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Abstract: Cancer metabolic reprogramming is a complex process that provides malignant cells with
selective advantages to grow and propagate in the hostile environment created by the immune
surveillance of the human organism. This process underpins cancer proliferation, invasion, antioxi-
dant defense, and resistance to anticancer immunity and therapeutics. Perhaps not surprisingly,
metabolic rewiring is considered to be one of the “Hallmarks of cancer”. Notably, this process
often comprises various complementary and overlapping pathways. Today, it is well known that
highly selective inhibition of only one of the pathways in a tumor cell often leads to a limited
response and, subsequently, to the emergence of resistance. Therefore, to increase the overall
effectiveness of antitumor drugs, it is advisable to use multitarget agents that can simultaneously
suppress several key processes in the tumor cell. This review is focused on a group of plant-derived
natural compounds that simultaneously target different pathways of cancer-associated metabolism,
including aerobic glycolysis, respiration, glutaminolysis, one-carbon metabolism, de novo lipoge-
nesis, and β-oxidation of fatty acids. We discuss only those compounds that display inhibitory
activity against several metabolic pathways as well as a number of important signaling pathways
in cancer. Information about their pharmacokinetics in animals and humans is also presented.
Taken together, a number of known plant-derived compounds may target multiple metabolic and
signaling pathways in various malignancies, something that bears great potential for the further
improvement of antineoplastic therapy.

Keywords: cancer metabolism; metabolic reprogramming and plasticity; natural compounds;
multitarget agents; glycolysis; glutaminolysis; one-carbon metabolism; lipid metabolism; β-oxidation
of fatty acids

1. Introduction

According to World Health Organization statistics, cancer is the second leading cause
of death worldwide (https://www.who.int/health-topics/cancer, accessed on 24 October
2023). According to the Global Cancer Statistics (GLOBOCAN) [1], 19.3 million new cancer
cases and almost 10 million cancer-related deaths occurred in 2020 worldwide. Thus, in
addition to already established traditional approaches to the treatment of malignancies,
there is a constant need to search for and develop new anticancer therapeutics to address
this challenge.

To treat malignancies, we need to target those particular characteristics that distinguish
neoplastic cells from their normal counterparts. This is required to minimize off-target effects
and to protect healthy tissues and organs from the impact of harmful chemotherapeutics.

One of the “Hallmarks of cancer”, which is extensively recognized today in the context
of therapy, is metabolic reprogramming and plasticity [2]. Neoplastic cells of different
origins are characterized by a set of metabolic alterations and plasticity, which provide
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malignant cells with energy and adaptational plasticity. These specific metabolic features
are suitable targets for therapeutic intervention [3,4].

It is widely accepted today that the inhibition of only one of the processes in a tumor
cell, even by a highly specific drug, often leads to a limited response and subsequently to the
emergence of resistance [5]. To increase the overall effectiveness of antineoplastic therapy,
it is advisable to use several, or multitarget, drugs that can simultaneously suppress several
key processes in tumor cells. However, the majority of modern antineoplastic synthetic
drug targets are associated with adverse reactions and multidrug tolerance/resistance.

In the last decade, a surge of interest in using the medicinal potential of natural
compounds against cancer has been detected [6–8], and the number of publications is
constantly growing (Figure 1).

Antioxidants 2023, 12, x FOR PEER REVIEW 2 of 50 
 

One of the “Hallmarks of cancer”, which is extensively recognized today in the con-
text of therapy, is metabolic reprogramming and plasticity [2]. Neoplastic cells of different 
origins are characterized by a set of metabolic alterations and plasticity, which provide 
malignant cells with energy and adaptational plasticity. These specific metabolic features 
are suitable targets for therapeutic intervention [3,4]. 

It is widely accepted today that the inhibition of only one of the processes in a tumor 
cell, even by a highly specific drug, often leads to a limited response and subsequently to 
the emergence of resistance [5]. To increase the overall effectiveness of antineoplastic ther-
apy, it is advisable to use several, or multitarget, drugs that can simultaneously suppress 
several key processes in tumor cells. However, the majority of modern antineoplastic syn-
thetic drug targets are associated with adverse reactions and multidrug tolerance/re-
sistance. 

In the last decade, a surge of interest in using the medicinal potential of natural com-
pounds against cancer has been detected [6–8], and the number of publications is con-
stantly growing (Figure 1). 

 
Figure 1. PubMed papers statistics on query “Natural compound cancer” (the query on 19 October 
2023). 

Indeed, natural compounds, along with synthetic chemicals, may be useful to treat 
malignancies. This approach is well justified because the most frequently used chemo-
therapeutics are derived from plants and actinomycetes: paclitaxel, vincristine, vinblas-
tine, doxorubicin, camptothecin, etoposide, topo- and irinotecan, etc. For example, our 
planet harbors about 391,000 plant species, which produce tens of thousands of chemical 
compounds with a wide range of biological activities, including antineoplastic ones. 
Moreover, it provides a plethora of candidate compounds with a wide range of sources 
and novel structures [7]. 

Secondly, a number of natural compounds from the class of nutraceuticals can kill 
cancer cells and help anticancer treatment as part of modern chemotherapeutic regimes 
[9–11]. 

Thirdly, several nutraceuticals like curcumin [12], resveratrol [13], quercetin [14], gin-
senosides [15], 20-hydroxyecdysone [16,17], and others not only possess multiple antineo-
plastic activities but also exhibit pharmacological features (antioxidant, antidiabetic, anti-
inflammatory, hepato- and neuroprotective, etc.), which are highly beneficial to cancer 
patients undergoing chemotherapy: 

Traditional Chinese medicine, Ayurveda, Kampo, and other traditional medical sys-
tems use herbs and formulations empirically defined over the centuries, which have 
proven to be effective in preclinical and clinical investigations. In-depth studies of sub-
stances widely used in ethnomedicine led to the isolation of a number of compounds with 

Figure 1. PubMed papers statistics on query “Natural compound cancer” (the query on 19 October 2023).

Indeed, natural compounds, along with synthetic chemicals, may be useful to treat
malignancies. This approach is well justified because the most frequently used chemother-
apeutics are derived from plants and actinomycetes: paclitaxel, vincristine, vinblastine,
doxorubicin, camptothecin, etoposide, topo- and irinotecan, etc. For example, our planet
harbors about 391,000 plant species, which produce tens of thousands of chemical com-
pounds with a wide range of biological activities, including antineoplastic ones. Moreover,
it provides a plethora of candidate compounds with a wide range of sources and novel
structures [7].

Secondly, a number of natural compounds from the class of nutraceuticals can kill cancer
cells and help anticancer treatment as part of modern chemotherapeutic regimes [9–11].

Thirdly, several nutraceuticals like curcumin [12], resveratrol [13], quercetin [14],
ginsenosides [15], 20-hydroxyecdysone [16,17], and others not only possess multiple anti-
neoplastic activities but also exhibit pharmacological features (antioxidant, antidiabetic,
anti-inflammatory, hepato- and neuroprotective, etc.), which are highly beneficial to cancer
patients undergoing chemotherapy:

Traditional Chinese medicine, Ayurveda, Kampo, and other traditional medical sys-
tems use herbs and formulations empirically defined over the centuries, which have proven
to be effective in preclinical and clinical investigations. In-depth studies of substances
widely used in ethnomedicine led to the isolation of a number of compounds with useful
biological properties, including antitumor ones [7]. Some of them we frequently consume
in the form of food, beverages, spices, or dietary supplements.

Several dozens of natural compounds that target metabolic reprogramming are known
and are summarized in a number of excellent reviews [18–20].

However, here we review a set of natural compounds that simultaneously meet three
criteria: (1) suppress several cancer-associated metabolic pathways; (2) there is information
about their pharmacokinetics and bioavailability; (3) the compound generally displays a
safety profile or/and has been consumed by people or used in multiple clinical trials.
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Malignant cells possess great adaptational plasticity and may adapt to the inhibition
of certain biochemical or signaling pathways via the fine-tuning bypass and anaplerotic
pathways. Thus, we have focused only on a group of plant-derived natural compounds
that simultaneously target different aspects of metabolic reprogramming, including aerobic
glycolysis, respiration, glutaminolysis, one-carbon metabolism, de novo lipogenesis, and
beta-oxidation of fatty acids.

To make a survey, we collected information from the commonly available databases
(MEDLINE/PubMed, Google Scholar, Web of Science, Scopus, Elsevier, SpringerLink, and
Wiley Online Library).

