμ can be extracted from the zero three-
momentum Euclidean correlation function of two electro-
magnetic (em) currents, VðtÞ, employing the so-called
Euclidean time-momentum representation, as described
in Sec. II.
In recent years, impressive progress has been

made by the LQCD community enabling the evaluation
of aHVPμ with increasing precision, reaching the goal of a
few permille accuracy. A breakthrough concerning the
precision achieved came from the recent lattice calculation
performed by the BMW Collaboration, that found a values
of aHVPμ ðBMWÞ ¼ 7075ð55Þ × 10−11 [14], corresponding
to a relative uncertainty of 0.8%. The result of the BMW
Collaboration differs from the dispersive one of Eq. (2) at
the level of 2.1σ and reduces the difference given by Eq. (3)
to 1.5σ. Independent LQCD determinations of the HVP
term with a few permille accuracy are needed in order to
confirm the BMW result. This requires a joint effort from
the lattice QCD community because of the large degree of
complexity inherent to such calculations and of the delicate
task of controlling all sources of systematic errors in order
to achieve the targeted precision.
In this respect, the so-called short and intermediate

time-distance windows, introduced by the RBC-UKQCD
Collaboration [15], are very important benchmark quan-
tities. They allow for comparisons not only among
determinations from lattice methods, which are ab initio
SM predictions, but also with the results obtained by the
dispersive approach using the experimental data from
eþe− → hadrons. By modifying the integration kernel
using suitably defined smooth step functions that are
tailored to exponentially suppress contributions from
given time regions, it is possible to decompose the full
HVP as the sum of three terms:

aHVPμ ≡ aSDμ þ aWμ þ aLDμ ; ð4Þ

which probe separately short- (aSDμ ), intermediate- (aWμ )
and long-distance physics (aLDμ ), respectively. In the long-
distance window, since the tail of the correlator VðtÞ is
dominated by light two-pion states, one typically observes
large statistical noise and large finite size effects
(FSEs), the treatment of which requires refined tech-
niques. On the contrary, in the short- and intermediate-
distance windows, FSEs are moderate and, moreover, the
lattice data are more precise, allowing a cleaner compari-
son across independent lattice calculations. The short-
distance contribution aSDμ suffers from large discretization
artifacts, associated to the behavior of the correlator VðtÞ
at small time distances. Even though this may present a
significant challenge, the comparison among the results
obtained with different lattice regularizations provides the
opportunity to test the robustness of the continuum limit
extrapolation.
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In this work, we present the results of the Extended
Twisted Mass Collaboration (ETMC) on the short-distance
and intermediate window contributions related to the
isospin-symmetric up- and down- (l), strange- (s) and
charm- (c) quark-connected contributions, as well as the
quark-disconnected contributions (disc). The analysis is
performed using gauge configurations generated by ETMC
with Nf ¼ 2þ 1þ 1 flavors of Wilson-clover twisted-
mass sea quarks with masses tuned very close1 to their
physical values [16–19]. We will refer to these ensembles
as physical point ensembles. These ensembles correspond
to three values of the lattice spacing, namely a ≃ 0.057,
0.068, and 0.080 fm, determined in the meson sector (see
Appendix A 2), and spatial lattice sizes ranging from L ≃
5.1 fm to L ≃ 7.6 fm.
Using such physical point gauge ensembles better

controls the systematic error arising from the chiral
extrapolation that would be required had one used ensem-
bles simulated with heavier than 140 MeV pions. After the
continuum and infinite volume extrapolations, we obtain
for the short-distance window

aSDμ ðlÞ ¼ 48.24ð20Þ × 10−10;

aSDμ ðsÞ ¼ 9.074ð64Þ × 10−10;

aSDμ ðcÞ ¼ 11.61ð27Þ × 10−10;

aSDμ ðdiscÞ ¼ −0.006ð5Þ × 10−10; ð5Þ

where the first three results refer to the quark-connected
contributions to aSDμ from light, strange and charm quarks
and the latter is the sum of all quark-disconnected
(flavor diagonal and off-diagonal) contributions.2 Adding
to Eq. (5) also the contribution aSDμ ðbÞ ¼ 0.32 × 10−10

coming from the bottom quark (see also the lattice results of
Ref. [20]) and the QED correction aSDμ ðQEDÞ ¼ 3 × 10−12,
both estimated in perturbative QCD and QED using the
RHAD software package [21], we get

aSDμ ðETMCÞ ¼ 69.27ð34Þ × 10−10: ð6Þ

In the case of the intermediate-distance window we obtain

aWμ ðlÞ ¼ 206.5ð1.3Þ × 10−10;

aWμ ðsÞ ¼ 27.28ð20Þ × 10−10;

aWμ ðcÞ ¼ 2.90ð12Þ × 10−10;

aWμ ðdiscÞ ¼ −0.78ð21Þ × 10−10: ð7Þ

We note that in this work we do not compute the isospin-
breaking (IB) contribution aWμ ðIBÞ. Taking for the latter the
BMW value of Ref. [14], namely aWμ ðIBÞ¼0.43ð4Þ×10−10,
and summing up with the contributions of Eq. (7), we get

aWμ ðETMCÞ ¼ 236.3ð1.3Þ × 10−10; ð8Þ

which is consistent bothwith the BMWresult aWμ ðBMWÞ ¼
236.7ð1.4Þ × 10−10 [14] and the recent CLS/Mainz one
aWμ ðCLSÞ ¼ 237.30ð1.46Þ × 10−10 [22] to better than 1σ
level. The nice consistency observed among three accurate
determinations of aWμ represents a remarkable success for
LQCD computations.
We can compare our lattice results with those

obtained with dispersive methods using the experimental
eþe− → hadrons data. The dispersive results obtained in
Refs. [11,23] are

aSDμ ðeþe−Þ ¼ 68.44ð48Þ × 10−10; ð9Þ

aWμ ðeþe−Þ ¼ 229.51ð87Þ × 10−10; ð10Þ

while the analyses of Refs. [8–11] and the merging
procedure of Ref. [13], which takes into account tensions
in the eþe− database in a more conservative way, yield [24]

aSDμ ðeþe−Þ ¼ 68.4ð5Þ × 10−10; ð11Þ

aWμ ðeþe−Þ ¼ 229.4ð1.4Þ × 10−10: ð12Þ

Our result given in Eq. (6) agrees with the dispersive one of
Eq. (11) within ≃1.4σ in the short-distance window, while
there is a ≃3.6σ tension between our result of Eq. (8) and
the corresponding dispersive one of Eq. (12) in the
intermediate window. The tension increases to ≃4.2σ if
we average our result of Eq. (8) with the BMW one,
obtaining aWμ ¼ 236.49ð95Þ × 10−10. Taking into account
also the recent CLS/Mainz result we get an average of three
lattice computations equal to aWμ ¼ 236.73ð80Þ × 10−10,
which turns out to be in tension with the dispersive result of
Eq. (10) by ≃6.1σ and the more conservative result of
Eq. (12) by ≃4.5σ.
The impact of this work is twofold: Firstly, concerning

the intermediate-distance window, we confirm the two

1The sea s and c quark mass values are fixed by imposing at a
few percent accuracy level the physical conditions detailed in
Ref. [16], while the sea light-quark mass values lie for all lattice
spacings within 5%–10% from the “physical” value defined by
the MisoQCD

π ¼ 135 MeV, and a check and/or correction for the
effect of the corresponding mismatch on the observables of
interest is carefully carried out in our analyses. For more details
see Appendix A.

2The separation of quark-connected and -disconnected con-
tributions to a given correlator can be expressed in terms of local
correlators by formally introducing, when needed, a suitable
number of extra valence flavors (having the same masses as the
physical quarks) and the corresponding ghosts. In this work,
the different contributions to aSD;Wμ can be separately extracted
from local current-current correlators computed within the
renormalizable mixed-action lattice setup described in detail in
Appendix A.
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recent and most accurate LQCD results by BMWand CLS/
Mainz, the consequence of which is to increase the
discrepancy with the corresponding prediction based on
eþe− cross section data to the remarkable significance level
of ≃4.5 standard deviations. Secondly, we accurately
compute, for the first time, the contribution from the
short-distance window, showing that there is no significant
tension with the corresponding dispersive result. This
clearly indicates that any deviation between the QCDþ
QED theory predictions, as used in the low-energy SM
framework used in lattice calculations, and the eþe− cross
section experiments is unlikely to occur at high values of
the center-of-mass energy, which corresponds to small
values of the Euclidean time distance. Instead, a significant
deviation of QCDþ QED predictions from eþe− cross
section data may occur in the low- and/or intermediate-
energy regions. Such a possibility has been also discussed
in recent works [25–29] exploiting the constraints from SM
electroweak precision tests and low-energy observables.
The paper is organized as follows: In Sec. II, we provide

the relevant notations and the definitions of the time
windows. In Sec. III we present our determinations of
the light-, strange- and charm-quark-connected contribu-
tions to the vector correlator and we describe some basic
steps of our strategy to reach the physical point for all the
time windows. Sections III A and III B contain, respec-
tively, the results of our detailed analysis of the continuum
limit for the short- and intermediate-distance windows for
all the quark flavors. In Sec. IV, we evaluate the sum of all
quark-disconnected flavor diagonal and off-diagonal con-
tributions. Section V is devoted to comparing with other
available LQCD calculations as well as with the most
recent dispersive results available for the HVP time-
window observables according to Refs. [23,24]. The out-
come of the comparison with dispersive predictions and its
phenomenological implications are briefly discussed. Our
conclusions are summarized in Sec. VI.
Further in-depth technical information is given in

the Appendixes as follows: In Appendix A, we briefly
describe our mixed-action setup and give details about the
lattice simulations, including an improved determination
of the lattice spacing with respect to the one carried
out in Ref. [18]. In Appendix B, we evaluate the scale-
invariant renormalization constants (RCs) of the vector and
axial-vector local quark currents, ZV and ZA, employing a
hadronicmethod based onWard identities (WIs). Combined
with a high-statistics determination of the relevant
correlators, we achieve a high-precision determination of
ZV andZA, as needed to guarantee a final accuracy of≃0.5%
for the short and intermediate time-distance windows.
In Appendix C, we briefly describe our strategy to reach
the physical values of the strange- and charm-quark masses,
mphys

s and mphys
c , using various hadronic inputs. In

Appendix D, we prove that for lattice QCD with Wilson
quarks the (UV finite) RC of the flavor-singlet local vector

current, ZV0 , is equal to the nonsinglet vector current RC,
ZV , to all orders in the strong coupling. To the best of our
knowledge, the proof of this important and useful relation
has not been provided so far in the literature. In Appendix E,
we collect the relevant analytic formulas for the evaluation of
the leading lattice spacing artifacts at short time distances in
the free theory, i.e. at order Oðα0sÞ. In Appendix F, we
provide some details of our parametrization of FSEs in the
time windows.

II. TIME-MOMENTUM REPRESENTATION

Following our previous works [30–32], we adopt the
time-momentum representation [33] and evaluate the HVP
contribution to the muon anomalous magnetic moment
aHVPμ as

aHVPμ ¼ 2α2em

Z
∞

0

dtt2KðmμtÞVðtÞ; ð13Þ

where t is the Euclidean time and the kernel function
KðmμtÞ is defined as3

KðzÞ ¼ 2

Z
1

0

dyð1 − yÞ
�
1 − j20

�
z
2

yffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
��

;

j0ðyÞ ¼
sinðyÞ
y

: ð14Þ

The Euclidean vector correlator VðtÞ is defined as

VðtÞ≡ 1

3

X
i¼1;2;3

Z
d3xhJiðx⃗; tÞJ†i ð0Þi ð15Þ

with JμðxÞ being the electromagnetic (em) current operator

JμðxÞ≡
X

f¼u;d;s;c;…

qem;fψ̄fðxÞγμψfðxÞ ð16Þ

and qem;f the electric charge for the quark flavor f (in units
of the absolute value of the electron charge). The vector
correlator VðtÞ can be evaluated on a lattice with spatial
volume V ¼ L3 and time extent T at discretized values of
the time distance t=a, ranging from 0 to T=a.

A. The RBC/UKQCD windows in the time-momentum
representation

Following the analysis of the RBC/UKQCD
Collaboration [15], each of the three terms appearing in
Eq. (4) can be obtained from Eq. (13) with integration
kernel KðmμtÞ multiplied by suitably smoothed Heaviside
step functions, namely

3The leptonic kernel KðzÞ is proportional to z2 at small values
of z and it goes to 1 for z → ∞.
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awμ ¼ 2α2em

Z
∞

0

dtt2KðmμtÞΘwðtÞVðtÞ; w¼fSD;W;LDg;

ð17Þ

where the time-modulating function ΘwðtÞ is given by

ΘSDðtÞ≡ 1 −
1

1þ e−2ðt−t0Þ=Δ
; ð18Þ

ΘWðtÞ≡ 1

1þ e−2ðt−t0Þ=Δ
−

1

1þ e−2ðt−t1Þ=Δ
; ð19Þ

ΘLDðtÞ≡ 1

1þ e−2ðt−t1Þ=Δ
ð20Þ

with the parameters t0, t1, and Δ chosen [15] to be equal to

t0 ¼ 0.4 fm; t1 ¼ 1 fm; Δ ¼ 0.15 fm: ð21Þ

The resulting time-modulating functions ΘSD;W;LDðtÞ are
shown in Fig. 1.
In this work, we focus on the determination of the first

two terms, i.e. w ¼ fSD;Wg corresponding to the short-
and intermediate-distance window contributions, postpon-
ing the analysis of the more demanding long-distance (LD)
term to a future work.
The fermionic Wick contractions appearing in the right-

hand side (rhs) of Eq. (15) give rise to two distinct topologies
of Feynman diagrams, namely to the quark-connected and
quark-disconnected contributions. Connected contributions
are flavor diagonal, while the disconnected ones have both
diagonal and off-diagonal flavor components. In what
follows we decompose awμ into the following contributions:

awμ ¼ awμ ðlÞ þ awμ ðsÞ þ awμ ðcÞ þ awμ ðdiscÞ þ � � � ; ð22Þ

where the first three terms correspond to the quark-con-
nected contributions of mass degenerate up and down (l)
quarks, and a strange (s) and a charm (c) quark, respectively,

while the fourth term represents all quark-disconnected
contributions. In Eq. (22) the ellipses corresponds to
subleading terms that we do not address directly in this
work, namely the IB effects of order Oðα3emÞ and
Oðα2emðmd −muÞÞ, as well as the contribution of quarks
heavier than the charm.Moreover, for the disconnected term
awμ ðdiscÞ we evaluate both the flavor-diagonal and the off-
diagonal light-, strange- and charm-quark contributions.

B. The RBC/UKQCD windows in energy

Let us here make contact with the dispersive approach
used in Refs. [11,23]. Using the once-subtracted dispersion
relations, the vector correlator VðtÞ can be written as (see,
e.g., Ref. [30])

VðtÞ ¼ 1

12π2

Z
∞

Ethr

dEE2RhadðEÞe−Et; ð23Þ

where RhadðEÞ is related to the one-photon eþe− annihi-
lation cross section into hadrons, σhadðEÞ, by

σhadðEÞ ¼ 4πα2em
3E2

RhadðEÞ ð24Þ

with E being the eþe− center-of-mass energy and Ethr ¼
Mπ0 in QCDþ QED. In terms of RhadðEÞ the HVP term
aHVPμ is given by

aHVPμ ¼ 2α2emm2
μ

9π2

Z
∞

Ethr

dE
1

E3
K̃

�
E
mμ

�
RhadðEÞ; ð25Þ

where the leptonic kernel K̃ðxÞ is defined as4

K̃ðxÞ ¼ 3

4
x5

Z
∞

0

dzz2e−xzKðzÞ

¼ 3x2
Z

1

0

dyð1 − yÞ y2

y2 þ ð1 − yÞx2 : ð26Þ

Consequently, the time-window contribution (17) can be
written as

awμ ¼ 2α2emm2
μ

9π2

Z
∞

Ethr

dE
1

E3
K̃

�
E
mμ

�
Θ̃wðEÞRhadðEÞ; ð27Þ

where the energy-modulating function Θ̃wðEÞ is given by

Θ̃wðEÞ ¼
R
∞
0 dtt2e−EtKðmμtÞΘwðtÞR∞

0 dtt2e−EtKðmμtÞ
ð28Þ

FIG. 1. The time-modulating function ΘwðtÞ for w ¼ fSD;W;
LDg, defined in Eqs. (18)–(20), versus the time distance t
for the values of the parameters t0, t1 and Δ given
in Eq. (21).

4The leptonic kernel K̃ðxÞ is proportional to x2 at small values
of x and it goes to 1 for x → ∞. At the two-pion threshold one has
K̃ð2Mπ=mμÞ ≃ 0.63.
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and shown in Fig. 2 for w ¼ fSD;W;LDg (cf. also
Ref. [24]).

III. THE CONNECTED CONTRIBUTIONS
TO aSDμ AND aWμ

In this work, we analyze four gauge ensembles recently
produced by ETMC in isospin-symmetric QCD (isoQCD)
with Nf ¼ 2þ 1þ 1 flavors of Wilson-clover twisted-
mass quarks as described in Refs. [16–19]. The parameters
of the ensembles are given in Table V of Appendix A,
where our lattice setup and technical details are thoroughly
discussed.
In this section, we present the evaluation of the light-,

strange- and charm-quark-connected vector correlators [see
Eq. (A11)]

Vreg
l ðtÞ≡ 1

3
a3
X
x

X
i¼1;3

4þ 1

9
hJll0i;regðxÞ½Jll0i;reg�†ð0ÞiðCÞ; ð29Þ

Vreg
s ðtÞ≡ 1

3
a3
X
x

X
i¼1;3

1

9
hJss0i;regðxÞ½Jss0i;reg�†ð0ÞiðCÞ; ð30Þ

Vreg
c ðtÞ≡ 1

3
a3
X
x

X
i¼1;3

4

9
hJcc0i;regðxÞ½Jcc0i;reg�†ð0ÞiðCÞ; ð31Þ

where reg ∈ ftm;OSg specifies the two types of ultraviolet
(UV) regularization employed for the renormalized local
vector currents Jμ;tm and Jμ;OS defined in Eq. (A12) for each
quark flavor. The suffixes ll0, ss0 and cc0 on the currents
denote that the quark and antiquark fields in each current
correspond to different valence replica, thereby giving rise
to connected (C) Wick contractions only.
Our high-precision determination of the two scale-

invariant RCs ZV and ZA, needed to renormalize the local
vector currents in the tm and OS regularizations, is
described in Appendix B.

Results for the correlators V tm
f ðtÞ and VOS

f ðtÞ for f ¼
fl; s; cg evaluated on the ETMC ensembles cB211.072.64
and cD211.054.96 are shown in Fig. 3. For all ensembles,
regularizations and quark flavors, the connected vector
correlators are precise at the level of percent or better up to
time distances of ≃1.5 fm. Such a range covers the whole
time region relevant for the determination of the short- and
intermediate-distance window contributions (see Fig. 1).
We note that for each quark flavor the correlators V tm

f ðtÞ
and VOS

f ðtÞ should differ only by discretization effects of
order Oða2Þ. From Fig. 3, it can clearly be seen that at very
small time distances, t≲ 0.2–0.3 fm the discretization
artifacts are large, while they are small for t≳ 0.3 fm.
For each of the four ensembles of Table V in

Appendix A, the light-quark correlators V tm
l ðtÞ and VOS

l ðtÞ
are computed using Nsource ¼ 103 stochastic spatial sources
per gauge configuration. The sources are randomly dis-
tributed in the time slice, diagonal in spin and diluted in the
color variable. The statistical errors are found to scale as
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsource

p
up to time distances of ≃1.5 fm.

The strange-quark-connected vector correlators V tm
s ðtÞ

and VOS
s ðtÞ are also computed using the four ensembles of

Table V of Appendix A. Depending on the ensemble
considered, up to 64 spatial stochastic sources are used
for the inversions of the Dirac operator. As described in
Appendix C, for each ensemble we perform simulations at
two values of the valence bare strange-quark mass, aμs, in
order to interpolate the results for aSDμ ðsÞ and aWμ ðsÞ to the

physical strange-quark mass mphys
s .

