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22 Abstract 

23 Hormones play a fundamental role in mediating social behaviors of animals. However, it is less well 
24 understood to what extent behavioral variation between individuals can be attributed to variation in 
25 underlying hormonal profiles. The goal of the present study was to infer if individual androgen levels, 
26 and/or the modulation thereof, can explain among-individual variation in aggressiveness, boldness and 
27 exploration. We used as a model the dart-poison frog Allobates femoralis and took repeated non-invasive 
28 water-borne hormonal samples of individual males before (baseline) and after (experimental) a series of 
29 behavioral tests for assessing aggression, boldness, and exploratory tendency. Our results show that 
30 androgen levels in A. femoralis are quite stable across the reproductive season. Repeatability in wbT baseline 
31 levels was high, while time of day, age of the frog, and trial order did not show any significant impact on 
32 measured wbT levels. In general, experimental wbT levels after behavioral tests were lower compared to the 
33 respective baseline levels. However, we identified two different patterns with regard to androgen 
34 modulation in response to behavioral testing: individuals with low baseline wbT tended to have increased 
35 wbT levels after the behavioral testing, while individuals with comparatively high baseline wbT levels rather 
36 showed a decrease in hormonal levels after testing. Our results also suggest that baseline wbT levels are 
37 linked to the personality trait exploration, and that androgen modulation is linked to boldness in A. femoralis 
38 males. These results show that differences in hormonal profiles and/or hormonal modulation in response to 
39 social challenges can indeed explain among-individual differences in behavioral traits.

40

41 Keywords: Testosterone, animal personality, behavioral challenge

42

43 1. Introduction 

44 Several studies have demonstrated high within-individual consistency and between-individual variation of 
45 behavior across time and contexts in several animal taxa (i.e. termed animal personality; Araya-Ajoy and 
46 Dingemanse, 2014; Réale et al., 2007). Empirical and theoretical approaches have demonstrated how such 
47 differences in behavior ultimately affect an animal’s prospects of survival, competitive ability, mating 
48 success and other fitness relevant traits (Dingemanse et al., 2004; Sih and Bell, 2008). One key question in 
49 the study of animal personality is to what extent differences in behavioral phenotypes can be attributed to 
50 constraints imposed by underlying physiology, such as hormonal profiles (Groothuis and Carere, 2005). In 
51 turn, behavioral phenotypes might also arise from differences across individuals in their physiological 
52 response to challenges in their social/natural environment (e.g. Biro and Stamps, 2010; Fürtbauer et al., 
53 2015; Réale et al., 2010; Sih et al., 2015).

54 Hormones play a fundamental role in the expression of morphological and behavioral traits 
55 (Adkins-Regan, 2005). The causal relationship between hormones and behavior is bidirectional, as 
56 hormones regulate the expression of social behaviors, but at the same time being exposed to behavior of 
57 con- or heterospecifics can also induce a hormonal response in the focal individual (Adkins-Regan, 2005; 
58 Gabor and Grober, 2010; Vitousek et al., 2014; Wingfield et al., 1990). The precise interplay between 
59 hormones and behavior may differ between individuals of a population, as it depends on various factors, 
60 such as experience during early development, an animal’s physiological condition, environment and 
61 adaptation to specific life-history stages – all of which may lead to a variation in behavioral phenotypes.

62 Animal personality is typically measured along five main axes: aggressive-docile, exploration 
63 affine-averse, sociable-solitary, bold-shy and active-passive (Réale et al., 2007). Several behaviors across 
64 these five axes are known to be modulated by sex steroids, precisely androgens and especially during the 