Beyond their negative impact on several biochemical pathways, all of the com-
pounds reviewed also target different signaling pathways, including PI3K/AKT/mTOR,
ERK/MAPK, Jac/STAT, etc. These properties enhance their multitargeting capacity,
which may increase the efficiency of antineoplastic therapy. Moreover, many of them
also possess other beneficial pharmacological properties, including antioxidant, hy-
poglycemic, and hepato- and neuroprotective, which can be extremely useful upon
chemotherapeutic intervention to decrease its harmful consequences on non-cancer
tissues. As is very important for translational medicine, the safety and bioavailability of
reviewed compounds are also discussed.

2. Metabolic Reprogramming in Cancer

As mentioned above, metabolic reprogramming is considered to be one of the “Hall-
marks of cancer” [2]. To address it as a multitarget for natural compounds, below, we
briefly discuss the main attributes of metabolic rewiring and the role of oncogenes and
signaling pathways in this complex phenomenon.

2.1. Increased Glycolysis (“Warburg Effect”)

Deregulated glycolysis is an important “Hallmark of cancer” [21] and is also known as
the “Warburg” effect. The latter implies that cancer cells maintain high levels of glycolysis
even under normoxic conditions [22]. This means that various neoplasia utilize glucose
more than normal cells due to increased expression of glucose transporters (e.g., GLUT1)
and a number of glycolytic enzymes [23].

Enhanced glycolysis is so common in neoplasia that it formed a basis for the approach to
detect both primary and secondary tumors in the body by PET/CT. 18F-Fluorodeoxyglucose
(FDG) is a glucose analog that is transported via glucose transporters into the cancer cells
followed by hexokinase 2 (HK2)-mediated phosphorylation [24–26]. Thus, the areas of
malignant growth are detected based on the increase in glucose uptake and utilization.

As mentioned above, glucose is transported into malignant cells through a number
of glucose transporters (GLUTs); GLUT1 and GLUT3 are considered major ones. These
transporters, especially GLUT1, are often up-regulated in different neoplasia and promote
their aggressiveness and resistance to therapy [27,28]. The inhibition of these transporters,
which may dampen uncontrolled glycolysis, is a developing antineoplastic approach with
a number of compounds that are under investigation in preclinical and clinical models [29].

Upon entering the cell, glucose undergoes a set of enzymatic reactions to form two
molecules of pyruvate as the end product (Figure 2). In the first reaction, glucose is
activated by hexokinase (HK)-derived phosphorylation. This is the first rate-limiting step
of glycolysis. Furthermore, besides glycolysis, the product of this reaction, glucose-6-
phosphate, is metabolized in glycogenic, pentose phosphate, and hexosamine biosynthesis
pathways, which means that it plays key roles in ATP synthesis, glucose storage, NADH
pool enrichment, and protein glycosylation, respectively [30]. Among four HK isoforms
identified to date, the oncogenic role of HK2 is widely recognized. Besides its key role in
glycolysis, HK2 may be associated with a voltage-dependent anion channel (VDAC) on the
outer mitochondria membrane, where it inhibits the activity of pro-apoptotic proteins of the
Bcl-2 family and protects tumor cells from death stimuli [31]. All in all, HK2 plays a critical
role in oncogenesis in several ways and is a desirable drug target for cancer therapy [30,32].
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Figure 2. Glycolysis and its interconnection with other metabolic processes. Glucose enters can-
cer cells through glucose transporters (GLUT1/3) and is oxidized into pyruvate during glycolysis.
Pyruvate is further processed in the Krebs cycle (TCA) to produce reducing equivalents (NADH
and FADH2), which will use the electron transport chain (ETC) to produce ATP upon oxidative
phosphorylation. The excessive amount of pyruvate is converted to lactate and exported by mono-
carboxylate carriers (MCT1/4). Intermediates of glycolysis, G6P, and 3-PG open pentose phosphate
pathways and aid in the biosynthesis of serine, which both feed one-carbon metabolism, includ-
ing the biosynthesis of nucleotides. TCA-derived citrate is re-converted to acetyl-coenzyme A
(acetyl-CoA), which is a source of biosynthesis for fatty acids. Further explanations are provided
in the text. HK2—hexokinase 2; GPI—glucose-6-phosphate isomerase; PFK—phosphofructokinase;
ALDO—aldolase; GAPDH—glyceraldehyde 3-phosphate dehydrogenase; PGK—phosphoglycerate
kinase; PGM—phosphoglycerate mutase; ENO—enolase; PKM—pyruvate kinase M; LDH—lactate
dehydrogenase; PHGDH—phosphoglycerate dehydrogenase; PSAT1—phosphoserine aminotrans-
ferase 1; PSPH—phosphoserine phosphatase.

The second rate-limiting step of glycolysis is mediated by phosphofructokinase (PFK),
which catalyzes the conversion of fructose 6-phosphate to fructose 1,6-bisphosphate. PFK1
has three tissue-specific isoforms: platelet (PFKP), muscle (PFKM), and liver (PFKL), all of
which may be overexpressed in various malignancies [33–35]. In addition to very important
metabolic functions in tumor cells, PFK is involved in several signaling pathways, e.g.,
supporting PI3K, YAP/TAZ, and β-catenin signaling [35,36].

The third rate-limiting glycolytic step is catalyzed by pyruvate kinase (PK). The most
prominent isoform with respect to cancer is PKM2. This enzyme catalyzes the last glycolytic
step and undergoes a complex allosteric regulation. PKM2 coordinates carbon flux between
glycolysis, oxidative phosphorylation, one-carbon metabolism, and glutaminolysis [37–39].
Beyond metabolism, PKM2 drives tumorigenesis and chemoresistance by multiple mech-
anisms, including the activation of HIF1α, c-Myc, STAT3, and Oct-4 [40–43]. Perhaps not
surprisingly, the pharmacologic inhibition of PKM2 is highly desirable and is a subject of
many clinical trials.

Further, in normal cells, pyruvate is imported into mitochondria and enters the TCA
cycle to support oxidative phosphorylation (OXPHOS). In contrast, in cancer cells, an exces-
sive amount of pyruvate is synthesized due to the significant up-regulation of glycolysis,
which may slow down this process. In this case, the excessive pyruvate is converted to
lactate by lactate dehydrogenases (LDH) [44]. High glucose uptake and lactate production
are two well-known hallmarks of cancer metabolism.

All LDH isoforms, but especially LDHA, promote diverse malignant properties and
drive key oncogenic processes [45]. They increase cancer-associated metabolic changes,
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enhance growth, metastatic potential, and resistance to therapy, diminish antitumor im-
munity, etc. The high serum level of LDH activity is well known among oncologists as a
robust marker of poor prognosis and response to therapy [46].

Itself, lactate is a toxic compound and leads to the acidification of cytosol. Thus, to
overcome its toxicity, lactate should be exported outside the cell. This process is mediated
by MCT and results in the acidification of intracellular space around tumor cells. Among the
four MCT isoforms, MCT1 and MCT4 are the ones predominantly expressed in cancer and
have been identified as potential therapeutic targets [47]. Interestingly, MCTs are not only
involved in lactate excretion but may also import lactate in OXPHOS-dependent malignant
cells, cancer-associated fibroblasts (CAFs), or other cells of tumor microenvironment for
its subsequent oxidation, which drives a metabolic symbiosis inside the tumor [48,49].
MCTs are often overexpressed in malignancies; they favor the formation of metastasis
and angiogenesis [50–52]. The MCTs targeted therapy undergoes preclinical and clinical
trials [53].

At first glance, the increased glycolysis in cancer cells seems to be a paradox because
glycolysis is not an efficient process for ATP production. In theory, only two ATP molecules
are produced per one glucose molecule upon glycolysis, instead of 38 ATP molecules
produced by OXPHOS as a continuation of glycolysis. However, there are several reasons
for choosing this pathway over OXPHOS, some of which are listed below [54].

Glycolysis allows cancer cells a rapid ATP synthesis. Moreover, it promotes flux into
biosynthetic pathways. The intermediate product of glycolysis, 3-phosphoglycerate, can be
converted in three steps by PHGDH, PSPH, and PSAT1 to serine, which opens a gate to
one-carbon metabolism and biosynthesis of nucleotides. This can be viewed as an anabolic
bridge linking glucose assimilation with one-carbon metabolism. Citrate, which is derived
from pyruvate in the TCA cycle, is the source for lipogenesis and biosynthesis of several
amino acids. Moreover, glycolysis-mediated acidification inactivates the anticancer immune
response and fine-tunes the tumor microenvironment. Finally, glycolysis may impact signal
transduction cues through its intermediates that possess properties of signaling molecules
(for instance, fructose 1,6-bisphosphate [55] and lactate [56]).