Unlike the light and strange sectors, the charm-
quark-connected vector correlators V tm

c ðtÞ and VOS
c ðtÞ are

computed using the six ETMC ensembles listed in
Table XIII of Appendix C. Namely, beyond the three
physical point ensembles cB211.072.64, cC211.060.80
and cD211.054.96, we include in this analysis three ensem-
bles at a coarser lattice spacing, namely cA211.53.24,
cA211.40.24 and cA211.30.32 [18,34], aiming at a better
control of discretization effects in the charm sector.5 We
check that the correlators V tm

c ðtÞ and VOS
c ðtÞ have within

errors a completely negligible dependence on the sea light
quark mass, which is larger than the physical one for the
ensembles cA211.53.24, cA211.40.24 and cA211.30.32.
For the same reason however these three ensembles are not
employed in our analysis of the light- and strange-connected
correlator contributions. Indeed, particularly in the case of
aWμ ðlÞ, a significant extrapolation to the physical sea light
quark mass point would be required if the three cA211
ensembles were to be included in the continuum fits. This

FIG. 2. The energy-modulating function Θ̃wðEÞ for
w ¼ fSD;W;LDg, defined in Eq. (28), versus the energy E.
The vertical lines represent the location of the two-pion threshold
(short-dashed line) and of the ρ-meson resonance (dot-dashed
line).

5The pion mass and the value of MπL for the cA211.53.24,
cA211.40.24 and cA211.30.32 ensembles are equal toMπ ≃ 365,
302, 261 MeV and MπL ≃ 4.0, 3.5, 4.0, respectively. FSEs are
expected to be negligible for the vector correlator VcðtÞ and, thus,
we do not include the cB211.072.96 ensemble in the charm
analysis.
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would spoil one of the main strengths of our analysis. The
improved value of the lattice spacinga for theA ensembles is
given in Table VII of Appendix A. Depending on the
ensemble considered, up to 24 spatial stochastic sources
are used for the inversions of the Dirac operator. For each
ensemble, we perform simulations at three values of the
valence bare charm-quark mass, aμc, in order to interpolate
the results foraSDμ ðcÞ andaWμ ðcÞ to the physical charm-quark

mass mphys
c as determined in Appendix C.

We interpolate and extrapolate our data for awμ ðsÞ and
awμ ðcÞ to the physical strange- and charm-quark masses

mphys
s and mphys

c using a linear ansatz:

awμ ðf;mfÞ ¼ awμ ðf;mphys
f Þ · ½1þ Aw

f ðmf −mphys
f Þ�; ð32Þ

where f ¼ fs; cg and awμ ðf;mphys
f Þ and Aw

f are fitting
parameters. In what follows, we consider two different
branches of analysis, in which awμ ðs;mphys

s Þ [awμ ðc;mphys
c Þ]

is determined using the values of mphys
s (mphys

c ) obtained

using either the ηs (ηc) or the ϕ (J=Ψ) meson masses. Then,
we perform a separate continuum limit extrapolation for
both determinations. Any discrepancy between the con-
tinuum extrapolated values obtained using the two hadronic
inputs will be added as a systematic error in the final error
budget.
In order to avoid the use of fitting procedures to take into

account the slight mistuning of the pion mass in the
simulations as compared to its physical value [Mphys

π ¼
MisoQCD

π ¼ 135.0ð2Þ MeV [18]], as well as the possible
impact of FSEs, we implement in our analysis of all the
windows the following three steps:

(i) Interpolation to the physical value of the pion mass
for each gauge ensemble through explicit simula-
tions at a slightly different value of the light-quark
valence bare mass aμl. By using the same gauge
configurations and stochastic sources we get a
statistically good determination of the corrections
in the valence sector, which turn out to be relevant
only for aWμ ðlÞ at the level of approximately 1–2

FIG. 3. The connected vector correlators t3VlðtÞ (top), t3VsðtÞ (middle) and t3VcðtÞ (bottom) evaluated for the ETMC ensembles
cB211.072.64 (left) and cD211.054.96 (right) using the two UV regularizations denoted by “tm” for twisted-mass quarks (red circles)
and “OS” for Osterwalder-Seiler valence quarks (blue squares) versus the time distance t. For both ensembles, the bare strange- and
charm-quark masses are, respectively, equal to μs ¼ μLs and μc ¼ μLc (see Tables XI and XIII of Appendix C).
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standard deviations. A further smaller correction
due to the slight mistuning of the light-quark sea
mass is evaluated adopting the RM123 expansion
method [32,35,36].

(ii) Usage of a common reference lattice size Lref ¼
5.46 fm through a smooth interpolation of the results
for the ensembles cB211.072.64 and cB211.072.96
using a linear fit in the variable e−MπL. For the other
two ensembles cC211.060.80 and cD211.054.96,
when using the improved determination of the lattice
spacing (see Table VII of Appendix A), the lattice
size L is at the correct reference value (see Table Vof
Appendix A). By comparing the window results for
the ensembles cB211.072.64 and cB211.072.96, we
observe as a general trend that, at the lattice spacing
of a ≃ 0.08 fm, FSEs are small in the “tm” case and
practically absent in the “OS” case. Moreover, once
the data are interpolated at the reference spatial
lattice size Lref ¼ 5.46 fm, the infinite volume limit
is obtained within a fraction of the uncertainties, for
all windows except for the case of the light-quark
contribution to the intermediate window, aWμ ðlÞ.

(iii) For aWμ ðlÞ, after taking the continuum limit, we
apply a final correction ΔaWμ ðl;LrefÞ to obtain the
infinite volume result [see Eq. (59) of Sec. III B].
The correction is evaluated assuming dominance
of the FSEs related to intermediate two-pion states
in the correlator VlðtÞ, as already observed in
Ref. [31]. Its explicit expression is given by
Eq. (F14) with w ¼ W in Appendix F. It contains
no free parameters and we will refer to it as the
Meyer-Lellouch-Lüscher-Gounaris-Sakurai (MLLGS)
model [37–44] for FSEs.

In what follows, we analyze our lattice data of awμ ðfÞ for
w ¼ fSD;Wg and f ¼ fl; s; cg already interpolated at the
physical pion massMphys

π ¼ MisoQCD
π ¼ 135.0ð2Þ MeV and

at the reference lattice size Lref ¼ 5.46 fm.

A. The short-distance window contributions
aSDμ ðlÞ, aSDμ ðsÞ and aSDμ ðcÞ

The connected contribution aSDμ ðfÞ to the short-distance
window is given by

aSDμ ðfÞ ¼ 2α2em

Z
∞

0

dtt2KðmμtÞΘSDðtÞVfðtÞ; ð33Þ

where f ¼ fl; s; cg and ΘSDðtÞ is given by Eq. (18). In
what follows, window quantities, like aSDμ ðfÞ, are obtained
on each gauge ensemble by replacing the time integral with
a discrete sum over time slices from t ¼ a up to t ¼ T=2.
Even if the lattice data for the vector correlators areOðaÞ

improved thanks to our maximally twisted lattice setup (see
Appendix A), care should be taken when considering the
continuum limit of the short-distance window contributions

aSDμ ðlÞ, aSDμ ðsÞ and aSDμ ðcÞ. We illustrate this point in the
case of the light-quark contribution aSDμ ðlÞ, but similar
conclusions hold as well also in the case of aSDμ ðsÞ
and aSDμ ðcÞ.
As discussed in Refs. [45,46], power counting suggests

that for short time distances, i.e. t ≪ Λ−1
QCD, the lattice

spacing artifacts in VlðtÞ can be described by an expansion
of the type

VlðtÞ ¼ Vcont
l ðtÞ ·

�
1þ b2

a2

t2
þ
X∞
n¼2

b2n
a2n

t2n

�
; ð34Þ

where b2n (n ¼ 1; 2;…) are constants up to logarithmic
corrections [47] and Vcont

l ðtÞ is the renormalized light-quark
correlator in the continuum limit. The lattice spacing
artifacts appearing in VlðtÞ induce discretization effects
on the short-distance light-quark contribution aSDμ ðlÞ, as
follows:

aSDμ ðlÞ ¼ 2α2em

Z
∞

a
dtt2KðmμtÞΘSDðtÞVcont

l ðtÞ

·

�
1þ b2

a2

t2
þ
X∞
n¼2

b2n
a2n

t2n

�
: ð35Þ

Taking into account that, at small values of t, the leptonic
kernel KðmμtÞ is proportional only to m2

μt2 and Vcont
l ðtÞ is

dominated by its perturbative value, which at order Oðα0sÞ
reads as (see, e.g., Ref. [30])

Vcont
l ðtÞ ⟶

t≪Λ−1
QCD

5

18π2t3
; ð36Þ

the discretization effects on aSDμ ðlÞ are of order Oða2Þ for
n ≥ 2 and of order a2 logðaÞ for n ¼ 1. Beyond the leading
order Oðα0sÞ, perturbative corrections can induce further
discretization effects of order a2 logpðaÞ with p ≤ 0 [47].
The crucial point here is that discretization effects of the
type a2 logðaÞ, containing a positive power of the loga-
rithm, are dangerous. They slow down the convergence
with respect to a pure a2 scaling and may not be visible
unless simulations at very small lattice spacing are per-
formed. This behavior is illustrated in Fig. 4, where the
lattice artifacts ΔaSD;pertμ ðlÞ, given by

ΔaSD;pertμ ðlÞ ¼ 2α2em

Z
∞

a
dtt2KðmμtÞΘSDðtÞ 5

18π2t3

·

�
b2

a2

t2
þ
X∞
n¼2

b2n
a2n

t2n

�
; ð37Þ

are shown for both the tm and OS regularizations. These are
evaluated numerically in the free theory and in the massless
limit. It can be clearly seen that a naive fit to an a2 scaling
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of the results within the range of the available values of the
lattice spacing, indicated by the vertical dotted lines in
Fig. 4, would lead to an incorrect, nonvanishing continuum
limit equal to ≃1 × 10−10.
The curvature visible in Fig. 4, which yields the correct

vanishing continuum limit for ΔaSD;pertμ ðlÞ, is generated by
the term proportional to b2 in Eq. (37). We calculate
analytically the relative Oða2=t2Þ artifacts affecting VlðtÞ
at order Oðα0sÞ in lattice perturbation theory with Nf ¼ 2

massless twisted-mass fermions. The outcome of such an
analysis is that b2 ¼ 1 for both the tm and OS local vector
currents; see Appendix E for details.
In Fig. 5, we show our determinations of aSDμ ðlÞ for the

tm and OS currents for all four ETMC ensembles of
Table V both before (green markers) and after (blue
markers) applying the analytic perturbative subtraction of
the a2=t5 discretization effects in VlðtÞ. We show also the
results of a combined polynomial fit in powers of a2 of the
general type

aSDμ ðfÞ ¼ aSD;contμ ðfÞ · ½1þDreg
1 ðfÞa2 þDreg

2 ðfÞa4�; ð38Þ

where reg ¼ ftm;OSg and aSD;contμ ðfÞ is the same value at
a2 ¼ 0 for the two regularizations. Since the variation of
the logarithmic term logðaÞ is too mild in the range of the
available values of the lattice spacing, we still observe an
approximate Oða2Þ scaling in both the unsubtracted and
subtracted lattice data. However, as already discussed in
connection to Fig. 4, the continuum extrapolation for the
unsubtracted data misses the correct value by approxi-
mately 2%, which is well above our statistical uncertainty
and larger than any other source of systematic error.

The dangerous a2=t5 discretization effects in VlðtÞ turn
out to be equal for both the tm and OS regularizations,
which, however, exhibit quite different lattice artifacts at
short time distances at all orders in αs, as can be seen in
Fig. 3. Thus, the question is whether the subtraction of the
discretization effects in VlðtÞ evaluated numerically in the
free theory and in the massless limit at all orders in a2 is
beneficial. To answer this question, we show in Fig. 5 by
the red markers the lattice data after the subtraction of all
the lattice artifacts at order Oðα0sÞ. The subtracted data
exhibit indeed much smaller discretization effects in both
regularizations and this fact makes more robust the
extrapolation to the continuum limit.
The strange- and charm-quark contributions to the short-

distance window, aSDμ ðsÞ and aSDμ ðcÞ, display the same
cutoff dependence as the light-quark one, aSDμ ðlÞ, due to
the dangerous massless a2 loga artifacts, which are
“dynamically” generated in the time integral by the region
of small time distances of the order t ∼OðaÞ. In complete
analogy with the case of the light-quark contribution, we
remove the leading a2 logðaÞ cutoff effects from our lattice
data, by subtracting from the renormalized strange- and
charm-quark vector correlators VsðtÞ and VcðtÞ the lattice
artifacts of the perturbative one, evaluated numerically at
order Oðα0sÞ and at finite values of the bare quark masses.
The impact of the above subtraction on the vector corre-
lators V tm

f ðtÞ and VOS
f ðtÞ is illustrated in the plots of Fig. 6,

which can be compared with analogous plots of Fig. 3 for
the unsubtracted data.

FIG. 4. The discretization effects on aSDμ ðlÞ evaluated numeri-
cally in the free theory and in the massless limit, i.e. the quantity
ΔaSD;pertμ ðlÞ given by Eq. (37). The vertical dotted lines indicate
the simulated values of the squared lattice spacing. The red
squares and the blue triangles correspond, respectively, to the tm
and OS regularizations. The solid lines represent a naive a2

scaling performed using only the results corresponding to the
range of simulated values of the lattice spacing.

FIG. 5. The light-quark-connected contribution to the short-
distance window aSDμ ðlÞ, given in Eq. (35), versus the squared
lattice spacing a2 in physical units using both the tm (squares)
and OS (triangles) local currents (A12). The green markers
correspond to the lattice data for the four ETMC ensembles of
Table V. The blue markers include the subtraction of the analytic
perturbative a2=t5 discretization effects in VlðtÞ. The red markers
represent the lattice data after the subtraction of the lattice
artifacts in VlðtÞ evaluated numerically in the free theory and
in the massless limit at all orders in a2. The solid lines are the
results of the simple combined fits given in Eq. (38)
with DOS

2 ðlÞ ¼ 0.
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The lattice data for aSDμ ðlÞ shown in Fig. 5 exhibit a very
high statistical precision of the order of 0.05%. Instead, the
accuracy we reached for the lattice spacing is only of the
order of 0.2% (see Table VII). The reason is that the short-
distance window is largely insensitive to the scale setting
and therefore to its uncertainty. Indeed, we notice that in the
continuum limit and at short time distances the correlator
VlðtÞ is dominated by its perturbative massless term (36).
Thus, after replacing the modulating functionΘSDðtÞwith a
Heaviside step function θðt0 − tÞ, the physical value of
aSDμ ðlÞ is almost saturated by the perturbative term
ð5α2em=9π2Þ

R
1
0 dxKðmμt0xÞ=x, which does not depend

upon the scale setting. For a more quantitative discussion
see Appendix A 2.
The values of aSDμ ðlÞ, aSDμ ðsÞ and aSDμ ðcÞ obtained after

subtraction of the perturbative lattice artifacts at order
Oðα0sÞ are shown in Fig. 7 for both the tm and OS
regularizations. In the case of aSDμ ðsÞ [aSDμ ðcÞ] our data
correspond to the two branches of the analysis in which we
set the physical strange (charm) quark mass using either the
mass of the ηs (ηc) pseudoscalar meson or that of the ϕ
(J=Ψ) vector meson.

Discretization effects on aSDμ ðlÞ (see top panel of Fig. 7)
are consistent with a2 scaling within tiny errors in the OS
regularization, while higher-order corrections are clearly
present in the tm case. The result of the combined fit based
on the ansatz of Eq. (38), in a representative case where the
fit parameter DOS

2 ðlÞ is set to zero, is shown by the solid
lines. The extrapolated value of aSDμ ðlÞ in the continuum
limit has a remarkable statistical error of less than 0.1%.
The statistical errors of our lattice data for aSDμ ðsÞ (see

middle panel of Fig. 7) are typically of orderOð0.1%Þ, with
the data obtained usingMηs as hadronic input displaying an
accuracy of ≃0.05%. The solid lines correspond to the
results of the combined fit in Eq. (38) for f ¼ s, in a
representative case where the fit parameter DOS

2 ðsÞ is set
to zero.
As for aSDμ ðcÞ (see bottom panel of Fig. 7), the statistical

errors of our data are typically of order Oð0.1%Þ for both
choices of the reference hadron mass. Discretization effects
appear to be at the level of Oð5%Þ with opposite signs
between the tm and OS regularizations. The size of
discretization effects is limited thanks to the subtraction
of the perturbative cutoff effects at orderOðα0sÞ evaluated at

FIG. 6. The same as in Fig. 3, but after subtracting the perturbative lattice artifacts evaluated numerically in the free theory, i.e. at order
Oðα0sÞ, at finite values of the bare quark masses and of the lattice spacing.
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the charm-quark mass. The solid lines correspond to the
results of the combined fit in Eq. (38) for f ¼ c, in a
representative case where the quartic a4 terms are included
for both regularizations.

In order to estimate the systematic uncertainty related to
the continuum limit we consider combined fits adopting for
all the windows the following generic ansatz:

awμ ðfÞ ¼ aw;contμ ðfÞ ·
�
1þDreg

1 ðfÞa2

þDreg
1L ðfÞ

a2

½logða2Λ2
0Þ�n

regðfÞ þDreg
2 ðfÞa4

�
; ð39Þ

where w ¼ fSD;Wg and f ¼ fl; s; cg, while Dreg
1;1L;2ðfÞ

and aw;contμ ðfÞ are free parameters to be fitted to the data.
Because of the limited number of data points the case in
which all the free parameters are simultaneously nonzero is
not considered. We remind that in our combined fits the
parameter aw;contμ ðfÞ does not depend upon the regulariza-
tion reg ¼ ftm;OSg.
In Eq. (39) we have included possible logarithmic

terms of the form a2= logða2Λ2
0Þ�n

regðfÞ, where the power
nregðfÞ represents an effective anomalous dimension for
perturbative corrections beyond the leading order Oðα0sÞ
[47]. In what follows, inspired by the findings of Ref. [48]
about the one-loop anomalous dimensions of the operators
appearing at Oða2Þ in the Symanzik expansion for the case
of actions with improved Wilson fermions, we will con-
sider the representative cases nregðfÞ ¼ 1, 2, 3 when
Dreg

1L ðfÞ ≠ 0. The energy scale Λ0 is taken to assume
two different values, namely Λ0 ¼ 1=w0 ≃ 1.14 GeV and
Λ0 ¼ 1=ð3w0Þ ≃ 380 MeV, where w0 is the gradient-flow
scale found to be equal to w0 ¼ 0.17383ð63Þ fm in
Ref. [18]. In addition to the aforementioned fits, we also
performed extrapolations to the continuum limit by leaving
out data at the coarsest lattice spacing, as well as separate
linear extrapolations for the two regularizations.
In order to reach the continuum limit we have considered

also an alternative strategy, based on considering the
difference and the ratio of awμ ðfÞ in the two regularizations,
namely

DwðfÞ≡ awμ ðfÞjtm − awμ ðfÞjOS; ð40Þ

RwðfÞ≡ awμ ðfÞjtm=awμ ðfÞjOS: ð41Þ

Since the continuum limit of the difference DwðfÞ should
exactly vanish, while the one of the ratio RwðfÞ should be
equal to unity, we consider the following fitting functions:

DwðfÞ ¼ D1a2 þD1L
a2

½logða2Λ2
0Þ�nðfÞ

þD2a4; ð42Þ

RwðfÞ ¼ 1þ R1a2 þ R1L
a2

½logða2Λ2
0Þ�nðfÞ

þ R2a4; ð43Þ

where we have assumed that ntmðfÞ ¼ nOSðfÞ ¼ nðfÞ. The
continuum value aw;contμ ðfÞ is given by

FIG. 7. The light-quark (top), strange-quark (middle) and
charm-quark (bottom) -connected contributions to the short-
distance window aSDμ versus the squared lattice spacing a2 in
physical units using both the tm (triangles) and OS (squares)
regularizations after subtraction of the perturbative lattice arti-
facts at orderOðα0sÞ. In the middle (bottom) panel the blue and red
points correspond to the lattice data obtained using the masses of
the ηs (ηc) and ϕ (J=Ψ) mesons to obtain the physical strange
(charm) quark mass. The solid lines correspond to the results of
the combined fitting procedure given in Eq. (38) with DOS