65 reproductive season (Hau, 2007; Nelson, 2005). In male vertebrates, androgens play a key role in the 
66 development and maintenance of primary and secondary sexual traits but also regarding the modulation of 
67 different behaviors related to reproduction, such as courtship, mating behavior or territorial aggression 
68 (Burmeister and Wilczynski, 2001; Fusani, 2008; Hirschenhauser et al., 2003; Hunt et al., 2019; Rosvall et 
69 al., 2020; Rosvall et al., 2012). However, persistent high levels of testosterone (T) are expected to bear 
70 considerable costs (Wingfield et al., 2001), such as reduced immune function (Dufty, 1989; McGlothlin 
71 and Ketterson, 2008), increased risk-taking and resulting elevated predation risk (Marler and Moore, 1988; 
72 Raynaud and Schradin, 2014), interference with parental and other social behavior (Fürtbauer et al., 2020; 
73 Hegner and Wingfield, 1987; McGlothlin et al., 2007), and metabolic expenses (Buchanan et al., 2001; 
74 Tobler et al., 2007). To minimize these negative impacts, androgens undergo seasonal fluctuations, with 
75 the highest concentration during the breeding season and lowest during the non-reproductive period 
76 (Goymann et al., 2019; Hau, 2007; Husak et al., 2021). High among- and within-species differences in the 
77 levels of circulating T have been shown for many vertebrate taxa, and these differences have been linked 
78 to respective social and environmental factors, such as breeding season length, type of mating system, and 
79 latitude (cf. Husak et al., 2021). Also, on smaller timescales, fine-tuned temporal fluctuations in T 
80 modulating behavioral and physiological responses to sudden environmental challenges may reflect the 
81 trade-off associated with high and low levels of circulating T in males (Hunt et al., 1995; Rodríguez et al., 
82 2022; Romero et al., 1998; Wingfield et al., 1990). Identifying the ecological and physiological factors that 
83 shape behavior at the species, population, but also individual level will advance our understanding about 
84 the mechanisms that underline behavioral variation across these different levels of biological organization. 
85 Previous research identified a prominent role of glucocorticoids (e.g. cortisol) for explaining differences in 
86 behavioral profiles (Baugh et al., 2017; Baugh et al., 2012; Dosmann et al., 2015; Grace and Anderson, 
87 2014), due to their prominent role in stress-axis-programming. Only few studies have looked how 
88 androgens shape individual personalities (but see Hau and Goymann, 2015; Kraus et al., 2020; Mutzel et 
89 al., 2011).

90 The aim of the present study was to infer if individual baseline androgen levels are repeatable (i.e. 
91 if hormone levels show low within-individual and high between-individual variation) and can explain 
92 among-individual variation in the personality traits aggressiveness, boldness and exploration. Furthermore, 
93 we asked if also the modulation of androgen levels after a suite of behavioral challenges is repeatable across 
94 individuals. We used as a model the Neotropical poison frog Allobates femoralis, a territorial species that 
95 shows highly aggressive behavioral response towards acoustic playbacks, simulating calling intruders 
96 (Hödl, 1983; Narins et al., 2003; Ringler et al., 2011; Rodríguez et al., 2022). We took repeated samples of 
97 individual ‘baseline’ water borne testosterone (wbT) levels (i.e., without any prior behavioral manipulation) 
98 to assess repeatability in individual hormonal profiles over the course of the study period. Furthermore, we 
99 took hormonal samples directly after a series of behavioral tests (hereafter ‘experimental’ wbT), which 

100 assessed territorial aggression, boldness and explorative behavior of individual males. For the hormonal 
101 sampling, we used a non-invasive water bath method (Baugh et al., 2018; Gabor et al., 2013; Rodríguez et 
102 al., 2022), which enabled us to take repeated samples of the same individuals in the field. We assessed 
103 among- and within-individual consistency of wbT to gain information about the consistency of individual 
104 hormonal profiles over the course of several weeks during the breeding season. Additionally, we identified 
105 if and how preceding behavioral testing will alter obtained hormonal measurements. The combination of 
106 repeated hormonal sampling and behavioral testing allowed us to link the endocrine profile and modulation 
107 of each individual to its personality. 

108 We expected wbT levels to be highly repeatable, especially when sampled without any preceding 
109 behavioral manipulation. We also expected wbT to be positively linked to levels of territorial aggression, 
110 boldness, and/or exploration in the behavioral tests, given that previous studies in several species, including 
111 A. femoralis, suggested a link between androgen modulation and spatial behavior in the context of territory 
112 defense or homing (cf. Herman and Wallen, 2007; Hodgson et al., 2008; Pašukonis et al., 2022; Rodríguez 
113 et al., 2022). 



114

115 2. Materials and methods 

116 2.1 Study site and study species 

117 This study was conducted in a free-ranging population of A. femoralis on a river island of approx. 5ha, 
118 close to the field camp ‘Saut Pararé’ (4°02′ N, 52°41′ W) in the nature reserve ‘Les Nouragues’, in French 
119 Guiana (Bongers et al., 2001; Ringler et al., 2016).  The island population of A. femoralis was established 
120 in 2012 by introducing tadpoles from the nearby mainland population and has been stable ever since with 
121 approximately 150 individuals (Ringler et al., 2015). We conducted fieldwork during the rainy season, from 
122 the beginning of February 2019 until the end of April 2019, which coincides with the reproductive season 
123 of the focal species (Gottsberger and Gruber, 2004).