Consequently, glycolysis is modulated by a number of oncogenes. Among others, its
major regulators are c-Myc, HIF1α, AKT, and mTOR, which may transactivate glycolytic
genes (c-Myc, HIF1α) or can directly and indirectly modulate the activity of enzymes
through post-translational modifications and protein–protein interactions [57].

Beyond the increased levels of proliferation and metastasis [58,59], high glucose initi-
ates genome instability and de novo mutations, including KRASG12D, in nontumorigenic
pancreatic cells [60]. In addition, high glucose may lead to nucleotide imbalance [61] and
inhibit nucleotide excision repair (NER) [62].

2.2. TCA and OXPHOS

Pyruvate links glycolysis to respiration. It is imported into mitochondria and oxidized
by PDK to acetyl-CoA (Figure 3). Acetyl-CoA is a primary source for both lipogenesis (the
process of fat formation) and the Krebs (TCA) cycle to fuel OXPHOS. TCA is a hub that re-
distributes carbon sources for generating cellular energy and is a precursor for biosynthetic
pathways linking glycolysis, glutaminolysis, biosynthesis, and beta-oxidation of fatty
acids, respiration, and amino acids metabolism into the metabolic network (Figure 2). Its
intermediates are citrate and α-ketoglutarate (α-KG). α-KG can be derived from glutamine
upon glutaminolysis and then may be reductively carboxylated to form citrate, which fuels
the TCA cycle and OXPHOS. This process is called anaplerosis [63,64].

Beyond the high catabolic and biosynthetic importance of TCA, several types of
malignancies (Acute myeloid leukemia (AML), glioma, paraganglioma, etc.) bear mutations
that lead to the dysregulation of one of three TCA enzymes: isocitrate dehydrogenase (IDH),
succinate dehydrogenase (SDH), or fumarate hydratase (FH), which, in turn, promotes the
synthesis of oncometabolites and favors tumorigenesis in multiple ways [65].
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Glycolysis-derived pyruvate enters the TCA cycle through the condensation of acetyl-CoA and
oxaloacetate. During the TCA cycle, reducing equivalents NADH and FADH2 are produced, which
are oxidized by ETC complexes I and II. Glutaminolysis and β-oxidation of fatty acids are two other
sources supplying TCA. Further explanations are provided in the text. I, II, III, IV and V—Respiration
Complexes I, II, III, IV and V, respectively; TCA—tricarboxylic acid cycle (Krebs cycle); CS—citrate
synthase; IDH—isocitrate dehydrogenase; ACO—aconitase; OGDH—oxoglutarate dehydrogenase;
SCS—succinyl coenzyme A synthetase; SDH—succinate dehydrogenase; FH—fumarate hydratase;
MDH—malate dehydrogenase; PDC—pyruvate dehydrogenase complex; GLS1—glutaminase 1;
GLUD—glutamate dehydrogenase.

As a result of TCA, NADPH and NADH are produced (Figure 3). They are further
oxidized by respiration chain complexes to produce ATP.

In the 1920s, Otto Warburg suggested that the up-regulation of aerobic glycolysis in
cancer is the result of mitochondria dysfunction. However, it is widely accepted today that
in line with increased glycolysis, mitochondria play a key role in oncogenesis by providing
building blocks for tumor anabolism, maintaining redox and calcium homeostasis, and
participating in transcriptional and cell death regulation [66]. Cancer cells extensively use
TCA and OXPHOS for both biosynthetic and energy production purposes, along with an
increased intensity of glycolysis.

Indeed, the contribution of glycolysis to total ATP production in various malignan-
cies ranges from 1 to 64% [67]. Furthermore, the OXPHOS targeting results in growth
inhibition, apoptosis, and susceptibility to cytotoxic drugs [67]. Interestingly, the OX-
PHOS contribution to ATP production in cancer cells can be reduced to approximately
30% under hypoxia.

Furthermore, there is evidence that tumor stem cells derived from brain, pancreatic,
lung, and ovary cancer preferentially use OXPHOS to produce ATP [68–70]. Moreover,
metabolic plasticity, in many ways, depends on the ability to switch between glycolysis
and OXPHOS [2,70].

Taken together, this means a complex interaction between glycolysis and OXPHOS in
tumorigenesis, which will be discussed later.

2.3. Metabolism of Glutamine

Glutamine is the most abundant amino acid in blood and muscles [71]. Moreover,
along with glucose, this is the most important source of carbon and nitrogen to neoplastic
cells. Malignant cells, alongside rapidly dividing their non-cancer counterparts, display a
high dependency on glutamine [71,72].
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Glutamine enters tumor cells by SLC1A5 (ASCT2), SLC38A1, SLC38A2, SLC6A14
(ATB0+), and SLC6A19 (B0AT1), which are frequently overexpressed in different malignan-
cies [73] (Figure 4).

Antioxidants 2023, 12, x FOR PEER REVIEW 7 of 50 
 

metabolic plasticity, in many ways, depends on the ability to switch between glycolysis 
and OXPHOS [2,70]. 

Taken together, this means a complex interaction between glycolysis and OXPHOS 
in tumorigenesis, which will be discussed later. 

2.3. Metabolism of Glutamine 
Glutamine is the most abundant amino acid in blood and muscles [71]. Moreover, 

along with glucose, this is the most important source of carbon and nitrogen to neoplastic 
cells. Malignant cells, alongside rapidly dividing their non-cancer counterparts, display a 
high dependency on glutamine [71,72]. 

Glutamine enters tumor cells by SLC1A5 (ASCT2), SLC38A1, SLC38A2, SLC6A14 
(ATB0+), and SLC6A19 (B0AT1), which are frequently overexpressed in different malig-
nancies [73] (Figure 4). 

 
Figure 4. Metabolism of glutamine. Glutamine enters the cell through several membrane transport-
ers depicted. It can be directly used for protein synthesis and as a source for the biosynthesis of 
nucleotides. In addition, glutamine can be converted into aspartate and further to asparagine. How-
ever, a majority of glutamine is imported into mitochondria through SLC1A5, where it undergoes 
glutaminolysis, the process of its conversion to glutamate by glutaminase (GLS1). Glutamate is a 
substrate for a set of aminotransferases (glutamate dehydrogenase (GLUD), glutamic oxaloacetic 
transaminase (GOT2), glutamic pyruvic transaminase 2 (GPT2)), which all may convert it to α-ke-
toglutarate, the intermediate of the TCA cycle. In addition, glutamate can be exported to the cyto-
plasm, where it can be used for the synthesis of proline and arginine. PYCR—pyrroline-5-carbox-
ylate reductase; P5CS—pyrroline-5-carboxylate synthase; P5CDH—pyrroline-5-carboxylate dehy-
drogenase. 

The process of glutamine assimilation occurs in mitochondria and is called “glutami-
nolysis”. Glutamine is transported to mitochondria by the SLC1A5 variant [72]. Glutami-
nolysis is catalyzed by glutaminase, which is encoded by two isoforms: GLS1 and GLS2. 
The cancer-associated glutaminolysis is linked to GLS1, which is overexpressed by vari-
ous neoplasia [71]. 

Then, glutamate can be converted to α-KG by GLUD (GDH), which, in turn, fuels the 
TCA cycle and OXPHOS or becomes a substrate for transaminase, including glutamic py-
ruvic transaminase 2 (GPT2), glutamic oxaloacetic transaminase 2 (GOT2), or PSAT1 to 
produce non-essential amino acids (alanine, aspartate, and phosphoserine, respectively). 

Figure 4. Metabolism of glutamine. Glutamine enters the cell through several membrane transporters
depicted. It can be directly used for protein synthesis and as a source for the biosynthesis of
nucleotides. In addition, glutamine can be converted into aspartate and further to asparagine.
However, a majority of glutamine is imported into mitochondria through SLC1A5, where it undergoes
glutaminolysis, the process of its conversion to glutamate by glutaminase (GLS1). Glutamate is a
substrate for a set of aminotransferases (glutamate dehydrogenase (GLUD), glutamic oxaloacetic
transaminase (GOT2), glutamic pyruvic transaminase 2 (GPT2)), which all may convert it to α-
ketoglutarate, the intermediate of the TCA cycle. In addition, glutamate can be exported to the
cytoplasm, where it can be used for the synthesis of proline and arginine. PYCR—pyrroline-5-
carboxylate reductase; P5CS—pyrroline-5-carboxylate synthase; P5CDH—pyrroline-5-carboxylate
dehydrogenase.

The process of glutamine assimilation occurs in mitochondria and is called “glu-
taminolysis”. Glutamine is transported to mitochondria by the SLC1A5 variant [72]. Glu-
taminolysis is catalyzed by glutaminase, which is encoded by two isoforms: GLS1 and
GLS2. The cancer-associated glutaminolysis is linked to GLS1, which is overexpressed by
various neoplasia [71].