2 ðlÞ ¼
DOS

2 ðsÞ ¼ 0 and DOS
2 ðcÞ ≠ 0. The extrapolated values in the

continuum limit are shown at a2 ¼ 0 together with our final
results given by Eqs. (49)–(51).
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aw;contμ ðfÞ ¼ D1

R1

if D1 ≠ 0 and R1 ≠ 0 ð44Þ

¼ D1L

R1L
otherwise: ð45Þ

As for Eq. (39), the fitting procedure in which all the free
parameters appearing in Eqs. (42) and (43) are varied is not
considered.
Using Eqs. (39), (42), and (43) we have carried out

hundreds of combined fits of our lattice data for the two
regularizations tm and OS. In the fitting procedure we have
minimized the χ2 variable constructed taking into account
the correlations between the tm and OS correlators corre-
sponding to the same gauge ensemble. We have evaluated
the correlation matrix using a jackknife sampling procedure
and found that its entries are smaller than 0.5 for the light-
quark contribution and typically larger (reaching up to
≈0.99) for the heavier flavors.
In order to average the different analyses of the same

lattice data, we make use of the procedure developed in
Ref. [49]: Starting from N computations with mean values
xk and uncertainties σk (k ¼ 1;…; N), based on the same
set of input data, their average x and uncertainty σx are
given by

x¼
XN
k¼1

ωkxk; σ2x ¼
XN
k¼1

ωkσ
2
kþ

XN
k¼1

ωkðxk−xÞ2; ð46Þ

where ωk represents the weight associated with the kth
determination.
We have excluded from the average all fits having

d:o:f: ¼ 1 in order to avoid overfitting. Then, we have
considered two different choices for the remaining weights
ωk. The first one is based on the Akaike information
criterion (AIC) [50], namely

ωk ∝ e−ðχ
2
kþ2Nparms−NdataÞ=2; ð47Þ

where χ2k is the value of the χ2 variable for the kth
computation, Nparms the number of free parameters and
Ndata the number of data points.6 Since in our fits the
number of d.o.f. is limited, we adopt also a second choice
for ωk given by a step function

ωk ∝ Θ
�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffi
2

d:o:f:

r
−

χ2k
d:o:f:

�
; ð48Þ

where 1 is the mean value and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=d:o:f

p
. is the standard

deviation of the χ2=d:o:f: distribution. The results obtained

with the above two choices of ωk are reassuringly very
similar and their small difference is added as a systematic
error in the final error budget. At the physical point
we get

aSDμ ðlÞ¼ 48.24ð3Þstatð20Þsyst ×10−10¼ 48.24ð20Þ×10−10;

ð49Þ

aSDμ ðsÞ¼ 9.074ð14Þstatð62Þsyst ×10−10¼ 9.074ð64Þ×10−10;

ð50Þ

aSDμ ðcÞ¼ 11.61ð9Þstatð25Þsyst ×10−10¼ 11.61ð27Þ×10−10;

ð51Þ

where
(i) ðÞstat includes the statistical uncertainty of the

Monte Carlo samplings and the one due to the
fitting procedure; and

(ii) ðÞsyst represents the systematic error coming from
discretization effects, evaluated according to
Eq. (46) from the results of the fits based on the
ansatz in Eqs. (39), (42), and (43).

The final error corresponds to the statistical and systematic
errors added in quadrature.
In Fig. 8 we show the histograms of the results at the

physical point obtained by our fitting procedures based on
Eqs. (39), (42), and (43) applied to our lattice data of
aSDμ ðlÞ, aSDμ ðsÞ and aSDμ ðcÞ for the two choices (47) and
(48) for the weights ωk appearing in Eq. (46). The
distributions exhibit multiple peaks. This feature is related
to the fact that the statistical uncertainties are significantly
smaller than the systematic ones. We stress that such a
situation is ideal for the application of the averaging
procedure given by Eq. (46).
Before closing the subsection, we show the results of a

cross-check we performed to exclude that possible residual
cutoff effects of the type a2=½logða2Λ2

0Þ�n
reg

with nreg < 0

may spoil our continuum limit extrapolation of aSDμ . To this
end we have carried out a slightly different analysis of
aSDμ ðlÞ, in which we consider a truncated version of
Eq. (35), where the lower bound of integration is fixed
to a nonzero tmin, i.e.

aSDμ ðl; tminÞ≡ 2α2em

Z
∞

tmin

dtt2KðmμtÞΘDðtÞVlðtÞ; ð52Þ

where tmin is kept fixed in physical units for all ensembles.
Clearly, one has aSDμ ðl; tmin → 0Þ ¼ aSDμ ðlÞ. The idea is to
perform first the continuum extrapolation at fixed tmin and
then to look at the behavior of aSDμ ðl; tminÞ as tmin is
decreased toward zero. In aSDμ ðl; tminÞ, the logarithmic
a2=½logða2=w2

0Þ�n
reg

cutoff effects generated in aSDμ ðlÞ by
the integration at short times become simple a2-like lattice

6We have verified that the use of the slightly different
definition proposed in Ref. [51], namely ωk ∝ exp½−ðχ2þ
2Nparms − 2NdataÞ=2�, leads to very similar averages and errors
as compared with those corresponding to the use of Eq. (47).
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artifacts with potentially large 1=½logðt2min=w
2
0Þ�n

reg
coeffi-

cients, which can be then safely extrapolated to zero. We
use values of tmin in the range [0.08, 0.15] fm, which
correspond to tmin > a for all the ensembles of Table V.
It is useful to consider the following quantity:

ãSDμ ðl; tminÞ ¼ aSDμ ðl; tminÞ þ ΔaSD;pertμ ðl; tminÞ; ð53Þ

where

ΔaSD;pertμ ðl; tminÞ≡ 2α2em

Z
tmin

0

dtt2KðmμtÞΘSDðtÞVcont
l ðtÞ

ð54Þ

and Vcont
l ðtÞ is the light-quark correlator in the continuum

limit, obtained using the RHAD software package [21] at
order Oðα4sÞ. The difference aSDμ ðlÞ − ãSDμ ðl; tminÞ is thus
expected to be of order Oðα5sð1=tminÞt2minÞ. In Fig. 9 we
show our determinations of ãSDμ ðl; tminÞ after extrapolation

FIG. 8. Histograms of the results at the physical point obtained by our fitting procedures based on Eqs. (39), (42), and (43) applied to
our lattice data of aSDμ ðlÞ (top panels), aSDμ ðsÞ (middle panels) and aSDμ ðcÞ (bottom panels) adopting for the weights ωk either the AIC
(left panels) or the step function (right panels), described, respectively, by Eqs. (47) and (48). The red bands correspond to our final
results (48) and (49). In each panel we show the number of fits, the average (x) and the error (σx) evaluated according to Eq. (46) and the
cumulative probability corresponding to the interval ½x − σx; xþ σx�. The vertical short-dashed lines correspond to the 16th and 84th
percentiles of the probability distribution function (PDF) PrðYÞ.
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of aSDμ ðl; tminÞ to the continuum limit using the combined
fit procedures based on Eqs. (39), (42), and (43). The data
exhibit a nice flat behavior in t2min with a very small residual
slope due to effects at order Oðα5sð1=tminÞt2minÞ. It is
reassuring that the data for ãSDμ ðl; tminÞ are consistent for
tmin ≲ 0.1 fm with our final short-distance result of Eq. (49)
within one standard deviation.

B. The intermediate windows aWμ ðlÞ, aWμ ðsÞ and aWμ ðcÞ
The connected contribution aWμ ðfÞ to the intermediate

window is given by

aWμ ðfÞ ¼ 2α2em

Z
∞

0

dtt2KðmμtÞΘWðtÞVfðtÞ; ð55Þ

where f ¼ fl; s; cg and ΘWðtÞ is given by Eq. (19). Our
results corresponding to the tm and OS regularizations, at
the physical pion mass Mphys

π ¼ MisoQCD
π ¼ 135.0ð2Þ MeV

and at the reference lattice size Lref ¼ 5.46 fm, are shown
in Fig. 10 together with a representative example of
continuum extrapolation. We note that, in contrast with
the short-distance window, there are no discretization
effects of the type a2 logðaÞ, thanks to the exponential
suppression of the modulating function ΘWðtÞ at small
values of t ≈ a (see Fig. 1). Therefore, we do not carry out
any subtraction of the tree-level perturbative lattice
artifacts.
The statistical precision of the lattice data for aWμ ðl; LrefÞ

is of the orderOð0.2%Þ. Also the results for aWμ ðsÞ obtained
using Mηs have a very good precision of order Oð0.2%Þ,
while the ones obtained using Mϕ have typically larger
errors by a factor of ≃3. This originates from the fact that
the plateaux of the ϕ-meson effective mass are substantially

noisier than the ones of the pseudoscalar ηs meson (see
Fig. 18). Finally, the results for aWμ ðcÞ exhibit a very good
precision of order Oð0.5%Þ when we use Mηc and of order
Oð0.2%Þ when we use MJ=Ψ.

FIG. 9. Results for the modified short-distance window
ãSDμ ðl; tminÞ [see Eq. (53)], obtained for various values of tmin

after extrapolation to the continuum limit using the combined
fitting procedures based on Eqs. (39), (42), and (43). The red
band corresponds to our final result given by Eq. (49).

FIG. 10. The light-quark (top), strange-quark (middle)
and charm-quark (bottom) -connected contributions to the
intermediate window aWμ versus the squared lattice spacing a2

in physical units using both the tm (triangles) and OS (squares)
regularizations. In the middle (bottom) panel the blue and red
points correspond to the lattice data obtained using the masses
of the ηs (ηc) and ϕ (J=Ψ) mesons to obtain the physical
strange (charm) quark mass. The solid lines correspond to
representative examples of continuum extrapolation obtained
using the ansatz in Eq. (39) with Dtm

1LðfÞ ¼ DOS
1L ðfÞ ¼ 0 (poly-

nomial fits). The extrapolated values in the continuum limit are
shown at a2 ¼ 0 together with our final results given by
Eqs. (56)–(58).
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Using Eqs. (39), (42), and (43) we have carried out
hundreds of combined fits of our lattice data for the two
regularizations tm and OS by minimizing a correlated χ2

variable. In this case, the entries of the correlation matrix
are in the range 0.5–0.7 for the light-quark contribution and
typically larger (reaching up to 0.99) for the heavier flavors.
Also here we have excluded from the averaging procedure
given by Eq. (46) all fits having d:o:f: ¼ 1 in order to avoid
overfitting. In Fig. 11 we show the histograms of the results
obtained at the physical point for the two choices (47) and

(48) of the weights ωk appearing in Eq. (46). As in the case
of the short-distance windows, the distributions of Fig. 11
exhibit multiple peaks, which implies that the statistical
uncertainties are significantly smaller than the systematic
ones due to lattice artifacts.
At the physical point we get

aWμ ðl; LrefÞ ¼ 205.5ð0.7Þstatð1.1Þsyst × 10−10

¼ 205.5ð1.3Þ × 10−10; ð56Þ

FIG. 11. Histograms of the results at the physical point obtained by our fitting procedures based on Eqs. (39), (42), and (43) applied to
our lattice data of aWμ ðl; LrefÞ (top panels), aWμ ðsÞ (middle panels) and aWμ ðcÞ (bottom panels) adopting for the weights ωk either the AIC
(left panels) or the step function (right panels), described, respectively, by Eqs. (47) and (48). The red bands correspond to our final
results (56)–(58). In each panel we show the number of fits, the average (x) and the error (σx) evaluated according to Eq. (46) and the
cumulative probability corresponding to the interval ½x − σx; xþ σx�. The vertical short-dashed lines correspond to the 16th and 84th
percentiles of the PDF PrðYÞ.
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aWμ ðsÞ¼27.28ð13Þstatð15Þsyst ×10−10¼27.28ð20Þ×10−10:

ð57Þ
aWμ ðcÞ¼ 2.90ð3Þstatð12Þsyst ×10−10¼ 2.90ð12Þ×10−10:

ð58Þ
To the result of Eq. (56) we must add the FSE correction

−ΔaWμ ðl; LrefÞ evaluated within the MLLGS model
according to Eq. (F14) of Appendix F with w ¼ W and
Lref ¼ 5.46 fm in the continuum limit and at the physical
pion mass point. We get

ΔaWμ ðl; LrefÞ ¼ −1.00ð20Þ × 10−10; ð59Þ

which leads to

aWμ ðlÞ ¼ 206.5ð1.3Þ × 10−10: ð60Þ

We expect to get a substantial reduction of the error in
Eq. (60) using the results from a new ETMC ensemble at
the physical pion mass point with a finer lattice spacing
currently under production.
We point out that our result given in Eq. (60) is consistent

at the level of 1.5σ with the previous ETMC estimate
aWμ ðlÞ ¼ 202.2ð2.6Þ × 10−10 [52], but it improves the
precision by a factor ≃2. This result is mainly related to
the improvement of the statistical precision and to the
reduction by a factor of ≈10 of the discretization system-
atics as compared to Ref. [52].

IV. DISCONNECTED CONTRIBUTIONS

In this section we address the calculation of the quark-
disconnected contributions to the vector correlator VðtÞjOSMA
[see Eq. (A10)], which are the sum of the six relevant
quark-disconnected [label (D)] correlators displayed in
Eq. (A11) weighted by the appropriate charge factors,

and may globally denoted as VdiscðtÞjOSMA. The currents
involved in the individual correlators are defined in
Eq. (A12) within the OS regularization. From the vector
correlator VdiscðtÞjOSMA the values of aSDμ ðdiscÞ and aWμ ðdiscÞ
are straightforwardly evaluated according to Eq. (17).
The disconnected contributions are computed for the

light-, strange- and charm-quarkmass using three ensembles
close to the physical quark masses, namely cB211.072.64,
cC211.060.80 and cD211.054.96. Due to the high cost
of the calculation, we do not compute disconnected con-
tributions using the larger volume cB211.072.96 ensem-
ble, since FSEs are expected to be negligible within
statistical errors.
The strange- and charm-quark loops are computed at a

quark mass obtained by tuning the Ω and Λc baryons,
respectively, to their physical value. The values of the bare
masses for the strange, aμs, and for the charm, aμc, quarks
are given in Appendix C 3.
Various noise-reduction techniques are employed to

improve the signal-to-noise ratio of disconnected loops.
These are the one-end trick [53], the exact deflation of low
modes [54] and hierarchical probing [55]. The one-end
trick is used for all loops; hierarchical probing with distance
8 is used for all loops, except the charm-quark loops for the
cB211.072.64 ensemble, where instead distance 4 is used;
and deflation of the low modes is used for the light-quark
loops for the cB211.072.64 and cC211.060.80 ensembles.
The latter method is not employed for the cD211.054.96
ensemble because of the prohibitively large memory
requirements. Instead multiple stochastic sources are used.
The results for the diagonal and off-diagonal discon-

nected contributions are summarized in Table I for aSDμ and
in Table II for aWμ . In Fig. 12, we show the continuum
limit extrapolation for the disconnected contributions to
aSDμ and aWμ . Qualitatively, for aWμ the light-light contribute
þ150% of the total disconnected contribution, the strange-
light −80% and the strange-strange þ30%. All other

TABLE I. Summary of the various flavor contributions to aSDμ ðdiscÞ in units of 10−12 for the cB211.072.64, cC211.060.80 and
cD211.054.96 ensembles. The symbols ll, ss and cc denote, respectively, the flavor-diagonal light, strange and charm contributions,
while ls, lc and sc denote the off-diagonal light-strange, light-charm and strange-charm contributions, respectively.

Ensemble ll ss cc ls lc sc Total

cB211.072.64 −3.37ð13Þ −2.090ð59Þ −1.18ð14Þ þ5.29ð15Þ −1.52ð24Þ þ1.67ð13Þ −1.20ð23Þ
cC211.060.80 −3.36ð16Þ −2.090ð73Þ −0.78ð11Þ þ5.53ð17Þ −1.48ð20Þ þ1.37ð15Þ −0.80ð18Þ
cD211.054.96 −3.54ð16Þ −2.084ð75Þ −0.71ð14Þ þ5.60ð18Þ −1.51ð21Þ þ1.27ð18Þ −0.96ð20Þ

TABLE II. The same as in Table I, but for the various flavor contributions to aWμ ðdiscÞ in units of 10−10.

Ensemble ll ss cc ls lc sc Total

cB211.072.64 −1.087ð49Þ −0.149ð22Þ −0.030ð53Þ þ0.635ð58Þ þ0.00ð8Þ −0.02ð6Þ −0.651ð93Þ
cC211.060.80 −1.300ð69Þ −0.159ð27Þ −0.033ð49Þ þ0.726ð81Þ −0.03ð7Þ þ0.04ð7Þ −0.762ð75Þ
cD211.054.96 −1.201ð73Þ −0.149ð29Þ þ0.018ð54Þ þ0.627ð81Þ þ0.02ð8Þ −0.02ð7Þ −0.701ð80Þ
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combinations are consistent with zero within the errors. We
do not observe sizable cutoff effects at this level of precision.
The disconnected contribution to aSDμ is very small, being
approximately 40 times smaller as compared to our error on
the light-connected contribution to aSDμ . Given the available
data, we perform only a single continuum extrapolation,
using a linear fit ansatz in a2.

Our results for aSDμ ðdiscÞ and aWμ ðdiscÞ are

aSDμ ðdiscÞ ¼ −0.006ð5Þ × 10−10; ð61Þ

aWμ ðdiscÞ ¼ −0.78ð21Þ × 10−10: ð62Þ

V. COMPARISON WITH DISPERSIVE
e + e − RESULTS AND OTHER LATTICE

QCD CALCULATIONS

Our results obtained in the isospin-symmetric limit for
the quark-connected contributions from the light, strange
and charm quarks as well as the sum of all quark-
disconnected flavor diagonal and off-diagonal contribu-
tions to the short and intermediate time-distance windows
are listed in Eqs. (5) and (7). In the case of the intermediate
window aWμ , our findings can be compared with the
corresponding ones obtained by the BMW Collaboration
in Ref. [14], by the CLS/Mainz group in Ref. [22], by
Lehner and Meyer in Ref. [56] and by Aubin et al. in
Ref. [57] (which updates their previous result [58]). We
consider also the results obtained by χQCD Collaboration
in Ref. [59], by ETMC in Ref. [52] and by RBC/UKQCD
in Ref. [15], which come from lattice setups that have less
than three values of the lattice spacing or do not include
ensembles close to the physical pion mass point. All the
above results are collected in Table III. We observe a
remarkable agreement among all lattice QCD results
establishing a clear and important success for the compu-
tation of this quantity within the framework of lattice QCD.
Moreover, very recently the Fermilab Lattice, HPQCD, and
MILC Collaborations published [60] accurate results for
one-sided window contributions to aHVPμ , quoting in par-
ticular a value of aWμ þ aSDμ ¼ 304.0ð9Þð6Þ, where the
second error accounts for corrections from QED and IB.
The above finding is in good agreement with our results
[see Eqs. (67) and (68) below].

TABLE III. Contributions to the intermediate time-distance window aWμ obtained in this work and in Refs. [14,15,22,52,56,57,59],
namely the quark-connected light (l), strange (s) and charm (c) diagrams and the sum of the quark-disconnected flavor diagonal and off-
diagonal diagrams. The last row lists the averages of all the lattice results for each contribution made following the PDG approach. All
quantities are in units of 10−10.