124 Allobates femoralis (Boulenger 1883) is a small, diurnal Neotropical poison frog (Dendrobatidae 
125 sensu AmphibiaWeb, 2023), which is distributed throughout the Amazon Basin and Guiana Shield. During 
126 the reproductive season, males are highly territorial and advertise territory occupancy to male competitors 
127 and potential female mating partners by producing loud advertisement calls from exposed, elevated 
128 positions (Hödl, 1983; Ringler et al., 2011; Rodríguez López and Hödl, 2020; Roithmair, 1992). Males 
129 vigorously defend their territory against conspecific intruders (Narins et al., 2003). Females exhibit site 
130 fidelity but are typically not aggressive towards either sex (Ringler et al., 2012; Ringler et al., 2009), and 
131 actively approach neighboring calling males for courtship and mating (Montanarin et al., 2011; Stückler et 
132 al., 2019). Egg deposition takes place in the male’s territory and both sexes mate multiple times with 
133 multiple partners (Ringler et al., 2012; Ursprung et al., 2011). After hatching, tadpoles are typically 
134 transported by the male to medium sized water bodies located up to 200m outside the territory (Beck et al., 
135 2017; Ringler et al., 2018; Ringler et al., 2013).

136

137 2.2 Population monitoring 

138 We surveyed the entire population every day from 0900 to 1800 h. We identified all frogs on site via digital 
139 pictures of their unique ventral patterns and later verified their identity with the pattern matching software 
140 Wild-ID (Bolger et al., 2012). Frogs were sexed by the presence (males) or absence (females) of a vocal 
141 sac. We recorded the precise location of the frogs on a digital map, using a tablet PC (WinTab 9, Odys, 
142 Willich, Germany) equipped with the mobile GIS software ArcPad 10.2 (ESRI, Redlands, CA, U.S.A.). 
143 We determined body size (snout urostyle length) from dorsal photographs taken on top of a measurement 
144 grid using the software Image J 1.52a (Rasband, 1997-2021). Information on the age of individuals was 
145 available from a concurrent long-term monitoring on the island population since its origin in 2012.

146

147 2.3 Experimental design 

148 To gain information about the among- and within-individual variation of individual wbT levels and further 
149 investigate the effect of preceding behavioral tests on their T response, we repeatedly sampled wbT under 
150 two following conditions: First we collected ‘baseline’ levels by capturing a focal frog without the use of 
151 any acoustic stimuli (e.g. playback) and immediately transferred it to the water bath (for details see 
152 ‘Hormonal sampling’ and Figure 1). Second, we also measured ‘experimental’ wbT levels immediately after 
153 the focal individual had completed a consecutively deployed suite of behavioral tests to assess personality 
154 traits (for details see ‘Behavioral experiments’ and Figure 1). In every trial we noted the date and time of 



155 day (am or pm) when the measurement was taken, as well as individual parameters such as body size (in 
156 mm) and age, measured as a binomial variable (first reproducer vs. recapture from previous years). We 
157 aimed for obtaining three replicates in each condition per individual, summing up to a total of six 
158 measurements per frog. Half of the tested individuals started with ‘baseline’, while the other half started 
159 with the ‘experimental’ sampling. Consecutive samples were always taken more than 24 hours apart. After 
160 every second trial we added a break of at least 3 days to minimize any confounding effects of the procedure 
161 on the measurements. 

162

163 2.4 Behavioral tests 

164 All individuals underwent a set of behavioral tests to quantify the following behavioral traits: territorial 
165 aggression, boldness and explorative tendency. The procedure of these combined tests lasted for a total of 
166 about 30 min and to facilitate reading, we will from now on define both tests with ‘behavioral test’ unless 
167 we specifically refer to one of these tests only.

168 Territorial aggression: We assessed within- and between-individual variation in the levels of 
169 territorial aggression in individual males by simulating a calling intruder inside a male’s territory. To do 
170 so, we used a simulated territorial intrusion test to induced territorial defense behavior of the territorial male 
171 by broadcasting /presenting synthetic conspecific call by a loudspeaker (for details see Peignier et al., 2022). 
172 These conspecific male calls elicit aggressive responses of a territorial male (Rodríguez et al., 2022; 
173 Sonnleitner et al., 2020; Ursprung et al., 2009) which can be categorized/quantified in following behavioral 
174 parameters: a) latency until the first head-body orientation and b) until the first jump, c) the likelihood to 
175 jump in moments when the speaker was silent (i.e., between bouts of calls), and d) the speed to approach 
176 the speaker (cf. Chaloupka et al., 2022; Peignier et al., 2022). 