Then, glutamate can be converted to α-KG by GLUD (GDH), which, in turn, fuels
the TCA cycle and OXPHOS or becomes a substrate for transaminase, including glutamic
pyruvic transaminase 2 (GPT2), glutamic oxaloacetic transaminase 2 (GOT2), or PSAT1 to
produce non-essential amino acids (alanine, aspartate, and phosphoserine, respectively).

Moreover, glutamate fuels the biosynthesis of glutathione tripeptide, which plays a key
role in redox homeostasis and mediates antioxidant defense. In the cytoplasm, glutamine
can be converted to aspartate by asparagine synthetase (ASNS) [74]. Finally, both glutamine
and glutamine-derived aspartate are carbon and nitrogen donors for the biosynthesis of
both pyrimidine and purine nucleotides [71,75].

As with any other metabolic processes altered by cancer, the metabolism of glutamine
is controlled by a number of oncogenes and oncosupressors [76]. For example, c-Myc
promotes glutamine uptake by transactivating genes coding for glutamine transporters
SLC1A5 [77,78]. Furthermore, in enhances the expression of GLS1 via the suppression of
its negative regulators: miR-23a, miR-23b [79], and lncRNA GLS-AS [80]. It enhanced the
expression of GLUD1, GPT2, GOT1, GOT2, and PSAT1 [76]. mTORC1 up-regulates GLS1
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by increasing c-Myc expression [81]. In pancreatic adenocarcinoma, KRAS reprograms
glutamine metabolism toward glutamine-derived aspartate synthesis, NADPH production,
and balancing cellular redox homeostasis with macromolecular synthesis [82,83].

Thus, glutamine is a prominent carbon and nitrogen donor that supplies both energy
production through entering TCA and OXPHOS and fuels biosynthetic processes to pro-
duce fatty acids, non-essential amino acids, glutathione, and both pyrimidine and purine
nucleotides. The inhibition of GLS1 and GDH and suppression of glutamine metabolism
are recognized as an important antineoplastic approach [71,75]. It inhibits cancer growth,
metastasis, and mitochondrial respiration and suppresses cancer stem cells [84–86].

2.4. Lipid Metabolism

In addition to the Warburg phenomenon and increased glutaminolysis, lipid metabolism
also undergoes comprehensive metabolic reprogramming in neoplastic cells. Generally, it
includes fatty acid (FA) uptake, de novo biosynthesis of lipids (lipogenesis), and fatty acid
β-oxidation (FAO) [87]. All of these processes are associated with tumorigenesis and promote
proliferation, migration, invasion, and drug resistance of malignant cells and fine-tune their
interaction with the microenvironment.

Fatty acids may enter cancer cells by diffusion or by being imported by FA transport
proteins (Figure 5). FA transport proteins are represented by FATP1-6 (fatty acid transport
protein 1-6), FABP1-9 (fatty acids-binding proteins 1-9), and fatty acids translocase CD36.
Inside the cell, fatty acids are reversibly bound to FABPs, which function as intracellular
lipid chaperons.

Upon entering the cell, fatty acids undergo an activating conjugation with coenzyme A,
which is mediated by acyl-CoA synthetases (ACSS, ACSM, ACSL). Then, for β-oxidation,
fatty acyl-CoA needs to get into the mitochondria. This rate-limiting step is catalyzed
by carnitine palmitoyltransferases (CPT1 and CPT2) localized on the outer and inner
mitochondria membrane, respectively.

In mitochondria, during the β-oxidation process, fatty acyl-CoA is cleaved into acetyl-
CoA by a repeated four-step cycle catalyzed by four enzymes. The end product, acetyl-CoA,
enters the TCA cycle, which is followed by oxidative phosphorylation to generate ATP [88].

De novo lipogenesis starts with acetyl-CoA, which is a “building block” for all fatty
acids. The main source of acetyl-CoA is oxidative decarboxylation of pyruvate, which
occurs after glycolysis. In addition, acetyl-CoA can be produced from citrate upon glu-
taminolysis and β-oxidation of fatty acids. Citrate is converted to acetyl-CoA by ATP
citrate lyase (ACLY). Then, acetyl-CoA carboxylase (ACC) catalyzes the transformation of
acetyl-CoA and one bicarbonate molecule into malonyl-CoA. Further, fatty acid synthase
(FASN) catalyzed the synthesis of palmitate from malonyl-CoA and acetyl-CoA (Figure 5).

The uptake, storage, and use of lipids are an important part of cancer cells’ adapta-
tion for metastasis development [87]. Based on the experimental observations, Lee and
colleagues suggested that FAO is the main ATP source in malignant cells of different ori-
gins [89]. In addition, it has long been known that in non-glycolytic types of neoplasia
like prostate cancer, lymphoma, and pancreatic ductal carcinoma, FAO is the prominent
pathway for energy production [90–92].

The oncogenic signaling pathway drives rewiring in lipid metabolism [93]. For in-
stance, c-MYC regulates lipogenesis by inducing SREBP1 [94]. Transcriptional coactivator
yes-associated protein (YAP) drives metabolic shift toward FAO in lymph node metasta-
sis [95]. Mutant KRAS mediates the reprogramming of lipid metabolism through acyl-
coenzyme A (CoA) synthetase long-chain family member 3 (ACSL3) in lung cancer [96].
PI3K/Akt/mTOR axis up-regulates CD36 and SREBP1 and induces lipogenesis [97]. These
are only several examples of exploiting lipogenesis by cancer cells. For additional informa-
tion, please see the excellent reviews on the topic [93,98,99].
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Importantly, not only oncogenes affect lipid metabolism. The other way around is
also possible, i.e., lipid metabolism can affect oncogenic signaling. The composition of the
cell membrane (the profile of FA moieties, content of sphingolipid and cholesterol, etc.)
may dramatically affect signaling cascades [87,100]. For instance, the degree of membrane
saturation driven by the biosynthesis of several enzymes of fatty acids promotes EGFR
clustering and activation of signaling [101,102]. Another example comes from prostate
cancer, where polyunsaturated fatty acids modify phospholipid content, which, in turn,
alters PIP3/AKT activation [103].

The high lipid diet is closely related to cancer development. In addition, different
clinical studies suggest that obesity and the risk of cancer [104,105] are highly associated.
Different experiments revealed that a lipid-enriched environment reprograms malignant
cells to uptake and metabolize FA to support malignant growth. The increased consump-
tion of lipids drives cancer growth and the development of metastasis in murine breast,
colorectal, and gastric cancer models. For instance, the high-fat diet increased CD36 ex-
pression and induced metastasis in a gastric cancer mouse model [106]. High fatty acids
induced migration and invasion of pancreatic cancer cells and shifted them to oxidative
metabolism [107]. In an intriguing study by Lee and colleagues, the tumor growth in
the KRAS-mutant mouse tumor model was two times higher in high-fat-consuming mice
compared with the control (normally fed) group. However, the tumor growth was three
times slower in the low-fat-consuming (but calory balanced) group compared to the control
(normal fat diet) [89], suggesting that tumor growth depends on fatty acids as the primary
source of energy.
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There is much evidence that nearby adipocytes may induce the reprogramming of
lipid metabolism in cancer cells [92,100]. The co-cultivation of ovarian cancer cells with
adipocytes induced the expression of CD36, an FA receptor, which enhanced the metastatic
potential and xenograft growth. CD36 knockdown or use of specific antibodies disrupted
this adipocyte-mediated reprogramming [108]. In general, cancer-associated adipocytes
imply various mechanisms to promote tumor development. Presumably, this may be
an explanation for the fact that many tumors frequently metastasize to adipocyte-rich
tissues [92].

Taken together, these observations highlight the notion that the augmentation of lipid
uptake may reprogram the metabolism, thereby altering signaling pathways and hence
promoting the malignant phenotype and development of metastasis.

3. Interplay between Biochemical Pathways Drives Metabolic Plasticity

It is widely accepted now that metabolic rewiring provides selective advantages to
cancer cells not by simply deregulating their metabolic pathways but rather by conferring
metabolic plasticity, allowing them to switch between different states as part of the adap-
tation process [109,110]. Unfortunately, the exact molecular mechanisms underpinning
metabolic plasticity are far from being completely understood. However, there are nu-
merous reports demonstrating that metabolic plasticity provides cancer cells with energy
and “building” blocks required for proliferation, invasion, metastasis, and resistance to the
immune system and therapy [2,3].