References aWμ ðlÞ aWμ ðsÞ aWμ ðcÞ aWμ ðdiscÞ
This work 206.5(1.3) 27.28(0.20) 2.90(0.12) −0.78ð0.21Þ
BMW [14] 207.3(1.4) 27.18(0.03) 2.7(0.1) −0.85ð0.06Þ
CLS/Mainz [22] 207.0(1.5) 27.68(0.28) 2.89(0.14) −0.81ð0.09Þ
Lehner and Meyer [56] 206.0(1.2) 27.06(0.22) � � � � � �
Aubin et al. [57] 206.8(2.2) � � � � � � � � �
χQCD [59] 206.7(1.5) 26.7(0.3) � � � � � �
ETMC [52] 202.2(2.6) 26.9(1.0) 2.81(0.11) � � �
RBC/UKQCD [15] 202.9(1.5) 27.0(0.2) 3.0(0.1) � � �
Average 206.0(0.6) 27.18(0.03) 2.86(0.06) −0.83ð0.05Þ

FIG. 12. Top panel: the quark-loop disconnected contribution
to the short time-distance window, aSDμ , versus the squared lattice
spacing a2 in physical units. Bottom panel: the same as in the top
panel, but for the intermediate window aWμ . The blue band
corresponds to the extrapolation performed using a linear fit
ansatz in a2.
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As shown in Sec. II B, the time-window contributions
aSDμ and aWμ can be evaluated using Eq. (27), which involves
the energy-modulating functions Θ̃SDðEÞ and Θ̃WðEÞ,
related to the time-modulating functions ΘSDðtÞ and ΘWðtÞ
of Eq. (28), and the experimental data available for the eþe−

ratio RhadðEÞ, given in Eq. (24).
Using the database of Ref. [11] one gets the quite precise

results [23]

aSDμ ðeþe−Þ ¼ 68.44ð48Þ × 10−10; ð63Þ

aWμ ðeþe−Þ ¼ 229.51ð87Þ × 10−10: ð64Þ

More recently, starting from the analyses of Refs. [8–11]
and adopting the merging procedure of Ref. [13],
which takes into account tensions in the eþe− database
in a more conservative way, the authors of Ref. [24] quote
the values

aSDμ ðeþe−Þ ¼ 68.4ð5Þ × 10−10; ð65Þ

aWμ ðeþe−Þ ¼ 229.4ð1.4Þ × 10−10: ð66Þ

To compare with the dispersive results, we need to
sum up all the quark-connected and -disconnected con-
tributions evaluated in the previous sections. The indi-
vidual contributions are not fully uncorrelated, since they
are determined starting from basically the same gauge
configurations. However, since the statistical uncertainty
of the vector correlator is not dominated by the gauge error
(see, e.g., Sec. III A) and the spatial stochastic sources

employed are different for different flavors, we do not
expect to have significant correlations among the various
contributions to the time windows. We have checked
explicitly this point in the case of the light- and strange-
connected contributions and found a negligible correlation.
Thus, the uncertainties of the individual quark-connected
and -disconnected contributions are summed in quadrature.
Following the above strategy, the sum of aSDμ ðlÞ, aSDμ ðsÞ,

aSDμ ðcÞ and aSDμ ðdiscÞ, i.e. the sum of Eqs. (49)–(51) and
(61), yields the result 68.91ð31Þ × 10−10. Adding also the
contribution aSDμ ðbÞ ¼ 0.32 × 10−10 coming from the bot-
tom quark (see also the lattice results of Ref. [20]) and a
QED correction aSDμ ðQEDÞ ¼ 0.03 × 10−10, both estimated
using the RHAD software package [21], we get

aSDμ ðETMCÞ ¼ 69.27ð34Þ × 10−10; ð67Þ

which agrees with the dispersive results (63) and (65)
within ≃1.4σ.
In the case of the intermediate window, we have to sum

the results obtained for aWμ ðlÞ, aWμ ðsÞ, aWμ ðcÞ and aWμ ðdiscÞ,
namely the values given in Eqs. (57), (58), (60), and (62),
obtaining 235.9ð1.3Þ × 10−10. Adding the IB contribution
aWμ ðIBÞ ¼ 0.43ð4Þ × 10−10, estimated using the corre-
sponding BMW results of Ref. [14], we obtain

aWμ ðETMCÞ ¼ 236.3ð1.3Þ × 10−10: ð68Þ

We now compare the above result with other lattice
calculations available for the total window contribution
satisfying the simple criterion of being based on

FIG. 13. We show lattice QCD results of the short-distance window aSDμ (left panel), intermediate window aWμ (central panel), obtained
in this work and in Refs. [14,22], and the full HVP term aHVPμ (right panel) from Ref. [14], compared with the corresponding dispersive
determinations from Ref. [24], based on experimental eþe− → hadrons data (see text). In the central panel, the green diamond denotes
the average of our result given in Eq. (68) with those from Refs. [14,22], namely aWμ ¼ 236.73ð80Þ × 10−10.
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lattice setups with more than two values of the lattice
spacing and at least one ensemble close to the physical
pion mass point. Our value (68) is nicely consistent with
the result aWμ ðBMWÞ ¼ 236.7ð1.4Þ × 10−10 by the BMW
Collaboration [14] and with the recent one aWμ ðCLSÞ ¼
237.30ð1.46Þ × 10−10 by the CLS/Mainz group [22] at
better than 1σ level. However, it is in tension with the
dispersive result (66) by 3.6σ. Averaging our result (68)
with the one by the BMW Collaboration, we obtain
aWμ ¼ 236.49ð95Þ × 10−10, which disagrees with the dis-
persive result by 4.2σ. Taking into account also the very
recent result by the CLS/Mainz group [22], we get
aWμ ¼ 236.73ð80Þ × 10−10, which increases the tension
with the dispersive result at the level of ≃4.5σ.
Comparing with the more precise dispersive result
(64), obtained in Refs. [11,23], the tension increases
further, reaching the level of ≃6.1σ. The above lattice and
dispersive results for the short and intermediate time-
distance windows as well as those for the full HVP term
are also collected in Fig. 13.
The accurate lattice results suggest the possible presence

of deviations in the eþe− cross section data with respect to
the QCDþ QED theory predictions somewhere in the low-
and/or intermediate-energy regions but not in the high-
energy region as defined in Fig. 2.
In Table IV, we collect our lattice results for the short

and intermediate time-distance windows and the lattice
value of the full HVP term taken from Ref. [14]. These
lattice results are compared with the corresponding dis-
persive determination of Ref. [24], based on experimental
eþe− → hadron data. The differences between them
denoted by Δawμ for w ¼ fSD;W;HVPg are shown in
the fourth column. The contribution of the 2π channels
(below a center-of-mass energy of 1 GeV) to the various
windows, awμ ð2πÞ, as determined in Ref. [24], are com-
pared with the differences Δawμ . We find that the ratio of
Δawμ=awμ ð2πÞ is at the level of ≃3%–5% for the three
windows albeit with large uncertainties. This suggests,
qualitatively, that the accurate lattice results for the time
windows and for the full HVP term could be compatible
with an overall few-percent enhancement of the eþe−

cross section data in the 2π channels at center-of-mass
energies below 1 GeV.

VI. CONCLUSIONS

We have presented a lattice determination of the leading-
order HVP contribution to the muon anomalous magnetic
moment, aHVPμ , in the so-called short- and intermediate-
distance windows, aSDμ and aWμ , defined by the RBC/
UKQCD Collaboration [15].
For this determination we have employed a set of gauge

ensembles produced by ETMC with Nf ¼ 2þ 1þ 1
flavors of Wilson-clover twisted-mass sea quarks with
masses tuned very close to their physical values [16–19].
The gauge ensembles used are simulated at three different
values of the lattice spacing, namely a ≃ 0.057, 0.068, and
0.080 fm, and with spatial lattice sizes up to L ≃ 7.6 fm.
We worked in the isospin-symmetric limit. The quark-

connected contributions from the light (u=d), strange and
charm quarks as well as the sum of all quark-disconnected
flavor diagonal and off-diagonal contributions are com-
puted. These are then used to evaluate the contribution to
the short and intermediate time-distance windows,
obtaining the results listed in Eqs. (5) and (7). In the case
of the intermediate window aWμ , our findings are in nice
agreement with several results obtained by other lattice
QCD collaborations, as shown in Table III. Such a
remarkable agreement within small uncertainties represents
the robustness of the evaluation of this quantity within the
framework of lattice QCD.
Adding the bottom-quark and theQEDcontribution to the

short-distance window, aSDμ ðbÞþaSDμ ðQEDÞ¼0.35×10−10,
evaluated in perturbative QCD using the RHAD software
package [21], and the IB contribution to the intermediate
window, aWμ ðIBÞ ¼ 0.43ð4Þ × 10−10 taken from Ref. [14],
we get

aSDμ ðETMCÞ ¼ 69.27ð34Þ × 10−10; ð69Þ
aWμ ðETMCÞ ¼ 236.3ð1.3Þ × 10−10: ð70Þ

Our result for the short-distance contribution given in
Eq. (69) is consistent with the recent dispersive value

TABLE IV. Values of awμ obtained in this work for the short and intermediate time-distance windows, w ¼ fSD;Wg, and from
Ref. [14] for the full HVP term, w ¼ HVP, compared with the corresponding dispersive determinations of Ref. [24], based on
experimental eþe− → hadrons data (third column). The difference between the second and third columns, Δawμ , is given in the fourth
column, while the contributions of the 2π channels awμ ð2πÞ (below a center-of-mass energy of 1 GeV), obtained in Ref. [24], are shown
in the fifth column. All quantities are in units of 10−10 except for the last column, where we list the values of the ratio between Δawμ and
the 2π contribution awμ ð2πÞ.

Window (w) awμ ðLQCDÞ awμ ðeþe−Þ [24] Δawμ awμ ð2πÞ [24] Δawμ =awμ ð2πÞ
SD 69.3(0.3)a 68.4(0.5) 0.9(0.6) 13.7(0.1) 0.066(43)
W 236.3(13)a 229.4(1.4) 6.9(1.9) 138.3(1.2) 0.050(14)
HVP 707.5(5.5) [14] 693.0(3.9) 14.5(6.7) 494.3(3.6) 0.029(14)

aThis work.
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aSDμ ðeþe−Þ ¼ 68.4ð5Þ × 10−10 [24] within ≃1.4σ. In the
case of the intermediate window, our value given in
Eq. (69) is larger than the dispersive result aWμ ðeþe−Þ ¼
229.4ð1.4Þ × 10−10 [24] by ≃3.6σ. Our value is nicely
consistentwith theBMWresultaWμ ðBMWÞ ¼ 236.7ð1.4Þ ×
10−10 [14] and with the recent CLS/Mainz one aWμ ðCLSÞ ¼
237.30ð1.46Þ × 10−10 [22] at better than 1σ level. The
tension between our value and the dispersive result increases
from ≃3.6σ to ≃4.2σ if we average our result (70) with the
one obtained by the BMW Collaboration, leading to
aWμ ¼ 236.49ð95Þ × 10−10. Including in the average also
the recent CLS/Mainz result we get aWμ ¼ 236.73ð80Þ×
10−10, which is in disagreement with the dispersive result
by ≃4.5σ.
In conclusion, the impact of our lattice computations is

twofold. Concerning the intermediate-distance window we
confirm the two currently most accurate lattice QCD
results, namely those from the BMW Collaboration and
the CLS/Mainz group, increasing the discrepancy with the
corresponding prediction based on eþe− cross section data
to the significant level of ≃4.5 standard deviations.
Moreover, we have computed accurately for the first time
the short-distance window, finding that there is no signifi-
cant tension with the corresponding dispersive result. This
is a clear indication that any deviation between QCDþ
QED theory predictions, the framework employed in SM-
based lattice calculations, and the eþe− cross section
experiments is unlikely to occur at high energy. Instead,
it may occur somewhere in the low- and/or intermediate-
energy regions.
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APPENDIX A: LATTICE SETUP AND
SIMULATION DETAILS

In this work, we analyze the gauge ensembles produced
recently by ETMC in isospin-symmetric QCD (isoQCD)
with Nf ¼ 2þ 1þ 1 flavors of Wilson-clover twisted-
mass quarks and described in Refs. [16–19]. Our renor-
malizable lattice theory is specified by the following action:

S ¼ SYM½U� þ Sq;sea½Ψl;Ψh; U� þ Sq;val½fqf; q0fg; U�
þ Sghost½fϕf;ϕ0

fg; U�; ðA1Þ

which corresponds to a mixed-action lattice setup employ-
ing twisted-mass [66,67] and Osterwalder-Seiler fermions
[68]. This setup allows us to avoid any undesired strange-
charm quark mixing through cutoff effects and to preserve
the automatic OðaÞ improvement of all physical observ-
ables [69]. Moreover, it offers the possibility of considering
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two different regularizations of the current-current corre-
lators relevant for the present study.
The gluon action SYM½U� is the (mean-field) improved

Iwasaki one [70]. It contains the bare gauge coupling β ¼
6=g20 that controls the lattice spacing a, as QCD asymptotic
freedom implies aΛQCD ∼ expð−1=ð2b0g20ÞÞ with b0 > 0.
Concerning the fermionic sector of the action, it can be

written as the sum of the sea and valence quark actions. The
sea quark action is written in terms of a light Ψl ¼
ðusea; dseaÞ and a heavy Ψh ¼ ðcsea; sseaÞ quark doublet,
namely

Sq;sea ¼ a4
X
x

fΨ̄lðxÞ½γ · ∇̃þ μl − iγ5τ3Wcl
cr�ΨlðxÞ

þ Ψ̄hðxÞ½γ · ∇̃þ μσ þ τ3μδ − iγ5τ1Wcl
cr�ΨhðxÞg:

ðA2Þ

For the valence quark action, it is convenient to allow for
several replica, labeled by η ¼ 1; 2; 3;…, of each quark
flavor f with different values of the Wilson parameter rf;η,
which in practice we restrict to be rf;η ¼ ð−1Þη−1. Thus, we
have

Sq;val ¼ a4
X
x

X
f;η

q̄f;ηðxÞ½γ · ∇̃þmf

− sgnðrf;ηÞiγ5Wcl
crjr¼1�qf;ηðxÞ; ðA3Þ

where qf;η is a single flavor field and f runs over the four

lightest quark flavors u, d, s, and c. By ∇̃μ we denote the
symmetric gauge covariant lattice derivative, while ∇μ and
∇�

μ stand for the analogous forward and backward lattice
derivatives, respectively, and [H(4) covariant] “spacetime”
indices are omitted when contracted with each other. In the
expressions above, the critical Wilson-clover operator is
defined as

Wcl
crjr ¼ −a

r
2
∇� ·∇þmcrðrÞ

þ a
cSWðrÞ
32

γμγνa−1½Qμν −Qνμ�; ðA4Þ

i.e. it includes the critical mass mcr term and a clover term
∝ γμγνa−1½Qμν −Qνμ� (i.e. a lattice discretization of the
Pauli term ∝ iσμνFμν) [71] with a coefficient, cSW, that is
identical for all sea and valence flavors and is fixed to
the value obtained in one-loop tadpole boosted
perturbation theory [72]. In writing the valence quark
action Sq;val, we have also exploited the known property
[69] Wcl

crj−r ¼ −Wcl
crjr. In Eq. (A2) for Sq;sea the operators

Wcl
cr are implicitly defined for r ¼ 1 and their two-flavor

structure is displayed by the Pauli matrices τ3 and τ1 acting
in flavor space.

In the sea and valence quark action sectors the critical
Wilson-clover term, which includes the critical mass
counterterm ∝ mcr ∼ 1=a, is taken at maximal twist with
respect to the soft quark mass terms in order to guarantee
automatic OðaÞ improvement of the physical observables
[67,73] and mcr is set to a unique value for all flavors [69].
The inclusion of the clover term turns out to be very
beneficial for further reduction of the residual cutoff effects,
in particular those on the neutral pion mass, thereby making
the Monte Carlo simulations close to the physical pion
point numerically stable [16] (see also Ref. [74]).
The valence ghost action term reflects the form and

follows the notation of the valence quark action, viz.

Sghost ¼ a4
X
x

X
f;η

ϕ†
f;ηðxÞ½γ · ∇̃þmf

− sgnðrf;ηÞiγ5Wcl
crjr¼1�ϕf;ηðxÞ; ðA5Þ

with each ϕf;η being a complex boson field of spin 1=2 (i.e.
a ghost), and is included in order to obtain formally
vanishing contributions from all the valence fields to the
effective gluonic action. Of course no ghost fields ever
occur in our actual computations.
For the light-quark doublet the sea and valence bare

mass μl is unique and takes values such as to obtain Mπ

close to Mphys
π ¼ MisoQCD

π ¼ 135.0ð2Þ MeV [18]. Larger
values of Mπ are used to compute observables relevant for
scale setting, where the analysis includes a chiral extrapo-
lation to Mphys

π .
The masses of the strange and charm sea quarks are set

within ∼5% accuracy to their physical values for each
ensemble by carefully tuning the parameters μσ and μδ in
Sq;sea (in the preliminary stage of our simulations) in order
to reproduce the renormalization group invariant (RGI)
values MDs

=fDs
¼ 7.9ð0.1Þ and mc=ms ¼ 11.8ð0.2Þ

adopted in Refs. [16–18]. The above values are consistent
with the more precise, recent determinations MDs

=fDs
¼

7.88ð0.02Þ and mc=ms ¼ 11.77ð0.03Þ from Ref. [75] and
they are sufficiently accurate for the purposes of the
present work.7

The masses of the strange and charm valence quarks are
very accurately fixed by two physical inputs, which can
conveniently be chosen as the kaon and D-meson masses.

7From our study of the light-quark sea mass corrections (see
below Table VI) we observe that a change of ≃5% in the light-
quark sea mass affects aWμ ðlÞ by less than ≃0.05%. Sea quark
effects are in general suppressed as the quark mass is increased
and, in the limit where the sea quark mass, msea, of a given flavor
is large as compared to ΛQCD, the relative change of an
observable is expected to scale as the relative sea quark mass
change times O½ðΛ2

QCD=m
2
seaÞðα2sðmseaÞ=π2Þ�. Thus, a ≃5% rel-

ative mistuning of strange- and charm-quark sea masses cannot
have a significant impact on window observables that are
evaluated with a few permille relative uncertainty.

LATTICE CALCULATION OF THE SHORT AND INTERMEDIATE … PHYS. REV. D 107, 074506 (2023)

074506-21



In this way, using the ETMC ensembles of Refs. [16–19],
the values of the charm and strange as well as light u=d
renormalized quark masses were determined in Ref. [34].
Here, we redetermine the strange and charm valence quark
masses by the physically equivalent requirements of
reproducing the energy of the ϕ resonance (or the mass
of the fictitious pseudoscalar meson ηs determined accu-
rately in isoQCD at the physical point in Ref. [14]) and the
energy of the J=ψ resonance (or the mass of the pseudo-
scalar meson ηc). As discussed in Appendix C, we find
results in nice agreement, up to lattice artifacts in the charm
sector, with those obtained from the MK and MD inputs
in Ref. [34].
Following this procedure, we are able to determine the

valence quark mass parameters ms and mc using high-
statistics observables that are computed on the same gauge
configurations and using the same stochastic sources as the
vector current-current correlator VðtÞ of Eq. (15). This
method is very convenient for minimizing the statistical
error on the time windows awμ . In practice, to interpolate our
results to the physical strange and charm valence quark
masses, we evaluate the contributions to VðtÞ from vector
correlators in the s and c valence sector for a few values of
the bare valence quark masses aμvals and aμvalc , which will
be specified later in Tables XI and XIII.
Essential information on the ETMC ensembles relevant

for this work is collected in Table V. With respect to
Refs. [17,18,34] two other dedicated gauge ensembles,
cB211.072.96 and cD211.054.96, have been produced for
the investigation of FSEs and cutoff effects [19]. The
cB211.074.96 ensemble, which has a spatial lattice size
L ≈ 7.6 fm, is used to estimate FSEs by comparing to the
smaller cB211.074.64 ensemble, while the cD211.054.96
ensemble corresponds to our finest lattice spacing
a ≃ 0.057 fm. Note that for the three finest lattice spacing
ensembles, which are the only ones that have been used
for the calculation of awμ ðlÞ; awμ ðsÞ and awμ ðdiscÞ, the pion
mass is simulated quite close to the isoQCD reference
value Mphys

π ¼ MisoQCD
π ¼ 135.0ð2Þ MeV, which was also

adopted in Refs. [18,34]. For the evaluation of the light-
quark-connected contribution, the inversions of the Dirac

operator have been performed using Nhits ¼ 103 spatial
stochastic sources per gauge configuration. The tech-
niques adopted for the calculation of the disconnected
diagrams are briefly outlined in Sec. IV.
Pion-mass mistuning effects, which are at most of order 5–

6MeV for the B-, C-, andD-type ensembles listed in TableV,
are relevant for the light-quark contribution to the intermedi-
ate window [aWμ ðlÞ] and completely negligible within the
accuracy for all the other contributions considered in this
work. Indeed, aWμ ðlÞ is dominated by ππ and πππ contribu-
tions and, hence, particularly sensitive to variations of the
light-quark mass. In order to minimize the systematic errors
related to the (small) difference Mπ −MisoQCD

π on the
ensembles used for the calculation of aWμ ðlÞ, we performed
additional simulations enabling to correct our lattice data for
the mistuning ofMπ . In practice we evaluated the corrections
to aWμ ðlÞ due to the appropriate small change of μl in the
valence and in the sea sector of the lattice action.
The former correction has been determined by perform-

ing additional inversions of the light-quark Dirac operator
employing a slightly smaller value of the light bare quark
mass aμ0l < aμl, keeping the sea quark mass fixed to aμl.
The values of the valence light-quark mass aμ0l have been
chosen, for each ensemble, according to the following
relation:

aμ0l ≈ aμl

�
MisoQCD

π

Mπ

�2

; ðA6Þ

where Mπ is the measured value of the pion mass on any
given ensemble. Since such corrections are expected to be
of the order of few permille, only a limited number of
stochastic sources [Oð100Þ] have been used for this
calculation. The valence correction δVval

l ðtÞ to the vector
correlator has been then determined for both tm and OS
regularizations as

δVval
l ðtÞ ¼ Vlðt; aμ0l; aμlÞ − Vlðt; aμl; aμlÞ; ðA7Þ

where Vlðt; aμl; aμlÞ is the unitary vector correlator, while
Vlðt; aμ0l; aμlÞ is the one obtained from simulations at the

TABLE V. Parameters of the ETMC ensembles used in this work. We give the light-quark bare mass, aμl ¼ aμu ¼ aμd, the pion mass
Mπ , the lattice size L and the productMπL. The values of the lattice spacing are determined as explained in Appendix A 2 using the 2016
PDG value fphysπ ¼ fisoQCDπ ¼ 130.4ð2Þ MeV [76] of the pion decay constant for setting the scale.