177 Boldness and Exploration: Immediately after the previous test, we caught the frog and assessed 
178 exploration- and boldness-related behaviors using a Novel Environment Setup (cf. Peignier et al., 2022). 
179 The setup consisted of a cooler box (hereafter “Novel Environment”), with a PVC tube attached on one 
180 side of the box (hereafter “shelter”). We first put the frog in the dark shelter for five minutes, to allow the 
181 individual to acclimatize to the setup. Afterwards we opened the shelter and allowed the focal frog to 
182 explore the Novel Environment for 15 minutes. We measured the a) latency and b) probability to leave the 
183 shelter as well as c) the distance travelled, d) the number of jumps performed, and e) the area covered in 
184 the novel environment (for more details see Peignier et al., 2022). 

185 To assess within- and between-individual variation in behavior we repeated those tests several 
186 times: we conducted 163 territorial defense tests with 51 males (mean ± SD = 3.20 ± 1.31 repetitions per 
187 individual) and 156 Novel Environment Tests with 50 males (mean ± SD = 3.31 ± 1.50 repetitions per 
188 individual). In a previous study, using the same behavioral dataset, it was shown that the behaviors 
189 measured during the both tests are repeatable and that the latency until the first jump, the distance travelled, 
190 and the time spent in the shelter best represented aggression, exploration, and boldness, respectively 
191 (Peignier et al., 2022). In the present study, we use these measures as proxies for the personality traits 
192 aggression, exploration and boldness to investigate the link between personality and wbT levels.

193

194 2.5 Hormonal sampling and analysis

195 We used a non-invasive water-bath method (Baugh et al., 2018; Baugh and Gray-Gaillard, 2021; Gabor et 
196 al., 2013) with variations following the protocol described in Rodríguez et al. (2022) to collect repeated wbT 



197 measurements of male A. femoralis. In brief, after capture, we put the frogs in a small glass box (14cm x 
198 9cm x 5cm), filled with 40 mL of distilled water and left them in this box for one hour (Figure 1). Resulting 
199 concentrations (pg/mL) thus represent androgen release rates of one individual over one hour. The 
200 dimensions of the box and the water volume were chosen so that the frogs’ body was covered with water, 
201 water levels did not constrain breathing (nose was outside water), and frogs were not able to climb out of 
202 the water. An opaque cover was placed over the box to minimize any disturbances from outside and to 
203 minimize stress of the focal individual. After one hour the frog was gently released at the original capture 
204 location. Non-polar hormones were extracted by processing each water sample through 20 mL sterile 
205 syringes coupled to an individual C18 cartridge (SPE, Sep-Pak C18 Plus, 360 mg Sorbent, 55–105 µm 
206 particle size, #WAT020515, Waters corp., Milford, MA) with a flow rate of ca. 10 mL/min. Afterwards, 
207 cartridges were eluted with 4 mL of 96% EtOH into 8 mL borosilicate vials and stored at 4 °C until further 
208 processing in the endocrinological lab at the University of Vienna. Between water-bath samplings, water 
209 bowls were thoroughly rinsed with ethanol and distilled water, and fully dried before subsequent use. 
210 Researchers were wearing nitrile gloves at all times, which were changed between each sample, to avoid 
211 contamination.

212 In order to quantify wbT (in pg/mL), we used a commercially available ELISA kit (Enzo Life science 
213 #ADI-900 065). Beforehand, 1mL out of the 4mL of 96% EtOH eluded samples were pipetted into a glass 
214 tube and dried down under a N2-stream and then re-suspended in 250ul Assay buffer provided by the 
215 manufacturer. Preliminary tests have shown that 1 mL of 96% EtOH was sufficient to quantify reliably 
216 testosterone concentration. Because the antibody has a very low cross-reaction with other androgens (19-
217 hydroxytestosterone <15%, androstendione <7.2%, Estradiol < 0.4, all others < 0,001%) we dare to assume 
218 to have mostly measured testosterone. Final concentration of the samples was corrected for dilution factor. 
219 The detection limit for the assay was 5.67 pg/mL. The intra-assay CV% of all duplicates was below 5.3%. 
220 The inter-assay CV% was calculated using a control sample and was below 11% (n=8).

221

222 2.6 Statistical analysis 

223 The statistical analyses were conducted in RStudio (RStudio Team, 2019). We log transformed the wbT 
224 measurements as it deviated from normality. Where possible, we report results as p > 0.1 no evidence, 0.1 
225 < p < 0.05 weak evidence, 0.05 < p < 0.01 moderate evidence, 0.01 < p < 0.001 strong evidence, p < 0.001 
226 very strong evidence (Muff et al., 2022).