One of the main features of metabolic rewiring and plasticity is the metabolic hetero-
geneity of malignant cells, which is a characteristic of many tumors [2]. This feature is well
illustrated by the interplay between glycolysis and OXPHOS [67].

An example of such interplay is cancer stem cells (CSCs). CSCs are cells with the
ability to self-renew and initiate tumors. They are responsible for cancer recurrence and
drug resistance [111,112]. It was previously accepted that CSCs have a more glycolytic
phenotype. Indeed, CSCs of different origins, including breast, gastric, and hepatocellular
carcinoma, have been reported highly expressing glycolytic genes and have enhanced
glycolysis and a low OXPHOS level [70,113,114]. Oppositely, there are a number of reports
about OXPHOS-dependent CSCs from glioma, leukemia, ovarian, hepatic, and pancreatic
cancer [68,69,115].

Actually, the simultaneous occurrence of both glycolytic and OXPHOS CSCs was
reported for pancreatic, breast, and other tumor types [70,116,117].

It has been shown recently that there are two populations of stem cells in isogenic
murine glioma, one of which is glycolytic, whereas another one relies on OXPHOS de-
pending on the metabolic characteristics of the tumor cells of origin. The authors report
that both phenotypes are independent and stable. However, the OXPHOS population is
switched for glycolysis under either hypoxia or metabolic inhibitors [118].

Thus, several authors suggested the existence of a hybrid metabolic state (glycolytic/
OXPHOS), which allows malignant cells to switch to the most appropriate metabolic mode
under specific conditions in order to facilitate adaptation and survival [119–121]. For
instance, breast cancer cells are generally characterized by high metabolic heterogene-
ity [120,122,123]. This allows them to colonize different niches. The lung tissues have high
oxygenation, and lung metastasis is derived by OXPHOS cancer cells. In contrast, there is a
low oxygen level in hepatic; hepatic metastasis is derived from glycolytic cancer cells [123].
In line with this, it was shown that the loss of GPX2 increased HIF1α expression and gly-
colytic phenotype while reducing OXPHOS. However, in one specific cell cluster, the loss
of GPX2 induced a hybrid phenotype with increased both HIF1α- and AMPK-regulated
EMT/stem-like gene signatures [120].

In general, glycolysis-derived pyruvate is the main source of TCA and OXPHOS.
However, not only glycolysis fuels respiration. The metabolic plasticity arises from a
diversity of mitochondrial metabolites, which may be used as primary energy fuel for
OXPHOS under certain conditions (Figure 2). NADH and FADH2 equivalents derived
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from the metabolic conversion of amino acids and β-oxidation may also be oxidized by
mitochondrial respiratory chain complexes [124].

For example, there may be cooperation between glycolytic and OXPHOS cancer cells
or between cancer and stromal cells within a tumor [125,126]. In this case, OXPHOS-
dependent cells import lactate and convert it to pyruvate, thus fueling TCA and OXPHOS.
This phenomenon is called the reversed Warburg effect and has been observed, for instance,
in tumor microenvironments, when glycolysis in the cancer-associated stroma metabolically
supports adjacent cancer cells [125].

The conversion of serine to glycine in the mitochondrial folate cycle generates a
significant amount of NADH2, which may be used by OXPHOS and provides metabolic
plasticity for breast cancer cells [124,127].

Proline is oxidized to pyrroline-5-carboxylate by proline carboxylase, which is linked
with respiratory chain complexes II and III. This reaction generates FADH2 and supports
tumorigenesis and the development of lung metastases in the orthotopic 4T1 and EMT6.5
mouse models [128].

Glutamine derived from glutaminolysis is further converted to aKG, which enters the
TCA cycle and supports OXPHOS [129]. In addition, glutamate dehydrogenase (GDH),
which is responsible for this last step, is accompanied by the generation of NADH.

Thus, to suppress this complex interplay between glycolysis and OXPHOS, which
provides neoplastic cells with adaptational plasticity, survival, and growth advantages,
we need to target not only single processes but also the full network and key molecular
mediators that govern this metabolic plasticity.

4. Oncogenic Signaling Pathways Regulate Metabolic Rewiring and Plasticity

When talking about therapeutic strategies in the context of metabolic rewiring in
cancer, a mere inhibition of certain metabolic enzymes is clearly not enough to produce
a sustainable therapeutic effect. To develop efficient approaches that target metabolic
reprogramming, it is also important to take into consideration the molecular drivers that
promote metabolic dysregulation and plasticity.

Different oncogenes and oncosupressors can modulate cancer-related metabolic al-
terations [2,130–132]. The best examples are transcriptional factors c-Myc and HIF1α,
two master regulators of glycolysis and other metabolic pathways, which may directly
transactivate dozens of metabolic genes [133–135].

There is also a complex network of post-translational regulatory circuits of glycolysis me-
diated by major oncogenes such as AKT, mammalian target of rapamycin (mTOR), epidermal
growth factor receptor (EGFR), Kirsten rat sarcoma virus (K-Ras), and others [136,137].

As a master-regulator of anabolic pathways, mTOR drives glycolysis, one-carbon,
and lipid metabolism [138]. Its catalytic subunits, mTORC1 and mTORC2, induce the
expression of GLUT1 [139] and of the most important mediators of glycolysis—HK2,
PFK, and PKM2—through the up-regulation of HIF1α and c-Myc [140,141]; induce the
biosynthesis of purine [142] and pyrimidine [143] nucleotides; control biosynthesis and
β-oxidation of fatty acids by regulation of SREPB [144,145] and PPARγ [146,147]; and
directly phosphorylate and activate ACLY [148]. mTOR-mediated metabolic rewiring
confers resistance to chemotherapeutics [149,150].

By multiple mechanisms, including mTOR-dependent or -independent manner, AKT
leads to the activation of SREBP, c-Myc, HIF1α, and ATF4 [151]. It directly phosphorylates
HK2 [57] and PFKB2 [152] and up-regulates GLUT1 expression [153].

In premalignant pancreatic cells, mutant KRAS drives metabolic reprogramming to
induce expression of HK2, LDHA, PDK, glutaminase 1 (GLS1), glutamate dehydrogenase
1 (GLUD1), and transaminases (GOT1, GPT2, and PSAT1), making cells dependent on
glucose and glutamine [154]. In addition, KRAS induces GLUT1 and glucose flux to
PPP [60].

Both EGFR and Her2 (ErbB family receptors) are drivers of metabolic reprogramming.
EGFR and Her2 enhanced glycolysis in triple-negative breast cancer [155,156]. EGFR
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hyperactivation, either due to its amplification or mutation, elicits metabolic rewiring
by activation of the mTORC2/Akt/c-Myc pathway [157]. There is much evidence about
the up-regulation of lipogenesis in EGFR-mutated cancer cells resistant to TKI [158]. In
EGFR-mutated lung cancer cycling persisted cells, the shift of metabolism toward FAO
was observed upon treatment with tyrosine kinase inhibitor [159]. In Her2-overexpressing
breast cancer cells, there is usually an enhanced metabolism of glutamine [160,161].

Indeed, the situation is more complex due to a plethora of mi-RNAs, which affect both
mRNAs of enzymes and their regulators [162].

5. Plant-Derived Compounds Targeting Multiple Biochemical Pathways
5.1. Kaempferol

Kaempferol is a flavanol first derived from the rhizome of Kaempferia galanga (Figure 6).
This is a non-toxic, low-price dietary ingredient that is fairly well represented in the daily
diet. Kaempferol mitigates inflammatory processes and may reduce osteo- and rheumatoid
arthritis, colitis, and gastric ulcer [163].
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Dozens of studies have shown its antineoplastic activity (Table 1). Kaempferol inhibits
cancer-associated signaling pathways [164], suppresses proliferation, angiogenesis, and
migration, and reverses drug resistance [165,166].

One more mechanism of kaempferol antineoplastic activity is linked to its negative im-
pact on metabolic processes. Yao and colleagues have demonstrated kaempferol-mediated
EGFR-dependent inhibition of glucose uptake and lactate production in esophagus carci-
noma. In this case, kaempferol suppressed EGFR and HK2 both in vitro and in vivo [167].

In addition, kaempferol was shown to inhibit glycolysis in colon cancer through the
up-regulation of specific micro-RNAses. Firstly, kaempferol increased the expression of
miR-339-5p, which targets hnRNPA1 and PTBP1, which, in turn, produces PKM2 upon
splicing [168]. This led to reduced lactic acid and ATP production. Furthermore, kaempferol
increased the expression of miR-326 directly targeting PKM2, which was accompanied by
the reverse resistance to 5-FU [169].