Ensemble β V=a4 a (fm) aμl Mπ (MeV) L (fm) MπL

cB211.072.64 1.778 643 · 128 0.07957(13) 0.00072 140.2(0.2) 5.09 3.62
cB211.072.96 1.778 963 · 192 0.07957(13) 0.00072 140.1(0.2) 7.64 5.43
cC211.060.80 1.836 803 · 160 0.06821(13) 0.00060 136.7(0.2) 5.46 3.78
cD211.054.96 1.900 963 · 192 0.05692(12) 0.00054 140.8(0.2) 5.46 3.90
cA211.53.24 1.726 243 · 48 0.09076(54) 0.00530 361.6(2.1) 2.18 3.98
cA211.40.24 1.726 243 · 48 0.09076(54) 0.00400 315.2(2.0) 2.18 3.46
cA211.30.32 1.726 323 · 64 0.09076(54) 0.00300 272.2(1.7) 2.90 4.00
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valence quark mass aμ0l and sea quark mass aμl. In order to
reduce the statistical noise, Eq. (A7) has been evaluated
using a common set of stochastic sources for both valence
masses, aμl and aμ0l.

As for the evaluation of the corrections to aWμ ðlÞ coming
from the sea sector, we rely on the so-called expansion
method. At leading order in δðaμlÞ≡ aμ0l − aμl the cor-
rection δVsea

l ðtÞ to the vector correlator can be determined as

δVsea
l ðtÞ ¼

R ½dΦ�e−S½Φ;aμl�−δðaμlÞ
R

Ψ̄lΨlðxÞOðtÞR ½dΦ�e−S½Φ;aμl�−δðaμlÞ
R

Ψ̄lΨlðxÞ
−
R ½dΦ�e−S½Φ;aμl�OðtÞR ½dΦ�e−S½Φ;aμl�

¼ −δðaμlÞ
X
x

½hΨ̄lΨlðxÞOðtÞi − hOðtÞihΨ̄lΨlðxÞi� þOðδ2ðaμlÞÞ;

OðtÞ≡ a3

3

X
x⃗

X
j¼1;2;3

Jll
0

j;regðxÞ½Jll0j;reg�†ð0Þ; ðA8Þ

where, to keep the notation simple, we collectively denote
with Φ all fermionic and gluonic fields, while S½Φ; aμl�
corresponds to the Wilson-clover twisted-mass action in
Eq. (A1) with bare light-quark mass aμl. The composite
fieldOðtÞ is a product of two light valence quark currents [see
Eqs. (A11) and (A12) for the notation] but no sea quark fields
Ψl and Ψ̄l. The expansion method has the clear advantage
that no new gauge configurations have to be generated and
allows one to compute δVsea

l ðtÞ from the insertion of the
(light-quark) scalar density inside the current-current corre-
lator. All vacuum expectationvalues in Eq. (A8) are evaluated
in the gauge background generated by S½Φ; aμl�. Finally, the
total correction δaWμ ðlÞ to the light-quark contribution to the
intermediate window is given by

δaWμ ðlÞ¼ 2α2em

Z
∞

0

dtt2KðmμtÞΘWðtÞ½δVval
l ðtÞþδVsea

l ðtÞ�:

ðA9Þ

In Table VI we show the values of the correction δaWμ ðlÞ
(for both tm and OS regularizations) on the four ensembles
of Table V, along with the original values of aWμ ðlÞ, the
simulated values of δðaμlÞ, and the values of the
pion masses obtained after performing such corrections.
It turns out that (i) the correction δaWμ ðlÞ shifts upward the
intermediate window by approximately 2σ (or less) for the
cB211.072.64, cB211.072.96 and cD211.054.96 ensem-
bles, while it is completely negligible within the uncertainty
for the ensemble cC211.06.80, and (ii) the sea quark mass

correction is found to be significantly smaller than the one
from the valence quark mass.

1. The correlator VðtÞ in the mixed-action setup

In our formulation, we find it convenient to evaluate the
vector correlator VðtÞ [see Eq. (15)] by employing two
different regularizations for the quark-connected contribu-
tions to the correlator. Moreover, as discussed in the
following, using a mixed-action (MA) setup, we can define
renormalized correlators for each individual quark flavor
(l, s, c) connected term and for the various quark flavor
diagonal and off-diagonal disconnected contributions to awμ
(here w ¼ SD;W). This flexibility turns out to be advanta-
geous for extrapolating independently contributions to awμ
that can have a different magnitude and relative accuracy to
the continuum limit. After taking the continuum limit they
are combined to yield the desired results of the unitary
isoQCD theory.
The vector correlator VðtÞ for Nf ¼ 2þ 1þ 1 QCD can

be reconstructed, in the continuum limit, by combining a
number of renormalized correlators in our MA setup, with
coefficients dictated by the em charge of the various quark
flavors. Namely

VðtÞjregMA ¼
1

3
a3
X
x

X
i¼1;3

ViiðxÞjregMA; x¼ðx; tÞ; ðA10Þ

with

TABLE VI. The values of the light-quark bare mass difference δðaμlÞ adopted for each ETMC gauge ensemble, given in units of 10−5.
The third column contains the values of Mπ in physical units obtained after the mass correction, while the other columns show the
original values for aWμ ðlÞ and the resulting δaWμ ðlÞ, given in units of 10−10, in the two regularizations tm and OS.

Ensemble δðaμlÞ Mπ (MeV) aWμ ðl; tmÞ δaWμ ðl; tmÞ aWμ ðl;OSÞ δaWμ ðl;OSÞ
cB211.072.64 −5.25 135.2(2) 204.61(36) 0.13(10) 203.36(33) 0.38(7)
cB211.072.96 −5.25 135.2(2) 205.98(21) 0.26(11) 203.18(20) 0.51(8)
cC211.060.80 −1.50 134.9(3) 204.88(44) 0.05(5) 203.02(37) 0.02(5)
cD211.054.96 −4.36 135.1(3) 205.67(42) 0.36(9) 203.96(39) 0.31(10)
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ViiðxÞjregMA ¼ 4þ 1

9
hJll0i;regðxÞ½Jll0

i;reg�†ð0ÞiðCÞ þ
1

9
hJss0i;regðxÞ½Jss0i;reg�†ð0ÞiðCÞ þ

4

9
hJcc0i;regðxÞ½Jcc0i;reg�†ð0ÞiðCÞ

þ 4þ 1 − 2 − 2

9
hJlli;OSðxÞ½Jl

0l0
i;OS�†ð0ÞiðDÞ þ 1

9
hJssi;OSðxÞ½Js

0s0
i;OS�†ð0ÞiðDÞ þ 4

9
hJcci;OSðxÞ½Jc

0c0
i;OS�†ð0ÞiðDÞ

−
1

9
hJlli;OSðxÞ½Jssi;OS�†ð0Þ þ hciðDÞ þ 2

9
hJlli;OSðxÞ½Jcci;OS�†ð0Þ þ hciðDÞ −

2

9
hJssi;OSðxÞ½Jcci;OS�†ð0Þ þ hciðDÞ; ðA11Þ

where reg ∈ ftm;OSg labels the two regularizations of the single-flavor renormalized vector currents, up to variants that are
equivalent in the large statistics limit. Adopting the lighter notation qf;ηðxÞ≡ fηðxÞ for the single-flavor valence quark
fields, the relevant renormalized vector currents read

Jll
0

μ;tm ¼ ZAl1γμl2; Jll
0

μ;OS ¼ ZVl1γμl3; Jllμ;OS ¼ ZVl1γμl1; Jl
0l0

μ;OS ¼ ZVl3γμl3;

Jss
0

μ;tm ¼ ZAs̄1γμs2; Jss
0

μ;OS ¼ ZVs̄1γμs3; Jssμ;OS ¼ ZVs̄1γμs1; Js
0s0
μ;OS ¼ ZVs̄3γμs3;

Jcc
0

μ;tm ¼ ZAc̄1γμc2; Jcc
0

μ;OS ¼ ZVc̄1γμc3; Jccμ;OS ¼ ZVc̄1γμc1; Jc
0c0
μ;OS ¼ ZVc̄3γμc3; ðA12Þ

where ZA or ZV are the appropriate ultraviolet (UV) finite
RCs for the bare local vector currents in Eq. (A12). We
recall that l ¼ u ¼ d, as in our lattice QCD setup u and d
quarks are mass degenerate. For all valence quark flavors
f ¼ l; s; c, we have rf;1 ¼ −rf;2 ¼ rf;3 ¼ � � � ¼ 1. The
suffixes on the currents (e.g., ss0, ss or s0s0) just remind
whether the quark and antiquark field entering in each
current belong to different (e.g., ss0) or equal (e.g., ss or
s0s0) valence fermion replica, independently of the Wilson r
values which are specified by the index η ¼ 1; 2; 3. The
suffix (C) or (D) attached to the correlators contributing
to ViiðxÞjregMA in Eq. (A10) indicates whether these corre-
lators give rise to quark-connected or -disconnected Wick
contractions.
As customary when working with twisted-mass lattice

fermions, we say that a vector current, e.g., Jff
0

μ;reg, is
written in the tm or OS regularization if the two valence
quarks f and f0 entering the current appear in the valence
quark action Sq;val of Eq. (A3) with rf0 ¼ −rf or rf0 ¼ rf,
respectively. As one can see from the examples in
Eq. (A12), this implies that the OS regularization is the
unique possible choice for the currents entering in the
fermion-disconnected correlators. Numerically, they
give much smaller contributions to awμ than the quark-
connected correlators, for which instead the two lattice
discretizations are available.
We outline here the main steps of the proof showing that

one can extract physical information on the correlator VðtÞ
in QCD from the correlators VðtÞjtm;OS

MA , following the logic
that was adopted in Ref. [69] for correlators relevant to
other physical observables. Let us start from the UV finite
RCs of the currents appearing in Eq. (A12).
For the currents involving two different valence-replica

quark fields (i.e. Jll
0

μ;reg, Jss
0

μ;reg, Jcc
0

μ;reg), which enter in the
quark-connected correlators, one easily checks that the
appropriate RC is ZA or ZV for reg ¼ tm or reg ¼ OS,

respectively. Indeed, since the RC are named following the
standard notation for untwisted Wilson lattice fermions,
this result is easily obtained by rewriting for the two
considered regularizations (reg) the current operator in the
valence quark basis where the Wilson term appears
untwisted, viz.

Sq;val ¼ a4
X
x

X
f;η

χ̄f;ηðxÞ½γ · ∇̃þ sgnðrf;ηÞiγ5mf

þWcl
crjr¼1�χf;ηðxÞ: ðA13Þ

Comparing with the form of Sq;val in Eq. (A3), one sees that
the relation between the two valence quark field bases reads

fη≡qf;η¼ ei
π
4
γ5sgnðrf;ηÞχf;η; f̄η≡ q̄f;η¼ χ̄f;ηei

π
4
γ5sgnðrf;ηÞ:

ðA14Þ

Taking as an example the currents Jss
0

μ;tm and Jss
0

μ;OS, it follows
that since

s̄1γμs2 ¼ χ̄s;1γ5γμχs;2; s̄1γμs3 ¼ χ̄s;1γμχs;3; ðA15Þ

the first and second bare currents in Eq. (A15) are
renormalized with ZA and ZV , respectively. The same
argument holds for all the other currents having two
different valence-replica quark fields in Eq. (A12), with
the relative sign of the Wilson r parameters of the valence
quark and antiquark determining whether the proper RC is
ZV or ZA.

8 As for the vector currents involving two equal
valence-replica quark fields, i.e. Jllμ;OS, J

ss
μ;OS, J

cc
μ;OS, J

l0l0
μ;OS,

8For completeness we recall that such scale-independent RCs
are needed in lattice regularization that break chiral symmetries in
order to have the valence-quark currents normalized consistently
with the chiral WIs of QCD [77,78].
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Js
0s0
μ;OS, and Jc

0c0
μ;OS, which enter in the quark-disconnected

correlators, it is easy to check that their form is unchanged
upon rewriting them in the quark basis where the valence
fermion action takes the form given in Eq. (A13). Thus, the
problem is reduced to determining the renormalization
pattern for a single-flavor vector current in untwisted
Wilson lattice QCD. Taking, for instance, the case of the
charm-quark flavor (the argument is unchanged for s, d and
u), what we are after is the relation between the chiral
covariantly renormalized current, say ½q̄cγμqc�R, and the
bare current q̄cγμqc. In Appendix D we show that for
standard Wilson fermions the flavor-singlet and -nonsinglet
vector current RCs actually coincide, i.e. ZV0 ¼ ZV , from
which it follows that the current q̄cγμqc is only multipli-
catively renormalized and ½q̄cγμqc�R ¼ ZVq̄cγμqc. As a
consequence, all the vector currents that involve two equal
valence-replica quark fields in our mixed-action setup are
also multiplicatively renormalized through ZV .
An important result is obtained exploiting renormaliz-

ability of our mixed-action setup (A1) and universality,
provided [69]

(i) a suitable renormalization condition (e.g., the value
of fπ in isoQCD) is imposed as g20 → 0,

(ii) the bare soft mass parameters are matched so as to
work with equal sea and valence renormalized quark
masses for each flavor (see below for more de-
tails), and

(iii) all the current-current correlators appearing in
Eq. (A10) are normalized consistently with the
chiral WI of Nf ¼ 2þ 1þ 1 QCD.

Namely, the correlator VðtÞjtm;OS
MA in Eq. (A10) admits a

continuum limit that coincides with the one of the
formally identical correlator, VðtÞjGWMA , evaluated at equal
renormalized quark masses in a chiral-symmetric lattice
regularization, e.g., defined using Ginsparg-Wilson sea
and valence quarks, whence the label GW, of the same
mixed Nf ¼ 2þ 1þ 1 QCD action. Moreover, at the
given renormalized quark masses, the continuum limit
of VðtÞjGWMA in the chiral-symmetric lattice regularization is
identical to the continuum limit of VðtÞjGW , i.e. the
correlator of Eq. (15) in the unitary Nf ¼ 2þ 1þ 1

QCD setup.9 The latter is precisely the quantity of interest
for extracting aSD;Wμ , as discussed in Sec. II. This con-
cludes our proof.
A few remarks are in order about the way of tuning the

bare soft mass parameters in order to work with equal sea
and valence renormalized quark masses for each physical
flavor in the mixed-action setup (A1). Based on the results

of Ref. [69] a simple way of doing so consists in matching
the sea and valence bare mass parameters according to

ml ¼ μu¼ μd; ms¼ μσ −
ZS

ZP
μδ; mc ¼ μσþ

ZS

ZP
μδ;

ðA16Þ

where ZP (ZS) is the RC of the pseudoscalar (scalar) flavor
nonsinglet quark bilinear density and fixing the values of
μu ¼ μd, μs and μc in order to reproduce the “physical”
values of three observables (sensitive to the light, strange
and charm quark masses) in isoQCD. Of course the
definition of such physical values in isoQCD is conven-
tional, since in the physical world SU(2) isospin symmetry
is only approximate, but any arbitrariness induced by the
conventional definition of an isoQCD world can be
removed by evaluating the corresponding QED and strong
IB corrections10 (for a review see, e.g., Ref. [75]).
In practice we tune μσ and μδ by matching them to their

valence counterparts ms and mc as discussed in Ref. [16].
The values of the valence quark masses ms and mc are in
turn fixed in order to reproduce the phenomenologically
well-known values of MDs

=fDs
and mc=ms, as discussed

above in introducing the mixed-action lattice setup (A1).
Such a tuning step could be performed with an accuracy of
few percents for all lattice resolutions in the early stages of
the simulation effort without affecting significantly the
uncertainty of the final results owing to the very mild
dependence of aSDμ and aWμ on the strange and charm sea
quark masses.
Aiming at a few permille determination of the window

contributions, it is crucial to have a high-precision deter-
mination of the RCs ZA and ZV as well as of the values of
the lattice spacing. While the accurate evaluation of ZA and
ZV will be discussed in Appendix B, we address now a
significant improvement of the determination of the lattice
spacing (the result of which is given in Table V) with
respect to the results obtained in Ref. [18].

2. Improved determination of the lattice spacing

In order to reduce the uncertainties on the lattice spacing
as compared to the results obtained in Ref. [18], we take
advantage of the following improvements: (i) Pseudoscalar
observables are now available with substantial higher
accuracy thanks to a huge number of stochastic sources
(Nsource ≃ 103) per gauge configuration; (ii) two new
ensembles at the physical point, namely cB211.072.96
and cD211.054.96, are included in the analysis; and (iii) a
significant increase in the number of independent gauge
configurations analyzed for the two physical mass point

9This identity is easily checked by noting that the correlators
VðtÞjGWMA and VðtÞjGW , being defined in the same UV regulari-
zation for all types of quark fields and evaluated at equal
renormalized masses, give rise to identical Wick contractions
at finite lattice spacing.