227 To investigate factors that affect the overall androgen levels, we fitted a linear mixed model using 
228 the function ‘lmer’, in the package ‘lme4’, with condition (‘baseline’/‘experimental’), time of day (am/pm), 
229 age (new encounters/survivors from a previous reproductive season), body size, whether the frog was 
230 calling or not before the hormonal measurement, and trial order as fixed effects. We included ID as random 
231 effect, and wbT concentration (log transformed) as response variable. We assured that model assumptions 
232 of residual normality were met by visually inspecting qq-plots. The condition was the only factor 
233 influencing overall wbT level. We further investigated the consistency of wbT levels within and between 
234 individuals, using both reduced (‘baseline’ only or ‘experimental’ only) datasets, with the ‘rpt’ function in 
235 the rptR package (Stoffel et al., 2017). To identify if wbT levels at ‘baseline’ itself had an influence on 
236 androgen modulation during/after the behavioral tests, we calculated ΔwbT by subtracting individual 
237 average ‘baseline’ levels from the respective average ‘experimental’ levels from all individual males. We 
238 then tested for a possible correlation between ‘baseline’ wbT and ΔwbT using a Pearson correlation test.

239 We also studied how aggression, exploration and boldness covary with wbT levels and modulation 
240 at the among- and within-individual level using a Markov chain Monte Carlo method. We built two 
241 Bayesian linear mixed effect models (Hadfield, 2010) with the three personality scores as response variables 



242 and ID as random factor. In addition, we added as response variables the log transformed ‘baseline’ wbT in 
243 the first model and the ΔwbT in the second model. We scaled each response variable by centering to their 
244 mean value and standardizing to units of 1 phenotypic standard deviation. We estimated the among- and 
245 within-individual correlations and covariances between each of the personality score and the wbT using the 
246 posterior distributions. We used an uninformative prior and ran 2,000,000 iterations with a burn-in of 
247 80,000, and selected every 750th posterior parameter sample after the initial burn-in. We assumed statistical 
248 significance if the 95% credible intervals did not overlap 0. We assured that model assumptions were met 
249 by verifying the absence of autocorrelation (correlation between lags <0.1; Hadfield, 2010), sufficient 
250 mixing (plots of Markov-Chain-Monte-Carlo chains), and performing a Heidelberg and Welch diagnostic 
251 test.

252

253 3. Results 

254 In total we collected 252 hormonal samples from 40 individual males. We obtained samples for baseline 
255 wbT from 37 males (‘baseline’: 1–6 samples per male, mean ± SD = 3.51 ± 1.19 samples per male), and 
256 samples after the behavioral manipulations from 39 males (‘experimental’: 1–5 samples per male; mean ± 
257 SD = 3.13 ± 1.08 samples per male).

258 We did not find any evidence that hormonal measurements were influenced by the time of day 
259 when samples were collected, the age or body size of the individual, the activity (i.e., calling or not) of the 
260 male, or the trial order (all p > 0.05; Table 1). However, we found very strong evidence that wbT levels were 
261 lower (β = -0.3, p < 0.001, Table 1) when measured after behavioral experiments (mean average wbT ± SD 
262 = 306.15 ± 107.5 pg/mL) compared to the respective baseline samples (mean average wbT ± SD = 387.43 ± 
263 171.1 pg/mL). Repeatability was quite high for the baseline samples (‘baseline’: R = 0.45; 95%CI = 
264 [0.24;0.61]), but much lower when hormones were collected after behavioral manipulations 
265 (‘experimental’: R = 0.24; 95%CI = [0.03;0.43]).

266 Not all individuals responded to the behavioral manipulations with a reduction in wbT. Interestingly, 
267 we found a very strong evidence for a negative correlation between average baseline wbT and ΔwbT in males 
268 (Pearson correlation test: r = -0.76, t = -6.81, df = 33, p < 0.001, Figure 2A). This means, that individuals 
269 with a relatively low baseline wbT tended to increase hormone levels after the behavioral tests, while 
270 individuals with a comparatively high baseline level showed a decrease in their androgen levels after the 
271 behavioral manipulation (Figure 2B). 