Another mechanism of kaempferol-mediated inhibition of glycolysis was proposed in
melanoma cells. Kaempferol prevented the binding of HK2 and VDAC1 on mitochondria
through the AKT/GSK-3β signaling pathway, which suppressed pyruvate and lactate
production and metastasis [170].

Besides enzymes of glycolysis, kaempferol is suggested to negatively affect its key
transcriptional regulators: HIF1α and c-Myc. Kaempferol glycosides induced ubiquitin-
proteasome-dependent degradation of HIF1α, which inhibited hypoxia signaling and expres-
sion of GLUT1 in pancreatic cancer cells [171]. In hepatoma cells, kaempferol did not alter the
HIF1α protein level but changed its localization by the inactivation of p44/42 MAPK [172]. In
addition, two groups of researchers have revealed that kaempferol may bind G-quadruplex in
the c-Myc promotor region, thereby suppressing its expression [173,174].
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Beyond glycolysis, kaempferol was able to suppress respiration in Hela cells by
inhibiting the mitochondrial respiratory chain complex I. This led to a failure of energy and
induced autophagy by increased AMPK [175].

In addition, Brusselman and colleagues showed kaempferol-mediated inhibition of
FASN and lipogenesis in prostate and breast cancer cells [176].

Table 1. Kaempferol-mediated impact on metabolic pathways in cancer models.

Metabolic
Pathway Affected

Related
Targets

Type of
Neoplasia Description Reference

Glycolysis HK2; EGFR Esophagus
carcinoma

Decrease in EGFR, HK2,
glucose uptake, and
lactate production
in vitro and in vivo

[167]

Glycolysis PKM2 Colon cancer

Increase expression of
miR-326, which directly
targets PKM2; reverse
resistance to 5-FU

[168]

Glycolysis PKM2 Colon cancer

Increase expression of
miR-339-5p, which
targets hn-
RNPA1/PTBP1/PKM2
axis a

[169]

Glycolysis HK2 and
VDAC1 Melanoma

Prevention of HK2 and
VDAC1 binding on
mitochondria

[170]

Glycolysis c-Myc
Cervical and
colorectal
cancer

Binding of kaempferol
with G-quadruplex in
promotor region;
decrease in c-Myc
expression

[174]

Glycolysis HIF1α Pancreatic
cancer

Proteasome-dependent
degradation of HIF1α;
decrease in GLUT1
expression

[171]

Glycolysis HIF1α Hepatic cancer

Inhibition of p44/42
MAPK led to
inactivation of HIF1α by
its cytoplasmic
localization

[172]

OXPHOS Complex I Cervical cancer

Inactivation of
respiratory chain
complex I led to energy
failure and
AMPK-dependent
autophagy

[175]

Fatty acids
biosynthesis FASN Prostate and

breast cancer
Inhibition of FASN and
lipogenesis [176]

Resveratrol. Resveratrol is a 3,5,4′-trihydroxystilbene that consists of two aromatic
rings that are connected through a methylene bridge (Figure 7). This is a dietary polyphenol
that is present in significant amounts in grapes, wine, peanuts, and berries. It is also con-
sumed as a dietary supplement due to its anticancer, chemopreventive, antiviral, antifungal,
anti-aging, and anti-inflammatory activities [177].
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The plethora of resveratrol antineoplastic properties is associated with its negative
impact on the cell cycle, angiogenesis, and cell signaling pathways, as well as positive mod-
ulation of autophagy and apoptosis [178] (Table 2). Different studies also link resveratrol-
mediated antineoplastic effects with the activation of p53 oncosupressor (reviewed in [179]).

There are many reports that resveratrol targets glycolysis by various mechanisms
in different types of neoplasia. Indeed, resveratrol suppressed EGFR, Akt, and ERK1/2
activation, which led to inhibition of HK2-mediating glycolysis in NSCLC [180]; down-
regulated HK2 in hepatocellular carcinoma both in vitro and in vivo [181]. It suppressed
glycolysis in pancreatic cancer cells by targeting miR-21 [182].

Regarding the model of angiogenesis, resveratrol down-regulated VEGF-induced
glycolysis in human umbilical vein endothelial cells (HUVECs), which was associated with
the inhibition of GLUT1, HK2, PFK1, PKM2 expression, and PKM2 mis-localization [183].

Not only glycolytic enzymes but also critical regulators of glycolysis are affected by
resveratrol. In ovarian cancer cells, resveratrol suppressed glycolysis, proliferation, and
migration. The molecular mechanism behind these effects involves activation of AMPK and,
hence, inhibition of mTOR [184]. In colon and breast cancer cells, resveratrol inhibited the
expression of c-Myc, VEGF, and hTERT [185]. In Lewis lung carcinoma tumor-bearing mice,
resveratrol suppressed the intake of (18)F-FDG, and glycolysis decreased the protein level
of HIF1α, Akt, and mTOR [186]. Molecular docking experiments suggested that resveratrol
may be a direct inhibitor of HIF1α; it down-regulates its protein level in pancreatic cancer
cells [187].

Vanamala and colleagues have applied the proteomic approach to search proteins
altered by resveratrol in colon cancer cells. They observed that G6PD and transketolase,
two key enzymes of the pentose phosphate pathway (PPP), were down-regulated by this
compound, which links resveratrol with the down-regulation of PPP [188].

Another research group has shown that resveratrol suppressed c-Myc, glucose con-
sumption, and glycolytic enzymes PK and LDH. However, it increased citrate synthase,
one of the enzymes of the Krebs cycle [189]. In another study on colon cancer cells, the
authors have also shown resveratrol-mediated down-regulation of glycolysis while in-
creasing glucose oxidation. These observations were accompanied by down-regulation of
PPP and lipogenesis by resveratrol [190]. However, other authors have shown that both
glycolysis and respiration have been targeted by resveratrol in Hela cells, including several
key OXPHOS proteins [191].

Beyond the metabolism of glucose, resveratrol suppressed the expression of glutamine
importer ASCT2 in hepatoma cells, which increased sensitivity to cisplatin [184]. In addition
to that, resveratrol may suppress de novo fatty acid biosynthesis. As mentioned above, it
activates AMPK and down-regulates mTOR in breast cancer cells, subsequently inhibiting
acetyl-CoA carboxylase α (ACACA) and fatty acid synthase (FASN) [192]. In line with
this notion, resveratrol was shown to down-regulate FASN in Her2-overexpressing breast
cancer [193].
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Taken together, it seems that depending on a particular cellular context, resveratrol
may target a broad spectrum of metabolic pathways in neoplastic cells, including glycolysis,
respiration, pentose phosphate pathway, biosynthesis of fatty acids, and glutamine uptake.

Table 2. Resveratrol-mediated impact on metabolic pathways in cancer models.

Metabolic
Pathway Affected

Related
Targets

Type of
Neoplasia Description Reference

Glycolysis Glut1, HIF1α,
Akt and mTOR Lung carcinoma

Inhibition of (18)F-FDG
intake and glycolysis,
decrease in the protein
level of Glut1, HIF1α,
Akt, and mTOR

[186]

Glycolysis LDH,
c-Myc Colon cancer

Suppression of
glycolytic enzymes and
c-Myc; increased citrate
synthase—the enzyme
of the Krebs cycle

[189]

Glycolysis HK2 Non-small cell
lung cancer

Reduction in EGFR, Akt
and ERK1/2 activation,
which impaired
HK2-mediated
glycolysis

[180]

Glycolysis HK2 Hepatocellular
carcinoma

Suppression of HK2 and
aerobic glycolysis [181]

Glycolysis HIF1α Pancreatic
cancer

Molecular docking
revealed resveratrol as
an inhibitor of HIF1α;
down-regulation of
HIF1α protein level

[187]

Glycolysis
GLUT1, HK2,
PFK1,
PKM2

Human
umbilical vein
endothelial cells
(HUVECs)

Suppression of
VEGF-induced
glycolysis; inhibition of
GLUT1, HK2, PFK1 and
PKM2 expression;
PKM2 mislocation

[183]

Glycolysis Ovarian cancer

Inhibition of glycolysis,
activation of AMPK,
and down-regulation of
mTOR

[184]

Glycolysis

GLUT1
HK2
PKM2 LDHA,
miR-21

Pancreatic
cancer

Resveratrol decreased
miR-21-mediated
glycolysis

[182]

OXPHOS
ND1 ATPS
ANT
GA

Ovarian cancer

Inhibition of both
glycolysis and
respiration; decrease in
ND1, ATPS, ANT, GA
OXPHOS proteins

[191]

Pentose phosphate
pathway (PPP)

G6PD
transketolase Colon cancer

Inhibition of PPP by
down-regulation of its
key enzymes—G6PD,
transketolase

[188]
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Table 2. Cont.