10As mentioned in Secs. I and V, the IB correction to aSDμ is
negligible, while the one to aWμ is estimated using the BMW
results of Ref. [14].
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ensembles the cB211.072.64 and cC211.060.80 as com-
pared to what we used in Ref. [18]; and (iv) the inclusion of
four ensembles at a coarser lattice spacing of a ≃ 0.091 fm,
namely cA211.53.24, cA211.40.24, cA211.30.32 and
cA211.12.48, taken from Ref. [18]; they will be referred
to as A-type ensembles. The simulated pion masses are
in the range 170–350 MeV [18] and, therefore, they are not
close to the physical pion point. Consequently, in the
analyses of the light- and strange-quark contributions
to the window observables they would require a significant
extrapolation in the pion mass. Nevertheless, they can be
useful for the analysis of the charm contribution
to the window observables, since the latter ones have a
very tiny dependence on the sea light-quark mass; (v) the
inclusion of four B-type ensembles at a ≃ 0.080 fm, namely
cB211.25.24, cB211.25.32, cB211.25.48 and cB211.14.64
from Ref. [18], for getting control over FSEs and pion-mass
dependence.
Following Ref. [18] the analysis is performed using as

input the dimensionless variable

ξπ ¼
M2

π

16π2f2π
ðA17Þ

corrected for FSEs using the resummed formulas from
Ref. [79]. Then, we fit the pion decay constant in lattice
units, afπ , determined on the A- and B-type (second largest
lattice spacing) ensembles, using the following ansatz
inspired by chiral perturbation theory (ChPT):

afjπðξπ; LÞ ¼ afjπðξphysπ ;∞Þ · f1 − 2ξπ logðξπ=ξphysπ Þ
þ ½Pþ PdiscðafjπÞ2� · ðξπ − ξphysπ Þg

·

�
1þ PFSEξπ

e−MπL

ðMπLÞ3=2
�
; ðA18Þ

where j ¼ A, B and afAπ , afBπ , P, Pdisc, and PFSE are free
fitting parameters. We use a total of ten ensembles.11

Using the values obtained for P, Pdisc and PFSE we can
correct the lattice data of afπ for the mistuning in ξπ and for
FSEs on all the ETMC ensembles, i.e. also on the C and D
ensembles. After applying such corrections, which are
small on the physical point B, C and D ensembles, the
lattice spacing is determined from

aX ¼ afXπ ðξphysπ ;∞Þ=fphysπ ; X ¼ A;B;C;D; ðA19Þ

where fphysπ ¼ fisoQCDπ ¼ 130.4ð2Þ MeV [76] (as in
Ref. [18]). As no use is made here of the gradient flow
quantity w0=a, the above scale setting procedure is

equivalent to that of Ref. [18] only up to relative Oða2Þ
effects on the lattice spacing.
The reduced χ2 of the fit based on the ansatz (A18) is

χ2=d:o:f: ≃ 1.6, with ten measurements and five parame-
ters. Fit stability is checked by including or excluding the
cA211.12.48 ensemble and by including or excluding all
the A-type ensembles. In the latter case we set Pdisc ¼ 0.
The quality of the fitting procedure is illustrated in Fig. 14.
The values of the lattice spacing for the various ETMC
ensembles are collected in Table VII and compared with the
ones from Ref. [18].
It can be seen that, except for the A-type ensembles, the

updated values of the lattice spacing are more precise than
those obtained in Ref. [18] by a factor of ≃2. We reach a
precision better than ≃0.2% for the ensembles B, C and D,
while for the A ensembles the relative uncertainty of a is
equal to ≃0.6%. The reason why the accuracy of the lattice
determination for the A-type ensembles is not at the same
level is that, unlike for the rest of the ensembles, we do not
have simulations very close to the physical pion point. This
means that we have to extrapolate from larger values of ξπ
to reach the physical value increasing the error, as

FIG. 14. The pion decay constant in lattice units, afπ , as
determined on the A and B ensembles, versus the dimensionless
variable ξπ given in Eq. (A17). The smaller markers represent the
results obtained using the combined fit (A18). Both data points
and fit curves are shown after removing FSE using the result for
PFSE. The vertical dotted line corresponds to the physical value
ξπ ¼ ξphysπ ¼ ξisoQCDπ ≃ 0.0068.

TABLE VII. In the first column we give the ensemble type
according to its lattice spacing, in the second column we give the
updated values of the lattice spacing a, and in the third column we
give our previous determination using a smaller set of ensembles
and statistics [18].

Ensembles a (fm) [this work] a (fm) (from [18])

A 0.09076(54) 0.09471(39)
B 0.07957(13) 0.08161(30)
C 0.06821(13) 0.06942(26)
D 0.05692(12) 0.05770(20)

11For the ensemble cA211.12.48 we correct the value of afπ
accounting for violation from maximal twist condition following
Ref. [18].
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demonstrated in Fig. 14. In Fig. 15, we plot the relative
difference between the two determinations of the lattice
spacing that exhibits a nice a2-scaling behavior.
In this work we use the values of the lattice spacing given

in the central column of Table VII (see also Table V).
Finally, a relevant question which we want to address is

the sensitivity of the short and intermediate windows to the
uncertainty of the lattice spacing, focusing on the (most
relevant) case of the light-quark contribution. While the
windows are dimensionless quantities, the lattice spacing
enters their calculation explicitly through the fact that the
two dimensionful quantities entering the leptonic kernel,
the muon mass mμ and the window parameter Δ, must be
converted in lattice units. The impact that the relative
uncertainty Δa=a on the lattice spacing produces in awμ ðlÞ
(w ¼ SD;W) is given by

Δawμ ðlÞ
awμ ðlÞ

¼
				 ∂ log ðawμ ðlÞÞ

∂ logðaÞ
				 · Δaa ≡ Cw ·

Δa
a

: ðA20Þ

The coefficient Cw can be computed numerically from the
knowledge of the lattice vector correlator and from the
derivative of the integration kernel with respect to the lattice
spacing a. In the case of the full HVP this coefficient turns
out to be around 1.8, as already pointed out in Ref. [80]. For
the short and intermediate windows, we find instead CSD ∼
0.1 and CW ∼ 0.4. The short-distance window is therefore
largely insensitive to the uncertainty on the scale setting,
while for the intermediate window the impact is a factor of
4 smaller than that for the full HVP.

APPENDIX B: HADRONIC
DETERMINATION OF ZV AND ZA

In order to reach a high-precision determination of the
two scale-invariant RCs ZV and ZA we employ a hadronic

method based on the WI combined with a high-statistics
determination of the relevant suitable correlators. This
allows us to obtain on the physical point ensembles of
Table V, namely the B-, C- and D-type ensembles, an
accuracy of ≃0.03%–0.10% for ZA and of ≃0.001% for ZV,
thus reaching the desired accuracy. We collect the values of
ZA and ZV used in this work for each of the ETMC
ensembles of Table V in Table VIII.
We proceed to illustrate in detail the method, based on

WI and universality, that enables us to obtain the two RCs
ZV and ZA with very high precision. The derivation relies
on two main ingredients, namely an exact conserved
current relation holding in the Wilson twisted-mass regu-
larization and the fact that the critical Wilson term is a truly
dimension-five irrelevant operator.

1. Case of ZV

In order to discuss the evaluation of the RC of the flavor
nonsinglet vector and axial currents, in the context of the
mixed-action setup forNf ¼ 2þ 1þ 1 LQCD described in
Sec. III it is convenient (and enough) to focus on the
Lagrangian for just two different valence quark flavors,
which can be taken with a common soft mass parameter,
say μF, and are denoted by F and F0.
Let us start by considering the case where the two

distinct valence quark flavors are taken at maximal twist
with opposite r-Wilson parameters, i.e. rF ¼ −rF0 ¼ 1. In
order to lighten notation and ease a number of algebraic
steps in the following let us collect the two valence quark
field in a two-flavor valence field, ψval;−, i.e.

ψval;− ≡ ðqF; qF0 Þ; ψ̄val;− ≡ ðq̄F; q̄F0 Þ; ðB1Þ

with the suffix “−” reminding of rFrF0 < 0. The FF0 sector
of the valence quark action (A3) reads

FIG. 15. a2-scaling behavior of the relative difference between
the two determinations of the lattice spacing given in Table VII.
The violet and green bands correspond to a linear fit in a2 applied,
respectively, to all the four data points and to the three finest ones
only. The width of the bands represents one standard deviation.

TABLE VIII. The values of ZV and ZA used in this work for
each of the ETMC ensembles of Table V, determined by
employing the WI-based hadronic method described in the next
subsections. In the last row we provide our determination of the
two RCs on the coarsest lattice spacing a ∼ 0.091 fm. They have
been obtained by extrapolating to the physical sea light-quark
mass point (corresponding to Mπ ¼ MisoQCD

π ) the values of ZV
and ZA calculated on the three specified A-type ensembles (see
also Table V), with a ∼ 0.091 fm.

Ensemble ZV ZA

cB211.072.64 0.706379(24) 0.74294(24)
cB211.072.96 0.706405(17) 0.74267(17)
cC211.060.80 0.725404(19) 0.75830(16)
cD211.054.96 0.744108(12) 0.77395(12)
cA211.(53.24, 40.24, 30.32) 0.68700(14) 0.7280(17)
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Sq;val ⊃ SF
0

q;val ¼ a4
X
x

ψ̄val;−ðxÞ½γ · ∇̃þ μF

− iγ5τ3Wcl
crjr¼1�ψval;−ðxÞ; ðB2Þ

with the τ3 matrix acting in the FF0 flavor space. Since RC
are named after the quark basis where the Wilson term is
untwisted, it is useful to write also in this basis

χval;− ≡ e−iπγ5τ
3=4ψval;−; χ̄val;− ≡ ψ̄val;−e−iπγ5τ

3=4 ðB3Þ

the FF0 sector of the valence quark action [see Eq. (B2)],
namely

SFF
0

q;val ¼ a4
X
x

χ̄val;−ðxÞ½γ · ∇̃þ iγ5τ3μF

þWcl
crjr¼1�χval;−ðxÞ: ðB4Þ

The expression of axial and vector currents, as well as
scalar and pseudoscalar densities, is different in the two
different bases, while the physical meaning of these
operators is manifest in the ψ basis where the quark mass
term (∝ μF) takes its canonical form. In that basis, also
referred to as the “physical” one, we use here for the
operators symbols in calligraphic style and write

Aa
μ≡ ψ̄val;−γμγ5

τa

2
ψval;−

¼
(
ϵ3abVb

μ ¼ ϵ3abχ̄val;−γμ
τb

2
χval;− ða¼ 1;2Þ;

A3
μ ¼ χ̄val;−γμγ5

τ3

2
χval;− ða¼ 3Þ;

ðB5Þ

Va
μ≡ ψ̄val;−γμ

τa

2
ψval;−

¼
(
ϵ3abAb

μ ¼ ϵ3abχ̄val;−γμγ5
τb

2
χval;− ða¼ 1;2Þ;

V3
μ ¼ χ̄val;−γμ

τ3

2
χval;− ða¼ 3Þ;

ðB6Þ

Pa ≡ ψ̄val;−γ5
τa

2
ψval;−

¼
(
Pa ¼ χ̄val;−γ5

τa

2
χval;− ða ¼ 1; 2Þ;

i 1
2
S0 ¼ i 1

2
χ̄val;−χval;− ða ¼ 3Þ; ðB7Þ

S0 ≡ ψ̄val;−ψval;− ¼ 2iP3 ¼ 2iχ̄val;−γ5
τ3

2
χval;−: ðB8Þ

Owing to the exact flavor symmetry of Wilson fermions
for massless quarks (μF ¼ 0), the WI

∂
�
μhṼa

μðxÞOð0Þi ¼ −2μFϵ3abhPbðxÞOð0Þi; ðB9Þ

where ∂
�
μ is the lattice backward derivative, holds true

exactly at finite lattice spacing. In Eq. (B9) Ṽμ is the exactly
conserved point-split lattice current,

Ṽa
μðxÞ¼

1

2

�
χ̄val;−ðxÞðγμ−1Þτ

a

2
UμðxÞχval;−ðxþaμ̂Þ

þ χ̄val;−ðxþaμ̂Þðγμþ1Þτ
a

2
U−1

μ ðxÞχval;−ðxÞ
�
:

ðB10Þ

The lattice WI of Eq. (B9) can be used to determine the
finite RC ZV of the pointlike current Va

μ, a ¼ 1; 2, i.e. of the
axial current Aa

μ, a ¼ 1; 2 in the “physical” ψ basis.
Making use of Eq. (B9) and of the transformation law
of Eqs. (B5)–(B7), it is easy to show that ZV can be
extracted using

ZV ¼ lim
μF→0

2μF

P
xhP1ðxÞP1ð0ÞiP

x∂̃μhA1
μðxÞP1ð0Þi ; ðB11Þ

where ∂̃μ is the lattice symmetric derivative and operators
are written in the physical basis; see Eqs. (B5) and (B7).
Moreover, the limit μF → 0, it is strictly speaking unnec-
essary, since the difference ZVðμFÞ − ZVð0Þ amounts only
to lattice artifacts of order Oða2μ2FÞ or Oða2μFΛQCDÞ. Any
choice of μF, which of course must be set to the same value
in physical units for all ensembles, is legitimate, and we can
use this freedom to evaluate ZV at a convenient value of μF.
According to the discussion above, for each ensemble we
extract ZV from the large time behavior, t=a ≫ 1, of the
following estimator12:

RVðtÞ≡ 2μF
Ctm
PPðtÞe∂tCtm
VPðtÞ

; ðB12Þ

where (correlators are named here after the unphysical χ
basis)

Ctm
PPðtÞ ¼

1

L3

X
x;z

h0jP1ðxÞP1ðzÞj0iδt;ðtx−tzÞ; ðB13Þ

Ctm
VPðtÞ ¼

1

L3

X
x;z

h0jA1
0ðxÞP1†ðzÞj0iδt;ðtx−tzÞ: ðB14Þ

We recall that P1ðxÞ ¼ ψ̄val;−ðxÞγ5 1
2
τ1ψval;−ðxÞ and

A1
0ðxÞ ¼ ψ̄val;−ðxÞγ0γ5 1

2
τ1ψval;−ðxÞ are the pseudoscalar

and axial pointlike bare (nonsinglet) currents, respectively,
in the “physical” basis, while in Eq. (B12) the suffix tm
reminds that all the quark bilinear operators appearing in
the correlators Ctm

PP and C
tm
VP involve a quark of flavor F and

an antiquark of flavor F0, or vice versa, with rF ¼ −rF0 .
Because of the WI in Eq. (B9) one must have

12The value of the estimator at small times is affected by
relatively larger lattice artifacts, while at large times no significant
deterioration of the signal-to-noise ratio is expected as the one-
pion state dominates the correlators.
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RVðtÞ → ZV þOða2μ2F; a2μFΛQCDÞ: ðB15Þ

In Fig. 16 we show the time behavior of the estimator RVðtÞ
for the cB211.072.64 and cC211.060.80 ensembles and for
two values of aμF. It can be seen that the WI method allows
one to determine the RC ZV from the plateau of RVðtÞ with
remarkably high precision. Regarding thevalue of μF, we fix
it by the requirement that the ground state mass of the
correlatorCtm

PPðtÞmatches themass of the fictitious ηsmeson
(made out of a strange quark and a strange antiquark), i.e.
Mηs ¼ 689.89ð49Þ MeV [14]. Thevalues ofZV correspond-
ing to this choice are collected in Table VIII.

2. Case of ZA

Let us consider now the case where the two distinct
valence quark flavors are taken at maximal twist with equal
r-Wilson parameters, i.e. rF ¼ rF00 ¼ 1. In order to lighten
notation and ease some algebra we collect the two valence
quark field in a two-flavor valence field, ψval;þ, i.e.

ψval;þ ≡ ðqF; qF00 Þ; ψ̄val;þ ≡ ðq̄F; q̄F00 Þ; ðB16Þ

with the suffix þ reminding of rFrF00 > 0. The FF00 sector
of the valence quark action (A3) reads

Sq;val ⊃ SFF
00

q;val ¼ a4
X
x

ψ̄val;þðxÞ½γ · ∇̃þ μF

− iγ51Wcl
crjr¼1�ψval;þðxÞ; ðB17Þ

with the 2 × 2 identity matrix 1 acting in the FF00 flavor
space. As RCs are named after the quark basis where the
Wilson term is untwisted, we introduce in this basis the
notations

χval;þ ≡ e−iπγ5=4ψval;þ; χ̄val;þ ≡ ψ̄val;þe−iπγ5=4 ðB18Þ

for the FF00 sector of the valence quark action [see
Eq. (B17)], namely

SFF
00

q;val ¼ a4
X
x

χ̄val;þðxÞ½γ · ∇̃þ iγ51μFþWcl
crjr¼1�χval;þðxÞ:

ðB19Þ

It follows that in theFF00 valence sector the nonsinglet axial
currents and the pseudoscalar densities in the physical ψ
basis (for which we use calligraphic style symbols) are
given by

Aa
μ ≡ ψ̄val;þγμγ5

τa

2
ψval;þ ¼ Aa;OS

μ

¼ χ̄val;þγμγ5
τa

2
χval;þ ða ¼ 1; 2; 3Þ ðB20Þ

and

Pa
μ ≡ ψ̄val;þγ5

τa

2
ψval;þ ¼ iSa;OSμ

¼ iχ̄val;þ
τa

2
χval;þ ða ¼ 1; 2; 3Þ; ðB21Þ

where the suffix OS on the χ-basis expression of the
operators reminds that they are made out of a valence quark
and antiquark having equal r parameters in the action; see
Eqs. (B17) and (B19).
In order to determine the RC ZA, let us start by defining

the following ratio:

FIG. 16. Time behavior of the estimator RVðtÞ, given by Eq. (B12), for the cB211.072.64 (left panel) and cC211.060.80 (right panel)
ensembles. The red circles and the blue squares correspond to two simulated values of μF shown in the inset.

LATTICE CALCULATION OF THE SHORT AND INTERMEDIATE … PHYS. REV. D 107, 074506 (2023)

074506-29



RAðtÞ≡ 2μq
COS
SS ðtÞ

∂̃tCOS
ASðtÞ

; ðB22Þ

where (correlators are named here after the unphysical χ
basis)

COS
SS ðtÞ ¼

1

L3

X
x;z

h0jP1ðxÞP1ðzÞj0iδt;ðtx−tzÞ; ðB23Þ

COS
ASðtÞ ¼

1

L3

X
x;z

h0jA1
0ðxÞP1ðzÞj0iδt;ðtx−tzÞ; ðB24Þ

with A1
0 and P1 given by Eqs. (B20) and (B21). The suffix

OS in the correlators reminds that COS
SS and COS

AS involve a
quark of flavor F and an antiquark of flavor F0, or vice
versa, with rF ¼ rF0 .
At large time distances t=a ≫ 1 one has the following

asymptotic behavior:

COS
SS ðtÞ → jGOS

π j2 e
−MOS

π t þ e−M
OS
π ðT−tÞ

2MOS
π

; ðB25Þ

a∂̃tCOS
ASðtÞ →

fOSπ
ZA

MOS
π sinh ðaMOS

π ÞðGOS
π Þ�

×
e−M

OS
π t þ e−M

OS
π ðT−tÞ

2MOS
π

; ðB26Þ

where MOS
π is the mass of the valence OS pion π, i.e. the

ground state mass extracted from COS
SS ðtÞ at the given quark

mass μF, while fOSπ is related to the pion decay constant fπ
through

fOSπ ¼ fπ þOða2Þ: ðB27Þ

The previous equations imply the following asymptotic
large time behavior for RAðtÞ:

RAðtÞ → 2aμF
ZA

fOSπ

GOS
π

MOS
π sinh ðaMOS

π Þ : ðB28Þ

In order to determine ZA from the estimator RAðtÞ, it is
necessary to have an independent way to extract fOSπ , since
both GOS

π and MOS
π can be determined from COS

SS ðtÞ alone.
This can be achieved exploiting the fact that, as a
consequence of the WI given in Eq. (B9), the meson decay
constant fπ can be extracted in the tm regularization
without the knowledge of any RCs, from the large time
behavior of Ctm

PPðtÞ, namely using

Ctm
PPðtÞ → jGtm

π j2 e
−Mtm

π t þ e−M
tm
π ðT−tÞ

2Mtm
π

;

ftmπ ¼ 2aμF
Gtm

π

Mtm
π sinh ðaMtm

π Þ ; ðB29Þ

where again ftmπ ¼ fπ þOða2Þ. By imposing fOSπ ¼ ftmπ ,
which is true up to lattice artifacts, we can determine ZA
using

R̄AðtÞ≡ RAðtÞ
MOS

π sinh ðaMOS
π Þ

Mtm
π sinh ðaMtm

π Þ
ZS

ZP
→ ZA; ðB30Þ

where

ZP

ZS
¼ GOS

π

Gtm
π

ðB31Þ

FIG. 17. The same as in Fig. 16, but for the estimator R̄AðtÞ given by Eq. (B30).
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is the ratio between the flavor nonsinglet pseudoscalar (ZP)
and scalar (ZS) RCs.
As in the case of ZV , there is freedom in choosing the

valence quark mass μF at which the correlators are
evaluated, provided this value is kept fixed in physical
units for all ensembles. Indeed, the difference ZAðμFÞ −
ZAð0Þ represents a mereOða2μ2F; a2μFΛQCDÞ cutoff effect.
In Fig. 17 we show our determination of the estimator
R̄AðtÞ for the cB211.072.64 and cC211.06.80 ensembles
and for two values of aμF. We adopt for ZA the same
choice made for ZV and fix μF to the strange mass by the
requirement that the ground state mass of the Ctm

PPðtÞ
correlator matches the one of the ηs meson, i.e.
Mηs ¼ 689.89ð49Þ MeV. The values of ZA corresponding
to this choice, and obtained from the plateaux of the
estimator R̄AðtÞ, are collected in Table VIII.
For sake of completeness we collect in Table IX the

values of the ratios of RCs ZA=ZV corresponding to the
results of Table VIII and ZP=ZS obtained from Eq. (B31).