272 Our results show a clear trend for a positive covariation between exploration and baseline wbT levels 
273 at the among- and at the within-individual level, as confidence intervals only slightly overlapped zero 
274 (among-individual level: estimate = 0.18, 95% CI = [-0.01, 0.45]; within-individual level: estimate = -0.14, 
275 95% CI = [-0.31, 0.03]; Table 2). Males showed increased levels of exploration when their baseline wbT 
276 levels were high. We also found a clear trend for a covariation between boldness and androgen modulation 
277 during/after the behavioral tests at the within-individual level (estimate = -0.18, 95% CI = [-0.39, 0.03]; 
278 Table 2). Males that showed the highest increase in wbT levels after the behavioral tests were also very bold.

279

280 4. Discussion

281 4.1 Repeatability in androgen levels



282 Our results show that male A. femoralis have relatively consistent wbT levels throughout the breeding 
283 season. The repeatability of hormonal measurements that were obtained from non-invasive water bath 
284 samples was quite high, especially for the ‘baseline’ samples (R = 0.45). These values were considerably 
285 higher than repeatability scores of glucocorticoid hormones across several vertebrates (Schoenemann and 
286 Bonier, 2018). This indicates that T levels are relatively constant over the course of several weeks within 
287 the reproductive season in A. femoralis and that there are consistent differences between individuals in their 
288 baseline androgen levels. As a consequence, even a low number of repeated measurements allowed reliable 
289 estimations of individual baseline hormonal profiles in male poison frogs.  

290 Further, we did not find a significant difference between hormonal samples collected in the morning 
291 and in the afternoon. This was contrary to what we expected, as in a previous study androgen levels were 
292 found to be increased in the afternoon compared to morning hours, which was linked to general calling 
293 activity in a nearby A. femoralis population (Rodríguez et al., 2022). In vertebrates, steroid concentrations 
294 commonly undergo a circadian rhythm; they increase during early morning hours and drop in the afternoon 
295 (Nelson, 2005). Several studies have documented the existence of diurnal cycles of circulating T (fish: 
296 Lorenzi et al., 2008; monkeys: Schlatt et al., 2008; humans: Diver et al., 2003; but see also Licht et al., 
297 1985 for green sea turtles). In several animal taxa, T concentrations are positively related to latitude and 
298 negatively to the length of the breeding season (Eikenaar et al., 2012; Husak et al., 2021), which suggests 
299 that tropical animals usually exhibit lower T levels with very low seasonal fluctuation during the 
300 reproductive season compared to temperate-zone species (see also Canoine et al., 2007; Hau et al., 2008). 
301 However, it is possible that other environmental factors (e.g. predators, temperature, climatic conditions, 
302 calling activity), might have contributed to the differences in diurnal T variation found in this and the study 
303 of Rodríguez et al., 2022.

304 The factor ‘age’ did not show a significant relationship with androgen levels. There is evidence for 
305 an age-related change of T levels in various animal taxa (Groothuis and Carere, 2005; Schlatt et al., 2008; 
306 Těšický et al., 2022), however those taxa typically show a greater lifespan than our studied species.  In A. 
307 femoralis the majority of the population only survives one reproductive season (cf. Ringler et al., 2015), 
308 and therefore age likely is not a relevant factor for the variation in androgen levels in this short-lived species.

309

310 4.2 Influence of behavioral tests on androgen levels

311 An increase in T has been observed in many species following social challenges (Goymann et al., 2019; 
312 Wingfield et al., 2020; see also Assis et al., 2012; Leary, 2014; Moore et al., 2020). In our study, wbT levels 
313 generally dropped after the behavioral tests. This is in contrast with a recent study which found a positive 
314 androgenic response to simulated territorial intrusions in A. femoralis males, providing support for the 
315 Challenge Hypothesis (Rodríguez et al., 2022). In this previous study, water-borne androgen levels were 
316 elevated after presenting a conspecific playback compared to baseline conditions, but only in males that 
317 actually approached the loudspeaker and not in males which did not react to the playback. Moreover, while 
318 an increase of wbT was observed within the first hour of water sampling after playback presentation, 
319 androgen levels clearly dropped in the following hours, even below baseline levels. Curiously, the ‘non-
320 responders’ showed a much stronger decline of wbT three hours after the playback test compared to males 
321 who actively approached the loudspeaker. In this previous study, the decline of wbT levels was observed 
322 only after more than 2 hours following exposure to a behavioral test/or stressor, and might have been due 
323 to the activation of the negative feedback system of the hypothalamic–pituitary–gonadal (HPG) axis, or due 
324 to other hormones, such as glucocorticoids, via an antagonistic effect on the HPG axis (Moore and Jessop 
325 2003; see also “Energetics-Hormone Vocalization hypothesis” by Emerson and Hess 2001). We cannot 
326 fully exclude similar effects may have impacted on our measurements, but since all hormonal samples were 
327 collected in the same standardized procedure, we assume that such effect might have impacted all samples 



328 equally. Because in the present study we collected the hormonal samples not immediately after the 
329 territorial aggression test, but after a suite of behavioral tests which lasted in total about 30 min, the resulting 
330 androgen levels actually represent a combined/integrated hormonal response to the entire test sequence. 
331 Further studies are needed to clarify the link between the hypothalamic–pituitary–adrenal (HPA) and the 
332 HPG axis in A. femoralis.