Metabolic
Pathway Affected

Related
Targets

Type of
Neoplasia Description Reference

Metabolism of
glutamine ASCT2 Hepatoma

Suppression of
glutamine importer
ASCT2 enhances
cisplatin sensitivity

[194]

Fatty acids
biosynthesis ACACA FASN Breast cancer

AMPK activation,
inhibition of mTOR and
acetyl-CoA carboxylase
α (ACACA)

[192]

Fatty acids
biosynthesis FASN Breast cancer

Down-regulation of
FASN in
Her2-overexpressing
breast cancer

[193]

Quercetin. Quercetin is a flavonoid compound (3,3′,4′,5,7-pentahydroxyflavone) that
is widely distributed in different fruits and vegetables (Figure 8).
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There are reports about quercetin-mediated inhibition of several key metabolic path-
ways in cancer cells (Table 3). First of all, quercetin directly inhibits GLUT1 (Ki = 8 µM) in
acute myelogenous leukemia (AML) HL-60 cells [195].

Quercetin sensitized cells resistant to erlotinib oral squamous cell carcinoma by PKM2
inhibition. It also suppressed GLUT1, HK2, and LDHA, as well as Twist, N-cadherin,
MMP-9, and MMP-13, alleviating migration, invasion, and xenograft growth [196]. In
breast cancer, quercetin down-regulates Akt, induces autophagy, and suppresses glucose
uptake protein levels of PKM2, GLUT1, LDHA, MMP2, MMP9, and VEGF [197].

Two research groups demonstrated that quercetin is able to bind G-quadruplex struc-
tures in the c-Myc promoter and inhibit its expression [174,198]. It was also shown that
quercetin mitigates the PI3K/Akt/mTOR pathway and down-regulates c-Myc expression
in Burkitt’s lymphoma [199]. Moreover, it significantly inhibited the protein level of HIF1α
and sensibilized hepatocellular and pancreatic carcinoma cells to gemcitabine [200].

Not only glycolysis but OXPHOS as well was suppressed by quercetin in murine
melanoma cell line [201]. Furthermore, quercetin may mitigate both fatty acids synthe-
sis and β-oxidation. It down-regulates FASN in HepG2 cells [202] and nasopharyngeal
carcinoma [203]. In the breast cancer cell model, Ruidas and colleagues have shown
that quercetin down-regulates the expression level of both FASN and CPT1, as well as
β-oxidation intensity and tumor growth in vivo. Moreover, the computational docking
analyses predicted the binding of quercetin to CPT1 [204], which suggest the possible direct
inhibitory effect of this compound on β-oxidation.
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Table 3. Quercetin-mediated impact on metabolic pathways in cancer models.

Metabolic
Pathway Affected

Related
Targets

Type of
Neoplasia Description Reference

Glycolysis GLUT1 AML

Direct inhibition of
GLUT1 (Ki = 8 µM) and
glucose uptake in
HL-60 cells

[195]

Glycolysis PKM2, GLUT1,
LDHA, HK2

Oral squamous
cell carcinoma

Reverse of erlotinib
resistance by inhibition
of PKM2; decrease in
invasion, migration
capacities, and
xenograft growth

[196]

Glycolysis HIF1α
Pancreatic and
hepatocellular
carcinoma

Decrease in MDR1
activity and HIF1α
protein level; increased
sensitivity to
gemcitabine

[200]

Glycolysis c-Myc
Cervical and
colorectal
cancer

Binding of kaempferol
with G-quadruplex in
promotor region;
decrease in c-Myc
expression

[174]

Glycolysis c-Myc Burkitt’s
lymphoma

Down-regulation of
PI3K/Akt/mTOR and
c-Myc

[199]

Glycolysis
OXPHOS Melanoma

Dose-dependent
inhibition of both
glycolysis and
respiration

[201]

De novo
lipogenesis FASN Nasopharyngeal

carcinoma
Decrease in FASN and
Ki-67 levels [203]

De novo
lipogenesis FASN Hepatocellular

carcinoma Decrease in FASN level [202]

OXPHOS, FAO CPT1 Breast cancer

Decreased the level of
CPT1 and FASN,
suppressed β-oxidation
and in vivo tumor
growth

[204]

(−)-Epigallocatechin-3-gallate (EGCG). EGCG represents a polyphenolic compound
(catechin), which is the ester of epigallocatechin and gallic acid (Figure 9). This is the
most abundant catechin in tea. Due to its beneficial pharmacological properties, including
antioxidant, cardio- and neuroprotective, antidiabetic, and cholesterol-lowering abilities,
in addition to daily intake in the form of tea, EGCG is widely consumed as a dietary
supplement [205]. It was shown that EGCG may prevent aging, cognitive dysfunction, and
even carcinogenesis [206].

The plethora of antineoplastic properties makes EGCG a candidate for antitumor
therapeutics [206] (Table 4). EGCG inhibits activation of c-Met and EGFR signaling by
alteration of lipid membrane rafts [207,208] and suppresses EMT and invasion by inhibiting
TGF-β1/Smad [209]. It may also alleviate STAT3, ERK NF-κB, and Akt-mediated pathways
in several cancers [206]. Different studies have demonstrated that EGCG sensibilizes tumor
cells to common chemotherapeutics such as doxorubicin, cisplatin, 5-FU, and tamoxifen as
well as may help to reduce their adverse effects (reviewed in [210]).
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Relating to cancer-associated metabolic rewiring, EGCG possesses a full spectrum of
inhibitory capacities. First of all, EGCG affects glycolysis in multiple ways, demonstrating
a global inhibitory effect on cell energetics. In breast cancer cells, it induced autophagy
and apoptosis, decreased lactate and ATP levels, suppressed mRNA level and activity
of hexokinase (HK), phosphofructokinase (PFK), and lactic dehydrogenase (LDH); de-
creased glucose consumption, GLUT1, and HIF1α; inhibited proliferation and xenograft
growth [211]. In tongue carcinoma cells, EGCG inhibits the activation of EGFR, AKT,
and ERK1/2, diminishes glucose consumption and lactate production, and decreases the
protein level of HK2 and its translocation to the mitochondrial outer membrane [212].

In hepatocellular carcinoma, EGCG inhibited both the expression and activity of PFK in
concentrations of 25–100 µM. It transforms the oligomeric structure of PFK into its inactive
form, suppresses glucose uptake and lactate production, and induces apoptosis [213].

Using the metabolomic approach in the pancreatic cell model, Lu and colleagues
have revealed EGCG-mediated perturbation of the metabolic network, down-regulation of
glycolytic rate, and biosynthesis of fatty acids [214]. Finally, in colon cancer cells, EGCG
interferes with membrane lipid rafts, reducing MCT1 activity, which mediates lactate
export—the critical step supporting aerobic glycolysis [215].

EGCG may negatively affect the genetically altered Krebs cycle. IDH-mutant-bearing
malignancies use glutamine processing to produce oncometabolite, 2-hydroxyglutarate
(2-HG) [216,217]. EGCG in doses of 5–20 µM inhibited both IDH1 and GDH1/2, reduced
proliferation and 2-HG production, making IDH-mutant cancer cells sensitive to irradia-
tion [218].

Beyond the metabolism of glucose, several researchers have found EGCG as a direct
inhibitor of glutamine dehydrogenase (GDH), the enzyme which [219,220]. In addition,
EGCG is a direct FASN inhibitor [221,222]. Puig et al. have compared the inhibitory effects
of EGCG and C75 on FASN inhibition in breast cancer cells [223]. Whereas the degree of
inhibition was similar for both compounds, EGCG has a moderate inhibitory effect on fatty
acids β-oxidation through a negative impact on CPT1. In contrast, C75—a commonly used
FASN inhibitor—significantly stimulated CPT1. Both EGCG and C75 treatments resulted
in reduced proliferation and protein levels of HER2, AKT and ERK1/2 [223]. The same
results were also obtained for lung cancer [224].

In hepatocellular carcinoma HepG2 cells, EGCG simultaneously decreased FASN
and ACC protein levels and reduced the activity of CPT1, which was associated with
apoptosis [225].

These data demonstrate a high potential of EGCG to inhibit metabolic rewiring
in cancer.



Antioxidants 2023, 12, 2012 19 of 52

Table 4. EGCG-mediated impact on metabolic pathways in cancer models.