APPENDIX C: THE PHYSICAL STRANGE- AND
CHARM-QUARK MASSES

In this appendix we describe our strategy to reach the
physical values of the valence strange- and charm-quark
masses,mphys

s andmphys
c , using various hadronic inputs. Our

results are well consistent with those obtained in Ref. [34]
using the kaon mass to determine mphys

s and the Ds-meson
mass to determine mphys

c .
In Secs. C 1 and C 2we list, respectively, the values of the

valence bare strange- and charm-quarkmasses, aμs and aμc,
used for each gauge ensemble to interpolate the simulations
of Sec. III to the physical strange- and charm-quark masses.
In Sec. C 3 we list the values of aμs and aμc used to evaluate
the strange- and charm-quark loops of Sec. IV.

1. The physical strange-quark mass

In order to reach the physical strange-quark mass mphys
s ,

we made use of two different hadronic inputs, namely the

mass of a fictitious ηs meson, made of two mass-degenerate
strangelike quarks of different flavors, and the mass of the
ϕ vector meson. The physical value of the fictitious ηs-
meson mass, Mηs , was determined with subpermille pre-
cision in Ref. [14], so that throughout this work we make
use of the value

Mphys
ηs ¼ 689.89ð49Þ MeV; ðC1Þ

while for the mass of the ϕ meson we rely on the PDG [81]
value

Mphys
ϕ ¼ 1019.461ð16Þ MeV: ðC2Þ

Within the lattice QCD formulation, we extract aMηs and
aMϕ from the connected part of the strange pseudoscalar
and vector correlators, respectively, evaluated in the tm
regularization, which guarantees that discretization effects
are of order Oða2μsÞ. Thus, in the case of the ϕ meson we
neglect the contribution from quark-disconnected dia-
grams, which are expected to yield a tiny correction of
order Oðα3sÞ. In Fig. 18 we show the quality of our

TABLE IX. The values of ZA=ZV and ZP=ZS obtained from the
hadronic method discussed in the text for each of the ETMC
ensembles of Table V. In the last rowwe provide our determination
of the two RCs on the coarsest lattice spacing a ∼ 0.091 fm. They
have been obtained by extrapolating to the physical sea light-quark
mass point (corresponding toMπ ¼ MisoQCD

π ) the values ofZA=ZV
andZP=ZS calculated on the three specifiedA-type ensembles (see
also Table V), with a ∼ 0.091 fm.

Ensemble ZA=ZV ZP=ZS

cB211.072.64 1.05176(35) 0.79018(35)
cB211.072.96 1.05134(24) 0.79066(23)
cC211.060.80 1.04535(22) 0.82308(23)
cD211.054.96 1.04011(16) 0.85095(18)
cA211.(53.24, 40.24, 30.32) 1.0597(24) 0.7517(29)

FIG. 18. Effective masses aMηs (top) and aMϕ (bottom)
obtained, respectively, from the strange pseudoscalar and vector
correlators evaluated in the tm regularization in the case of the
cD211.054.96 ensemble. The horizontal bands indicate the
results of a constant fit in the plateaux regions, where the ground
state dominates.
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determination of aMηs and aMϕ on our finest ensemble
cD211.054.96.
In order to determine the physical strange-quark mass

amphys
s in lattice units, we interpolate and extrapolate our

lattice data for aMηs and aMϕ using the following linear
ansatz:

aMP¼aMphys
P þκ ·

�
aμs
ZP

−amphys
s

�
; P¼fηs;ϕg; ðC3Þ

with κ and amphys
s being fitting parameters for each

ensemble. aMphys
P is obtained from Eqs. (C1) and (C2)

using the improved determination of the lattice spacings the
values of which are listed Table VII. The results obtained
for amphys

s in the MSð2 GeVÞ scheme are collected in
Table X and shown in Fig. 19 versus the squared lattice
spacing. No significant FSEs are visible and the data
exhibit a nice a2-scaling behavior. The continuum limit
extrapolations for mphys

s corresponding to the use of the ηs-
and ϕ-meson masses as hadronic inputs agree very well
within one standard deviation and, moreover, they are

consistent with the result obtained in Ref. [34] using the
kaon mass to determine mphys

s .
For each gauge ensemble we perform simulations at two

values of the valence bare strange-quark mass, aμs, in order
to interpolate the results for aSDμ ðsÞ and aWμ ðsÞ to the

physical strange-quark massmphys
s . The simulated values of

aμs are collected in Table XI together with the values of the
RC ZP of the pseudoscalar density obtained in the
regularization independent momentum subtraction (RI-
MOM) scheme and converted in the MSð2 GeVÞ one in
Refs. [34,82].

2. The physical charm-quark mass

In order to reach the physical charm-quark mass mphys
c ,

we use two different hadronic inputs, namely the masses of
the pseudoscalar ηc and vector J=Ψ mesons. In this work,
we adopt the PDG values [81]

Mphys
ηc ¼ 2.984ð4Þ GeV; ðC4Þ

Mphys
J=Ψ ¼ 3.097ð1Þ GeV; ðC5Þ

where the errors include the estimate of the quark-dis-
connected contributions made in Refs. [83,84]. We extract
aMηc and aMJ=Ψ from the connected part of the charm
pseudoscalar and vector correlators, respectively. In
Fig. 20, we show the quality of our determination of
aMηc and aMJ=Ψ using our finest ensemble cD211.054.96.
In order to determine the physical charm-quark mass

amphys
c in lattice units, we interpolate and extrapolate our

lattice data for aMηc and aMJ=Ψ using the following linear
ansatz:

aMP ¼ aMphys
P þ κ̄ ·

�
aμc
ZP

−amphys
c

�
; P¼fηc;J=Ψg;

ðC6Þ

with κ̄ and amphys
c being fitting parameters for each ensem-

ble. aMphys
P is obtained from Eqs. (C4) and (C5) using the

improved determination of the lattice spacing. The results
obtained for amphys

c in theMSð3 GeVÞ scheme are collected

FIG. 19. Continuum limit extrapolation of mphys
s in the

MSð2 GeVÞ scheme, determined using the ηs-meson (blue
squares) and the ϕ-meson (red squares) masses as hadronic
input. The two determinations agree in the continuum limit within
one standard deviation. The black square at a2 ¼ 0 corresponds
to the result obtained in Ref. [34] using the kaon mass to
determine mphys

s .

TABLE X. Values of amphys
s in the MSð2 GeVÞ scheme [34,82]

in lattice units determined using in Eq. (C3) either the ηs-meson
mass (C1) or the ϕ-meson mass (C2) as the physical hadronic
input.

Ensemble amphys
s ðηsÞ amphys

s ðϕÞ
cB211.072.64 0.03846(41) 0.03608(58)
cB211.072.96 0.03845(41) 0.03533(51)
cC211.060.80 0.03320(40) 0.03139(58)
cD211.054.96 0.02788(25) 0.02709(32)

TABLE XI. Values of the bare strange-quark mass aμs and of
the RC ZP [evaluated in the RI-MOM scheme and converted in
the MSð2 GeVÞ one [34,82]] for each of the four ensembles of
Table V. We indicate with aμLs (aμHs ) the lightest (heaviest) bare
strange-quark mass used for each ensemble.

Ensemble aμLs aμHs ZP½MSð2 GeVÞ�
cB211.072.64 0.019 0.021 0.4788(54)
cB211.072.96 0.019 0.021 0.4788(54)
cC211.060.80 0.016 0.018 0.4871(49)
cD211.054.96 0.014 0.015 0.4894(44)
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in Table XII and shown in Fig. 21 versus the squared lattice
spacing. No significant FSEs are visible and the data exhibit
a nice a2-scaling behavior. The continuum limit extrapola-
tions formphys

c corresponding to the use of the ηc- and J=Ψ-
meson masses as hadronic inputs agree very well within one
standard deviation and, moreover, they are consistent with
the result obtained in Ref. [34] using theDs-meson mass to
determine mphys

c .
For each ensemble, we perform simulations at three

values of the valence bare charm-quark mass, aμc, in order

to interpolate the results for aSDμ ðcÞ and aWμ ðcÞ to the

physical charm-quark mass mphys
c . The values of aμc used

are collected in Table XIII together with the values of the
RC ZP of the pseudoscalar density obtained in the RI-
MOM scheme and converted in the MSð3 GeVÞ one in
Refs. [34,82].

3. The strange- and charm-quark masses in
disconnected contributions

In Sec. IV the strange- and charm-quark loops are
computed at a quark mass obtained by tuning the Ω and
Λc baryons, respectively, to their physical value. The values
of the bare masses for the strange, aμs, and for the charm,
aμc, quarks are listed in Table XIV. In Fig. 22, we show the
continuum limit of the renormalized strange- and charm-

FIG. 20. Effective masses aMηc (top) and aMJ=Ψ (bottom)
obtained, respectively, from the charm pseudoscalar and vector
correlators evaluated in the tm regularization in the case of the
cD211.054.96 ensemble. The horizontal bands indicate the
results of a constant fit in the plateaux regions, where the ground
state dominates.

FIG. 21. Continuum limit extrapolation of mphys
c in the

MSð3 GeVÞ scheme, determined using either the ηc-meson (blue
squares) or the J=Ψ-meson (red squares) masses as hadronic
input. The two determinations agree in the continuum limit. The
black square at a2 ¼ 0 corresponds to the result obtained in
Ref. [34] using the mass of theDs meson to determine mphys

c . The
blue and red bands correspond to the best-fit functions obtained
fitting only the (more statistically accurate) data at the three finest
lattice spacings.

TABLE XII. Values of amphys
c in the MSð3 GeVÞ scheme

[34,82] in lattice units determined using in Eq. (C6) either the
ηc-meson mass from Eq. (C4) or the J=Ψ-meson mass from
Eq. (C5) as the physical hadronic input.

Ensemble amphys
c ðηcÞ amphys

c ðJ=ΨÞ
cA211.53.24 0.5210(81) 0.5128(83)
cA211.40.24 0.5213(82) 0.5133(83)
cA211.30.32 0.5218(81) 0.5145(83)
cB211.072.64 0.4489(45) 0.4457(46)
cC211.060.80 0.3746(43) 0.3735(42)
cD211.054.96 0.3076(29) 0.3068(27)

TABLE XIII. Values of the bare charm-quark mass aμc in
lattice units and of the RC ZP [evaluated in the RI-MOM scheme
and converted in the MSð3 GeVÞ one [34,82]] for each of the
ETMC ensembles employed in the charm sector. We indicate
with aμLc , aμMc and aμHc , respectively, the lightest, the inter-
mediate, and the heaviest bare charm-quark masses used for each
ensemble.

Ensemble aμLc aμMc aμHc ZP½MSð3 GeVÞ�
cA211.53.24 0.265 0.290 0.300 0.5267(54)
cA211.40.24 0.265 0.290 0.300 0.5267(54)
cA211.30.32 0.265 0.290 0.300 0.5267(54)
cB211.072.64 0.210 0.230 0.250 0.5314(59)
cC211.060.80 0.175 0.195 0.215 0.5406(54)
cD211.054.96 0.165 0.175 � � � 0.5431(48)

LATTICE CALCULATION OF THE SHORT AND INTERMEDIATE … PHYS. REV. D 107, 074506 (2023)

074506-33



quark masses in the MSð2 GeVÞ and MSð3 GeVÞ scheme
[34,82], respectively. We compare them against the results
computed in the continuum limit in Ref. [34]. Note that the
values of the renormalized strange-quark mass mphys

s ¼
Z−1
P ðMS; 2 GeVÞμs do not show sizable cutoff effects,

while mphys
c ¼ Z−1

P ðMS; 3 GeVÞμc does.

APPENDIX D: FLAVOR-SINGLET
RENORMALIZATION CONSTANTS

In this appendix we show that in LQCD with Wilson
quarks the (UV finite) RCs of the singlet (ZV0) and
nonsinglet (ZV) pointlike vector currents coincide. This
property follows from the exact invariance of the massless
theory under flavor-singlet and -nonsinglet vector trans-
formations and it holds generally with any number Nf of
Wilson fermions of arbitrary mass, for all possible values of
the twist angle and of the clover improvement coefficient.
For definiteness let us consider LQCD with Nf ¼ 4

flavors of Wilson quarks, say u, d, s and c, with renor-
malized masses m̂f ¼ Zmmf ≡ Zmðm0 −mcrÞ, f ¼ u, d, s,
c, with or without a flavor-singlet clover term. Defining
DW

cr ðUÞ ¼ γ · ∇̃ − ða=2Þ∇�∇þmcr þ ði=4Þcswσ · F the
critical Dirac-Wilson operator, with ∇μ (∇�

μ) the forward
(backward) gauge covariant lattice derivative, which
implicitly depends on the gauge-links field U, and ∇̃μ ¼
1
2
½∇μ þ∇�

μ�, the lattice action reads

SLQCD¼ SYM½U�þa4
X
x

X
f¼u;d;s;c

q̄fðxÞ½DW
cr ðUÞþmf�qfðxÞ;

ðD1Þ

where SYM½U� denotes the pure gauge action term.13 In the
limit of degenerate quark masses (mu ¼ md ¼ ms ¼ mc)
the lattice action is manifestly invariant under both flavor-
singlet Uð1Þ and flavor-nonsinglet SUð4Þ global vector
transformations of the quark fields qf, f ¼ u, d, s, c, with
exactly conserved one-point splitNoether currents given by

V̂ð0Þ
μ ðxÞ ¼ 1

2

X
f¼u;d;s;c

½q̄fðxþ aμ̂Þð1þ γμÞU†
μðxÞqfðxÞ

− q̄fðxÞð1 − γμÞUμðxÞqfðxþ aμ̂Þ� ðD2Þ

and

V̂ðbÞ
μ ðxÞ ¼ 1

2

X
f;h

½q̄hðxþ aμ̂Þλbhfð1þ γμÞU†
μðxÞqfðxÞ

− q̄hðxÞλbhfð1 − γμÞUμðxÞqfðxþ aμ̂Þ�; ðD3Þ

with λb (b ¼ 1; 2;…; 15) being the generators of SUð4Þ.
The corresponding conserved charges are

FIG. 22. Renormalized strange (left) and charm (right) quark mass, given, respectively, in the MSð2 GeVÞ and MSð3 GeVÞ scheme
[34,82], obtained in this work using the RCs ZP from Tables XI and XIII and tuning the Ω and Λc baryon masses, versus the squared
lattice spacing. The red stars are the results of the continuum limit extrapolation carried out in Ref. [34].

TABLE XIV. Values of the bare quark masses aμs and aμc
used for the calculation of strange- and charm-disconnected
contributions.

Ensemble aμs aμc

cB211.072.64 0.01860 0.249
cC211.060.80 0.01615 0.206
cD211.054.96 0.01360 0.166

13Both here and in Appendix A the fields qf and q̄f refer to the
quark of flavor f in the physical basis where its soft mass term
takes the canonical form mfq̄fqf . However the lattice regulari-
zations are different, though related in the chiral limit by an
axial rotation, since the critical Wilson term here is taken aligned
to the soft mass term in the chiral internal space, while it is
maximally twisted in the lattice setup of Appendix A, implying
that the RCs of an operator with a given physical meaning in the
two lattice regularizations are in general related through an axial
rotation (depending of course on the details of rf and r0f for the
valence fields).
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Qð0Þ
V ¼ a3

X
x⃗

V̂ð0Þ
0 ðxÞ ¼ 3Qbar;

QðbÞ
V ¼ a3

X
x⃗

V̂ðbÞ
0 ðxÞ; b ¼ 1; 2;…; 15; ðD4Þ

implying that the one-point split lattice currents (D2) and
(D3) are not renormalized. The baryon number charge is

Qbar ¼ 1
3
Qð0Þ

V . Note also that single-flavor one-point split

conserved vector currents V̂ðfÞ
μ exist, for f ¼ u, d, s, c,

that are obtained by the appropriate combinations of the
identity and the diagonal SUð4Þ generator matrices. From
these currents the corresponding single-flavor conserved
charges Qf

V can be defined, in analogy with Eq. (D4). For
instance, taking λð15Þ¼diagð−1;−1;−1;þ3Þ, one hasQc

V ¼
1
4
½Q0

V þQ15
V �.

For nondegenerate quark masses, e.g., in Nf ¼ 2þ 1þ
1 LQCD, the Uð1Þ vector symmetry remains exact while
the SUð4Þ flavor symmetry is only softly broken and the

charges QðbÞ
V (b ¼ 1; 2;…; 15), though being in general

time dependent, satisfy the same SUð4Þ charge algebra as
in the mass-degenerate case. This implies that all the one-
point split lattice currents (D2) and (D3) still admit unit RC.
Here our focus is on the renormalization properties of the

pointlike bare vector currents

Vð0Þ
μ ðxÞ¼

X
f

q̄fðxÞγμqfðxÞ;

VðbÞ
μ ðxÞ¼

X
f

q̄fðxÞλbγμqfðxÞ; ðb¼ 1;2;…;15Þ: ðD5Þ

Owing to the presence of the Wilson term in the lattice
action the pointlike currents (D5) are not conserved, while,
based on the exact vector Uð1Þ and SUð4Þ symmetries,
one expects that their properly renormalized flavor-singlet
and-nonsinglet counterparts read

½Vð0Þ
μ �RðxÞ ¼ ZV0Vð0Þ

μ ðxÞ;
½VðbÞ

μ �RðxÞ ¼ ZVV
ðbÞ
μ ðxÞ; ðb ¼ 1; 2;…; 15Þ; ðD6Þ

with ZV0 and ZV nontrivial dimensionless, UV finite
functions of the bare gauge coupling g20.
As far as the renormalization of vector singlet and

nonsinglet currents is concerned, the values of the indi-
vidual quark masses play no role, because they can at most
affect ZV and ZV0 through immaterial O(am) lattice
artifacts.14 The latter will actually be Oða2m2Þ and
Oða2mΛQCDÞ if the correlators from which the RCs are

determined are OðaÞ improved. Hence with no loss of
generality in the following we can assume fully degenerate
quark masses and set

mu;d;s;c ≡m: ðD7Þ
The proof that in LQCD with Wilson quarks ZV0 ¼ ZV will
proceed in two steps.

(i) We observe that ZV0 ¼ ZV if and only if the
insertion of the pointlike bare vector charge
a3

P
x⃗ q̄hðxÞγ0qhðxÞ of a certain fixed flavor h in

the correlation functions of multilocal operators with
no h-flavor valence quarks (or zero total h-flavor
quantum number) vanishes.

(ii) We prove that the aforementioned operator insertion,
which of course gives rise only to quark-discon-
nected diagrams, is actually vanishing.

For the second step we find it convenient to employ, as a
proof-technical tool, a mixed-action LQCD (MALQCD)
setup, which has no direct relation to the twisted-mass
mixed-action framework adopted in the paper and in no
way restricts the validity of the result. As far as we know,
the result ZV0 ¼ ZV for LQCD with Wilson quarks is
currently established in perturbation theory only up to the
two-loop level (included) [86].

1. Step (i)

For definiteness let us identify the flavor h with the
charm, i.e. h ¼ c. To lighten notation we write qf ≡ f.
Assuming no special relation between ZV0 and ZV in
LQCD we have (see, e.g., Ref. [78])

½c̄γμc�RðxÞ¼
1

4
ð½Vð0Þ

μ �RðxÞþ ½Vð15Þ
μ �RðxÞÞ

¼ 1

4
ðZV0 þ3ZVÞ½c̄γμc�ðxÞ

þ1

4
ðZV0 −ZVÞ½ūγμuþ d̄γμdþ s̄γμs�ðxÞ: ðD8Þ

Inserting the corresponding charm vector charge in corre-
lation functions of local fields, Φα, interpolating states with
zero charm number and nonzero baryon number, say, e.g.,
proton states, i.e. ΦαðyÞ ¼ ½ðūCγ5dÞu�αðyÞ, the conserva-
tion of the charm number charge Qc

V evidently implies

0 ¼


ΦβðzÞa3

X
x⃗

½c̄γ0c�RðxÞΦ†
αðyÞ

�
¼ 1

4
ðZV0 þ 3ZVÞ



ΦβðzÞa3

X
x⃗

½c̄γ0c�ðxÞΦ†
αðyÞ

�
þ 1

4
ðZV0 − ZVÞ



ΦβðzÞa3

X
x⃗

½ūγ0uþ d̄γ0d

þ s̄γ0s�RðxÞΦ†
αðyÞ

�
: ðD9Þ

14It is well known that by adding soft mass terms, i.e. mfq̄fqf,
to the action density of massless QCD no new UV divergencies,
apart from those that are reabsorbed in the usual quark mass
renormalization (m̂f ¼ Zmmf), appear in the theory [85].
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Since the correlator with coefficient ðZV0 − ZVÞ is non-
vanishing (already at the classical level), we see that the
insertion of the bare charm charge a3

P
x⃗½c̄γ0c�ðxÞ between

operators containing no c (valence) quark vanishes if and
only if ZV0 − ZV ¼ 0. As there is no loss of generality in
taking h ¼ c the statement of step (i) is hence proved
within LQCD.