333 Most interestingly, not all individuals responded to the behavioral tests in the same way. We 
334 observed two different patterns when comparing ‘baseline’ and ‘experimental’ wbT levels: individuals with 
335 low baseline wbT tended to show an increase in hormonal levels, while individuals with comparatively high 
336 baseline wbT rather showed a decrease in hormonal levels following the behavioral manipulation (Figure 
337 2). This phenomenon could happen if the physiological maximum of individuals’ high baseline wbT was 
338 already reached before the start of the behavioral tests, e.g. due to a stressful interaction. These individuals 
339 might not be able to further increase their androgen levels when faced with a new challenge, while 
340 individuals with low baseline wbT could (Goymann et al., 2007; Wingfield et al., 1990). However, because 
341 the repeatability of baseline wbT was so high, it is unlikely that these individuals were caught each time just 
342 prior a stressful event. Alternatively, our results could potentially be caused by differential personality types 
343 being linked to differential physiological (i.e. hormonal) responses to stress and/or social challenges. 
344 Previous studies have shown a link between animal personality and differential physiological response to 
345 social challenges (i.e. “stress coping styles”; Baugh et al., 2017; Baugh et al., 2012; Carere and Maestripieri, 
346 2013; Cockrem, 2013; Coppens et al., 2010). For example, proactive and reactive rats and mice differed in 
347 the levels of serotonin release or receptor expression in the prefrontal cortex (Caramaschi et al., 2007; 
348 Ferrari et al., 2003; van Erp and Miczek, 2000). Although we did not find a link between hormonal 
349 modulation and any personality trait we measured, we cannot rule out that another underlying trait, such as 
350 activity, is responsible for the observed pattern. 

351

352 4.3 Link between personality traits and androgen levels and modulation

353 Interestingly, we found no evidence that ‘baseline’ androgen levels were associated with territorial 
354 aggression in A. femoralis males. Similar results were reported in a previous study where the intensity of 
355 the phonotactic approach towards a playback was not related to androgen responsiveness in A. femoralis 
356 males (Rodríguez et al., 2022). However, our results suggest that wbT levels are positively linked to the 
357 personality trait ‘exploration’. Individuals with a high exploratory tendency in the Novel Environment Test 
358 also had high baseline wbT levels. These findings are in line with a recent study that found androgens to be 
359 associated with navigation-associated behaviors in three species of poison frogs (Pašukonis et al., 2022). 
360 Higher baseline androgen levels were found in individuals that also showed more exploration after 
361 translocation in D. tinctorius. The amount of exploration during the navigation task was associated with an 
362 increase in androgen levels in A. femoralis, while successful homing was found to result in a significant 
363 decrease in androgen compared to baseline levels (Pašukonis et al., 2022). These results together with the 
364 findings of our present study highlight a prominent role of androgens for among-individual variation in 
365 exploration-related spatial behaviors in males. 

366 Our results further suggest a link between T modulation and boldness. Males that showed the 
367 highest increase in wbT levels after the behavioral tests were also very bold. These findings are in line with 
368 the Challenge Hypothesis, which states that the temporary increase of T is to facilitate potentially 
369 challenging or threatening encounters (Wingfield et al., 1990). As our experimental design does not allow 
370 to disentangle cause and consequence of these correlations, future studies using hormonal manipulation 
371 experiments in combination with behavioral experiments are needed to precisely disentangle the causal 
372 relationship between T modulation and exploration behavior and boldness.



373

374 4.4 Methodological implications

375 One key question in animal personality research is why there are consistent individual differences in 
376 behavior. One hypothesis is that heritable traits leading to genetically determined physiological differences 
377 among individuals could give rise to consistent behavioral differences (Baugh et al., 2012; Drent et al., 
378 2003; Stamps and Groothuis, 2010). The present study highlights the importance of the exact time point 
379 when the hormonal sample is collected, for trying to link hormonal with behavioral profiles. To minimize 
380 handling time and experimental effort, it would be ideal to measure hormonal levels directly before and/or 
381 after behavioral tests, however this procedure could affect the hormonal and behavioral experiments, 
382 respectively. Whether hormonal measurements should be taken independently from behavioral tests or 
383 immediately thereafter, ultimately depends on the research question. To gain information about long-term 
384 differences in hormonal profiles, measurements should be taken without any preceding behavioral 
385 experiments. However, when determining differences in physiological responses after behavioral 
386 challenges, it is important to carry out hormonal sampling completely independently from other 
387 experimental manipulations as well as directly after behavioral testing.

388

389 4.5 Conclusions

390 Our findings show that androgen levels in A. femoralis are quite stable across the reproductive season, as 
391 repeatability in wbT baseline levels was high. Time of day, age and calling activity had no influence on 
392 hormone levels. As expected, preceding behavioral experiments had a strong influence on the variation in 
393 wbT levels, but the direction of the hormonal response appears to be linked to individual baseline levels. 
394 Individuals with low baseline levels showed an increase in androgen, while individuals with high baseline 
395 levels showed a reduction of androgen levels after the behavioral tests. In addition, we show that in A. 
396 femoralis, androgens are linked to the personality trait exploration. Taken together, these results suggest 
397 that differences in hormonal profiles and/or responses to social challenges can – at least partially – explain 
398 among-individual differences in behavioral traits.
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706 Table 1. Results of the linear mixed effect model looking at how personality and abiotic factors influence 
707 wbT release rates (N = 244 for 39 individuals). Sample size (N) is presented. Results indicating at least weak 
708 evidence (sensu Muff et al., 2022) are written in bold. 

Fixed effects Estimate  Standard-Error p-value

Intercept 5.68 1.45 < 0.001

Time of the day (am/pm) 0.06 0.10 0.540

Trial order -0.00 0.01 0.999

Condition -0.30 0.08 < 0.001

Age (0/1) -0.11 0.13 0.383

Body size 0.04 0.50 0.934

Calling (yes/no) 0.10 0.11 0.358

Random effects Variance Standard-Deviation

ID 0.11 0.33

Residual 0.20 0.45

709

710

711

712

713

714 Table 2. Covariance and 95% credible intervals between proxies for aggressiveness (agg), exploration (exp) 
715 and boldness (bol), and variation in wbT level. Estimates were calculated based on a MCMCglmm model 
716 investigating the correlations between the four behaviors measured. An extended version of the table is 
717 presented in the Supplementary Table S1.



718

among-individual covariance within-individual covariance

baseline wbT – agg -0.01 (-0.21, 0.19) 0.08 (-0.09, 0.26)

baseline wbT – bol -0.05 (-0.28, 0.17) 0.09 (-0.08, 0.27)

baseline wbT – exp 0.18 (-0.01, 0.45) -0.14 (-0.31, 0.03)

Δ wbT – agg -0.02 (-0.14; 0.09) 0.01 (-0.19; 0.22)

Δ wbT – bol 0.02 (-0.14; 0.16) -0.18 (-0.39; 0.03)

Δ wbT – exp -0.05 (-0.21; 0.1) 0.11 (-0.1; 0.32)

719

720

721

722 Figure 1. Experimental design. We repeatedly sampled wbT under two following conditions:  without the 
723 use of any acoustic stimuli (‘baseline’) and immediately after a consecutively deployed suite of behavioral 
724 tests (‘experimental’). We aimed for obtaining three replicates of both ‘baseline’ and ‘experimental’ 
725 hormonal samples per individual (a total of six measurements per frog). Half of the tested individuals started 
726 with the ‘baseline’ condition (as visualized in the figure), while the other half started with the ‘experimental’ 
727 condition. Consecutive samples were always taken more than 24 hours apart. After every second trial we 
728 added a break of at least 3 days to minimize any confounding effects of the procedure on the measurements. 
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737

738

739 Figure 2. Comparison of average individual wbT levels from baseline samples and samples taken 
740 immediately after behavioral experiments. A) Correlation between average baseline wbT and the relative 
741 change ΔwbT after behavioral testing; B) Pairwise comparisons of individual males. Red lines indicate 
742 individuals for which average wbT measured in the ‘experimental’ condition is increased compared to 
743 ‘baseline’. Black lines indicate individuals for which the average wbT level is decreased in the 
744 ‘experimental’ condition compared to ‘baseline’.
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746 Highlights

747 - Hormones play a key role in modulating social behavior in animals

748 - Baseline water-borne testosterone levels were highly repeatable among males

749 - Testosterone levels predicted individual exploratory tendency
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