2. Step (ii)

We now want to prove that in LQCD with Nf ¼ 4 mass-
degenerate quarks one has


ΦβðzÞa3
X
x⃗

½c̄γ0c�ðxÞΦ†
αðyÞ

�
LQCD

¼ 0 ðD10Þ

with h� � �iLQCD reminding that the lattice path integral is
evaluated with the action (D1).
A key point is that the plain LQCD correlator in the lhs

of Eq. (D10) satisfies the identity

ΦβðzÞa3

X
x⃗

½c̄γ0c�ðxÞΦ†
αðyÞ

�
LQCD

¼


Φ0

βðzÞa3
X
x⃗

½c̄γ0c�ðxÞΦ0†
α ðyÞ

�
MALQCD

ðD11Þ

where the correlator on the rhs is instead evaluated in a
mixed-action LQCD setup, as reminded by the notation
h� � �iMALQCD, with lattice action [recall Eq. (D7)]

SMALQCD¼ SYM½U�þa4
X
x

X
f¼u;d;s;c

f̄ðxÞ½DW
cr ðUÞþm�fðxÞ

þa4
X
x

X
f0¼u0;d0;…

ff̄0ðxÞ½DW
cr ðUÞþm�f0ðxÞ

þ χ̄f0 ðxÞ½DW
cr ðUÞþm�χf0 ðxÞg; ðD12Þ

where u0, d0, … are mere valence quark fields and
χu0 , χu0 , … are the corresponding valence ghost spin-1=2
fields (obeying Bose statistics so as to cancel all virtual sea
contributions from the “primed” fields), while the proton
interpolating valence operator isΦ0

αðyÞ¼ ½ðū0Cγ5d0Þu0�αðyÞ.
It is known [69] that the critical mass parameter mcr for
Wilson lattice valence quark and ghost fields coincides with
the one for plain LQCD Wilson quarks, so that DW

cr ðUÞ in
Eq. (D12) is the same lattice Dirac operator as in Eq. (D1).
The identity (D11) follows from the fact that the plain

LQCD and the mixed-action LQCD correlators, in view of
the specific flavor content of the fields involved, give rise to
identical Wick contractions. Indeed by construction the
plain LQCD and the mixed-action LQCD formulations lead
to identical vertices and identical fermion propagators,
evaluated on identical gauge configurations, because in

both lattice setups the gauge effective action is given
by SeffL ½U� ¼ SYM½U� −P

f¼u;d;s;c log det½ðDW
cr ðUÞ þm�.

Moreover the identity (D11) evidently implies an analo-
gous identity where the charge insertion a3

P
x⃗½c̄γ0c�ðxÞ is

replaced by a3
P

x⃗
1
4

P
f¼u;d;s;c½f̄γ0f�ðxÞ:


ΦβðzÞa3
X
x⃗

½c̄γ0c�ðxÞΦ†
αðyÞ

�
LQCD

¼


Φ0

βðzÞa3
X
x⃗

1

4

X
f¼u;d;s;c

½f̄γ0f�ðxÞΦ0†
α ðyÞ

�
MALQCD

:

ðD13Þ

On the other hand, in the MALQCD setup, owing to the
exact invariance of the action under Uð1Þ vector trans-
formations acting only on the fields u, d, s, c, ū, d̄, s̄, and c̄,
there exists a conserved baryon charge, given by either the

one-point split current V̂ð0Þ
0 [see Eq. (D2)] or the local

(multiplicatively renormalized through ZV0) vector current

Vð0Þ
0 ¼ P

f¼u;d;s;c ½f̄ðxÞγ0fðxÞ�15:

Qu;d;s;c
bar ¼ a3

X
x⃗

V̂0
0ðxÞ

1

3
¼ a3

X
x⃗

X
f¼u;d;s;c

½f̄γ0f�ðxÞZV0

1

3
:

ðD14Þ

The identity (D13) can hence be cast in a form where the
occurrence of conserved charge Qu;d;s;c

bar is explicit, i.e.

ΦβðzÞa3

X
x⃗

½c̄γ0c�ðxÞΦ†
αðyÞ

�
LQCD

¼ 3

4ZV0

hΦ0
βðzÞQu;d;s;c

bar Φ0†
α ðyÞiMALQCD ¼ 0; ðD15Þ

and the last (key) equality follows from the fact that the
operatorsΦ0†

α andΦ0
β involving only valence quark fields u

0

and d0 commute with Qu;d;s;c
bar . Indeed, inserting intermedi-

ate states in the MALQCD correlator of Eq. (D15) it is clear
that all the states created by the action ofΦ0†

α are inert under
the action ofQu;d;s;c

bar charge.16 The statement of step (ii), i.e.
Eq. (D10), is thus proven.
Combining step (ii) with step (i) one concludes that

ZV0 ¼ ZV in LQCD with Wilson quarks.

15By standard Ward-Takahashi identity methods one can check
that also in the MA lattice setup [see Eq. (D12)] we use for this
proof the bare local vector current Vð0Þ

0 ¼ P
f¼u;d;s;c ½f̄ðxÞγ0fðxÞ�

does not mix with the analogous vector currents made out of
valence quarks (f0) and/or valence ghosts (χf0 ).

16This property holds due to exact conservation of Qu;d;s;c
bar in

the MALQCD renormalizable (but nonunitary) theory even if the
underlying Hilbert-Fock space globally has (owing to states with
χf0 ghosts) an indefinite metric.
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An alternative proof of ZV0 ¼ ZV might be given by
relying on large Nc arguments in Wilson lattice SUðNcÞ
QCD. Working at arbitrary values of Nc and at fixed values
of the renormalized coupling u ¼ g2RNC, one can infer from
the existence of exactly conserved Uð1Þ and SUð4Þ vector
charges the vanishing of the quark-disconnected Wick
contractions that would otherwise lead to ZV0 ≠ ZV . We
omit here the details of such a proof, which, although being
technically different, appears conceptually equivalent to the
one given above.
A comment is in order about why similar relations, of the

form ZΓ0 ¼ ZΓ, are not expected to hold in general for
Γ ¼ A, S, P, T, i.e. for bilinear operator other than vector
ones, at least in LQCD with Wilson quarks or in other
lattice formulations breaking chiral symmetries. This sit-
uation is at variance with respect to what happens in UV
regularizations respecting all the nonanomalous chiral
symmetries (such as lattice QCD with overlap quarks),
where it is known that ZA ¼ ZV ¼ ZV0 ¼ 1, while
ZP ¼ ZS0 , ZS ¼ ZP0 and, owing to identical multiplicative
renormalization of all quark masses, ZS ¼ ZS0 .
For the case of Γ ¼ V, that we discussed above, our

proof of the relations (D9) and (D10) relies on the fact that
even in a lattice formulation breaking chiral symmetries the
flavor-singlet and -nonsinglet vector transformations are
exact invariances of the lattice action, enabling one to
define single-flavor conserved charges for each flavor
f ¼ u, d, s, c. The existence of such conserved charges
was in fact exploited to prove the vanishing of the quantities
in Eqs. (D9) and (D10).
But similar symmetry properties hold true neither for the

axial currents (case Γ ¼ A), owing to theUAð1Þ anomaly in
the flavor-singlet sector, nor for the scalar (Γ ¼ S), pseu-
doscalar (Γ ¼ P) and tensor (Γ ¼ T) densities, which are
not related to any conserved currents, too.

APPENDIX E: FREE-THEORY CALCULATION
OF THE LEADING LATTICE ARTIFACTS AT

SHORT DISTANCE

In this appendix we will show some of the details of the
calculation of the a2=t2 lattice artifacts appearing in the
vector correlator at short distance. The calculation is
performed in lattice perturbation theory at order α0s with
Nf ¼ 2 massless fermions. The approach which we use is
similar to the one adopted in Ref. [46], where the free-
theory isovector correlator was computed using one local
and one conserved current. Here we analyze the case in
which VudðtÞ is computed using both the twisted-mass and
the Osterwalder-Seiler local currents of Eq. (A12). For
noninteracting massless twisted-mass fermions, the up and
down quark propagator is given by

hψlðpÞψ̄lð−pÞi ¼
−iγμp̃μ − irγ5 a

2

P
μp̂

2
μP

μp̃
2
μ þ a2

4
ðPμp̂

2
μÞ2

; ðE1Þ

where r ¼ 1 if l ¼ u and r ¼ −1 if l ¼ d, and

p̃μ ¼
1

a
sin ðapμÞ; p̂μ ¼

2

a
sin

�
apμ

2

�
: ðE2Þ

The coordinate-space quark propagator is then given by

hψlðxÞψ̄lðyÞi ¼
Z π

a

−π
a

dp0

2π

Z π
a

−π
a

d3p
ð2πÞ3 e

ip0teip·ðx−yÞ

·
−iγμp̃μ − irγ5 a

2

P
μp̂

2
μP

μp̃
2
μ þ a2

4
ðPμp̂

2
μÞ2

; ðE3Þ

where t ¼ x0 − y0. The integral over p0 can be computed
exactly using the residue theorem. The denominator in
Eq. (E1) can be written as

X
μ

�
p̃2
μ þ

a2

4

�X
μ
p̂2
μ

�
2
�

¼ −
2

a2
AðpÞðcosh ðiap0Þ − cosh ðaEpÞÞ; ðE4Þ

where AðpÞ and Ep are defined as

AðpÞ ¼ 1þ 1

2
a2p̂2;

cosh ðaEpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2BðpÞð4AðpÞ þ a2BðpÞÞ

4A2ðpÞ þ 1

s
;

BðpÞ ¼ p̂2 þ a2

2

X
i<j

p̂2
i p̂

2
j : ðE5Þ

The momentum-space lattice quark propagator has two
poles in the complex plane at ip0 ¼ �Ep, and the corre-
sponding residue can be computed using

D−1ðpÞ≡ lim
ip0→Ep

a2
ðip0 − EpÞ

2AðpÞðcosh ðiap0Þ − cosh ðaEpÞÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðpÞ · ð4AðpÞ þ a2BðpÞÞ

p : ðE6Þ

Using the previous results, Eq. (E3) can be written as

hψlðxÞψ̄lðyÞi ¼
Z π

a

−π
a

d3p
ð2πÞ3 e

−Epjtj e
ip·ðx−yÞ

DðpÞ

·

�
sgnðtÞ γ0

a
sinhðaEpÞ − iγ · p̃

− irγ5
a
2

�
p̂2 −

BðpÞ
AðpÞ

��
; ðE7Þ

which is valid for t ≠ 0. The light-connected vector corre-
lator VudðtÞ can be readily computed using Eq. (E7). The
result is
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VudðtÞ ¼ 4Ncðq2em;u þ q2em;dÞ
Z π

a

−π
a

d3p
ð2πÞ3

e−2Epjtj

D2ðpÞ

×

�
1

a2
sinh2ðaEpÞ þ

1

3
p̃2 � a2

4

�
p̂2 −

BðpÞ
AðpÞ

�
2
�
;

ðE8Þ

where the plus sign corresponds to the result obtained using
the current JOSμ , while the minus sign to the one obtained
using Jtmμ . The dangerousOða2 logðaÞÞ artifacts in aSDμ (see
the discussion in Sec. III A), which are generated upon
integration in the short-distance window, stem from the
Oða2=t2Þ artifacts of the vector correlator. Expanding the
integrand of Eq. (E8) in powers of the lattice spacing up to
order Oða2Þ, we get

VudðtÞ ¼ 4Ncðq2em;u þ q2em;dÞ
Z

∞

−∞

d3p
ð2πÞ3 e

−2jpj·jtj

×
�
1

3
−
1

3
a2jpj2 þ a2jpj3jtjGðpÞ þOða4Þ

�
; ðE9Þ

where GðpÞ is a dimensionless function given by

GðpÞ ¼ 2

9

�
1 −

P
i<jp

2
i p

2
j

jpj4
�
: ðE10Þ

The result of Eq. (E9) does not depend upon the chosen
values of r, and therefore the current JOSμ and Jtmμ produce the
same a2 logðaÞ discretization effects in aSDμ . The integrals
appearing in Eq. (E9) can be computed analytically. We
obtain

VudðtÞ ¼ ðq2em;u þ q2em;dÞ ·
4Nc

24π2
·
1

t3
·

�
1þ a2

t2
þOða4Þ

�
:

ðE11Þ

APPENDIX F: PARAMETRIZATION OF
FSES IN THE WINDOWS

Following Ref. [31] the isovector part of the correlator
VudðtÞ can be analytically represented as the sum of two
terms, VdualðtÞ þ VππðtÞ, where VππðtÞ represents the two-
pion contribution in a finite box, while VdualðtÞ is the “dual”
representation of the tower of the contributions coming
from the excited states above the two-pion ones. Therefore,
VππðtÞ is expected to dominate at large and intermediate
time distances, say t≳ 1 fm, while the contribution of
VdualðtÞ is important at short time distances, as first
observed in Ref. [30]. The FSEs on the correlator VudðtÞ
were analyzed in Ref. [31] using the above representation
and it was found that the main contribution comes from the
two-pion states. Thus, we make use of these findings to

construct our parametrization of FSEs for aWμ ðlÞ, for which
the two-pion states are known to represent the dominant
contribution (roughly around 70%).
As it is well known after Refs. [37–40], the energy levels

ωn of two pions in a finite box of volume L3 are given by

ωn ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

π þ k2n

q
; ðF1Þ

where the discretized values kn should satisfy the Lüscher
condition, which for the case at hand (two pions in a P
wave with total isospin 1) reads as

δ11ðknÞ þ ϕ

�
knL
2π

�
¼ nπ; ðF2Þ

with δ11 being the (infinite volume) scattering phase shift
and ϕðzÞ a known kinematical function given by

tanϕðzÞ ¼ −
2π2zP

m⃗∈Z3ðjm⃗j2 − z2Þ−1 : ðF3Þ

The two-pion contribution VππðtÞ can be written
as [41–43]

VππðtÞ ¼
X
n

νnjAnj2e−ωnt; ðF4Þ

where νn is the number of vectors z⃗ ∈ Z3 with norm jz⃗j2 ¼
n and the squared amplitudes jAnj2 are related to the
timelike pion form factor FπðωnÞ ¼ jFπðωnÞjeiδ11ðknÞ by

νnjAnj2 ¼
2k5n
3πω2

n
jFπðωnÞj2

�
knδ011ðknÞ þ

knL
2π

ϕ0
�
knL
2π

��
−1
:

ðF5Þ

Following Ref. [31] we adopt the Gounaris-Sakurai (GS)
parametrization [44] of the timelike pion form factor
FπðωnÞ ¼ jFπðωnÞjeiδ11ðknÞ, where the form factor phase
coincides with the scattering phase shift according to the
Watson theorem. The GS ansatz is based on the dominance
of the ρ resonance in the amplitude of the pion-pionP-wave
elastic scattering (with total isospin 1), namely

FðGSÞ
π ðωÞ ¼ M2

ρ − Aππð0Þ
M2

ρ − ω2 − AππðωÞ
; ðF6Þ

where the (twice-subtracted [44]) pion-pion amplitude
AππðωÞ is given by

AππðωÞ¼ hðMρÞþðω2−M2
ρÞ
h0ðMρÞ
2Mρ

−hðωÞþ iωΓρππðωÞ

ðF7Þ
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with

ΓρππðωÞ ¼
g2ρππ
6π

k3

ω2
; ðF8Þ

hðωÞ ¼ g2ρππ
6π

k3

ω

2

π
log

�
ωþ 2k
2Mπ

�
; ðF9Þ

h0ðωÞ ¼ g2ρππ
6π

k2

πω

�
1þ

�
1þ 2M2

π

ω2

�
ω

k
log

�
ωþ 2k
2Mπ

��
;

ðF10Þ

Aππð0Þ ¼ hðMρÞ −
Mρ

2
h0ðMρÞ þ

g2ρππ
6π

M2
π

π
; ðF11Þ

and k≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=4 −M2

π

p
. By analytic continuation the GS

form factor at ω ¼ 0 is normalized to unity, i.e.

FðGSÞ
π ðω ¼ 0Þ ¼ 1. The scattering phase shift δ11ðkÞ, i.e.

the phase of the pion form factor according to the Watson
theorem, is given by

cot δ11ðkÞ ¼
M2

ρ − ω2 − hðMρÞ − ðω2 −M2
ρÞh0ðMρÞ=ð2MρÞ þ hðωÞ

ωΓρππðωÞ
: ðF12Þ

The GS form factor (F6) contains two parameters:
the resonance mass Mρ and its strong coupling with two
pions gρππ. Since the ETM ensembles of Table V are
quite close to the physical pion point, we fix the ρmass and
the strong coupling gρππ at their physical values, namely

Mρ¼0.775GeV and gρππ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48M2

ρΓρ=ðM2
ρ − 4M2

πÞ3=2
q

¼
5.95 [81].
As is well known, the infinite volume limit of Eq. (F4) is

given by

V∞
ππðtÞ ¼

1

48π2

Z
∞

2Mπ

dωω2

�
1 −

4M2
π

ω2

�
3=2

jFπðωÞj2e−ωt;

ðF13Þ

and, therefore, the FSEs on the window contribution awμ ðlÞ
for w ¼ fSD;W;LDg can be written as

Δawμ ðLÞ≡ awμ ðlÞjL − awμ ðlÞjL¼∞

¼ 2α2em
10

9

Z
∞

0

dtt2KðmμtÞΘwðtÞ½VππðtÞ−V∞
ππðtÞ�;

ðF14Þ

where the charge factor 10=9 takes into account the
proportionality between the light-quark-connected and
the isovector correlators in isosymmetric QCD, while
the correlators VππðtÞ and V∞

ππðtÞ are given by Eqs. (F4)
and (F13), respectively. We will refer to this model for
VππðtÞ as the Meyer-Lellouch-Lüscher-Gounaris-Sakurai
(MLLGS) model.

As a check of our parametrization (F14) we consider the
estimate of the (continuum) FSEs in the isovector channel
made by the BMW Collaboration in the intermediate
window [14], viz.

ΔaW;I¼1
μ ðLBMW

ref Þ ¼ aW;I¼1
μ ðlÞjLBMW

ref
− aW;I¼1

μ ðlÞjL¼∞

¼ −0.49ð2Þð4Þ × 10−10 ðF15Þ

with LBMW
ref ¼ 6.272 fm. Using 50 two-pion states in

Eq. (F13) at L ¼ LBMW
ref we obtain

ΔaW;I¼1
μ ðLBMW

ref Þ ¼ aW;I¼1
μ ðlÞjLBMW

ref
− aW;I¼1

μ ðlÞjL¼∞

¼ −0.37 × 10−10; ðF16Þ

which roughly corresponds to 75(7)% of the BMW result
of Eq. (F15). We devise to extrapolate to the infinite volume
limit, employing the MLLGS model. However to take into
account the deviation from the BMW result, we enhance
the MLLGS correlator by a factor 1.25 and associate to this
correction a relative error of 20%.
For completeness we report our determination of

ΔaWμ ðLrefÞ evaluated using Eq. (F14) for the intermediate
window at the physical pion mass point and at the reference
lattice size Lref ¼ 5.46 fm, namely

ΔaWμ ðLrefÞ ¼ −1.00ð20Þ × 10−10; ðF17Þ

which is used in Sec. III B to correct FSEs on our data
for aWμ ðl; LrefÞ.
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