Metabolic
Pathway Affected

Related
Targets

Type of
Neoplasia Description Reference

Glycolysis

HK, PFK,
LDHA,
GLUT1,
HIF1α, VEGF

Breast cancer

Decreased glucose
consumption and
lactate production;
induced autophagy and
apoptosis; suppressed
glycolytic enzymes,
Glut1, HIF1α, and
VEGF; inhibited
xenografts

[211]

Glycolysis HK2 Oral carcinoma

Decrease in glucose
consumption and lactate
production; inhibition of
EGFR, AKT, and ERK
activation; decrease in
HK2 protein level and
its translocation to
mitochondrial
membrane

[212]

Glycolysis PFK Hepatocellular
carcinoma

Decrease in both PFK
expression level and
activity through the
shift from oligomeric to
inactive form

[213]

Glycolysis MCT1 Colon cancer Alters MCT1 membrane
localization [215]

Krebs cycle Mutant IDH1;
GDH1/2

Colorectal
cancer

Inhibits IDH1 and
GDH1/2; makes
IDH1-mutant cells
sensitive to irradiation

[218]

Glutamine
metabolism GDH In vitro study Directly inhibits GDH [219,220]

Lipogenesis FASN In vitro study Directly inhibits FASN [221,222]

Lipogenesis FAO FASN, ACC,
CPT1

Hepatocellular
carcinoma

Decreased FASN and
ACC protein levels;
reduced activity
of CPT1

[225]

5.2. Curcumin

Curcumin is a polyphenolic compound that is extracted from the rhizome of turmeric
(Curcuma longa L.) and is the main ingredient (Figure 10). Curcumin possesses a number
of beneficial pharmacological properties: antioxidant, anti-inflammatory, cardio-, hepato-
and neuroprotective, antidiabetic, anti-ulcer, antimicrobic, etc. [226]. It is active against
breast, colorectal, gastric, prostate, and lung cancer through a variety of molecular mecha-
nisms (Table 5). Briefly, curcumin suppresses a number of signaling pathways, including
PI3K/AKT, ERK/MAPK, Wnt, and NF-kβ; inhibits proliferation, migration, and inva-
sion; reduces stemness; and induces autophagy, ferroptosis, and apoptosis (reviewed
in [226,227]).
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One research group has shown that in four cancer cell lines of different origin, cur-
cumin decreased glucose uptake, lactate production, and protein levels of HIF1α, PKM2,
and p70S6K—the target of mTOR [228]. This effect was abolished upon PKM2 overex-
pression. Other researchers have studied curcumin-mediated hyperglycemia-induced
chemoresistance in hepatocarcinoma cells. Curcumin decreased the high glucose-induced
survival of cancer cells upon doxorubicin and methotrexate treatment, suppressed glucose
uptake, lactate production, expression of GLUT1/3, MCT1/4, HIF1α, mTOR, STAT3, and
multidrug resistance protein MDR-1 [229].

In several murine tumor models, curcumin was shown to down-regulate the activity
of ATP synthase, the ATP level, and the ATP/AMP ratio both in vitro and in vivo. It
also increased ROS, induced autophagy, and revealed antiangiogenic activities in B16
xenografts [230].

In MCF7 cells, the treatment with curcumin was enhanced by four times glucose up-
take, lactate production, and HK activity. This was accompanied by a significant reduction
in respiration 6 h post treatment as well as suppression of cell growth [231].

Taken together, it seems that the effect of curcumin on glucose uptake and the activity
of glycolytic enzymes are strongly dependent on the cellular context as it can differ oppo-
sitely for cell lines of different origins. However, regardless of this, in all cases, curcumin
negatively affects the growth of malignant cells.

Curcumin severely reduced the growth and migration of adrenocortical carcinoma
cells and also induced apoptosis in these cells [232]. Despite the expression of some gly-
colytic genes being induced, both glycolysis and respiration were significantly suppressed.
However, it was accompanied by enhanced expression of glutamic pyruvic transami-
nase (GPT), glutamine importer SLC1A5, and glutaminase (GLS1), pointing to metabolic
reprogramming toward glutamine utilization. Moreover, the decrease in glutamine concen-
tration in media significantly enhanced the cytotoxic properties of curcumin [232]. These
results suggest that simultaneously targeting glutamine metabolism in line with curcumin
treatment may represent a promising strategy regarding at least adrenocortical carcinoma.

In the colon cancer model, the (P-gp)-mediated multidrug resistance was closely
associated with spermine and spermidine synthesis and glutamine metabolism. Curcumin
suppressed these metabolic alterations, which, in turn, mitigated the antioxidant response
and P-gp transport activity and eventually reversed multidrug resistance [233]. In another
research, curcumin preferentially targeted colon CSCs suppressing glutamine metabolism
in the CD44+ cell population [234]. It was shown that curcumin induces the expression
of miR-137, which directly targets glutaminase mRNA [235]. This attenuated glutamine
metabolism and sensitized colorectal cancer cells to cisplatin.

Beyond glucose and glutamine metabolism, curcumin possesses a high potential to
target the metabolism of lipids, including lipogenic enzymes FASN, ACC, and ACLY, as
well as their transcriptional regulators, SREBP1 [236]. Thus, curcumin down-regulated
both the expression level and enzymatic activity of FASN in hepatocellular (HCC) [237]
and breast [238,239] carcinoma. In HCC murine model, curcumin significantly enhanced
sorafenib activity, increased the amount of CD4+ T-cells and NK-cells, down-regulated
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p-PI3K/p-Akt, HIF1α, FASN, SREBP1, and CPT1a. Moreover, the computer modeling
proposed the potential binding of curcumin with FASN, STAT3, and AKT [240].

In addition, a wealth of data on curcumin down-regulating lipid metabolism comes
from studies on adipocytes, hepatics, and other non-tumor cells and tissues. For instance,
curcumin suppressed genes involved in cholesterol biosynthesis, FASN, ACC, SREBP1, and
PPARγ [236].

In another study, Yang and colleagues developed nanoparticles carrying curcumin,
which efficiently targeted both PKM2 and FASN and attenuated energy metabolism in
breast cancer cell models [241].

Table 5. Curcumin-mediated impact on metabolic pathways in cancer models.

Metabolic
Pathway Affected

Related
Targets

Type of
Neoplasia Description Reference

Glycolysis HIF1α
PKM2

Cancer cell lines
of different
origin

Decreased glucose
uptake, lactate
production, and protein
levels of HIF1α
and PKM2

[228]

Glycolysis GLUT1/3MCT1/4
HIF1α

Hepatocellular
carcinoma

Suppressed glucose
uptake, lactate
production, expression
of GLUT1/3, MCT1/4,
HIF1α, mTOR, STAT3,
and multidrug
resistance protein
MDR-1

[229]

OXPHOS ATP synthase Breast cancer

Suppressed the activity
of ATP synthase, ATP
level, and ATP/AMP
ratio both in vitro and
in vivo

[230]

OXPHOS Breast cancer

Increased glucose
uptake, lactate
production, and HK
activity but suppressed
respiration and
cell growth

[231]

Metabolism of
glutamine GLS1 Colon cancer

Induces miR-137
expression, which
directly targets GLS1

[235]

De novo
lipogenesis FASN Hepatocellular

carcinoma

Down-regulated both
expression level and
enzymatic activity
of FASN

[237]

De novo
lipogenesis FASN Breast cancer

Down-regulated both
expression level and
enzymatic activity
of FASN

[238]

De novo
lipogenesis FAO

FASN
SREBP1 CPT1a

Hepatocellular
carcinoma

Down-regulated
p-PI3K/p-Akt, HIF1α,
FASN, SREBP1 and
CPT1α in murine
cancer model

[240]

Arctigenin. Arctigenin (Arc) is a lignan (Figure 11) that is found in Arctium lappa,
which possesses antioxidant, anti-inflammatory, antiviral, and anticancer activities [242].
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A broad spectrum of antineoplastic properties was shown for this compound in various
neoplasia [243].
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In different cancer models, Arc suppressed EGFR- and Her2-mediated signaling cas-
cades [244,245], Akt/mTOR- [246], and STAT3/β-catenin-dependent pathways [247,248]. It
induces cell cycle arrest, apoptosis, and autophagy, suppresses metastasis and angiogenesis,
and sensibilizes malignant cells to chemotherapeutics [249,250].

In contrast to other compounds reviewed, Arc does not inhibit glycolysis. However, it
suppressed OXPHOS and lipid metabolism (Table 6). In the lung cancer cell model, Arc
inhibited mitochondrial respiration and ATP production. It also synergized with 2-DG to
induce preferential cell death of cancer but not normal cells [251]. The inhibitory effect of
Arc on respiration was also shown for pancreatic cancer. Brecht and colleagues revealed
that, mechanistically, Arc targets mitochondrial chain complexes II and IV and selectively
kills only the OXPHOS-dependent pancreatic cancer cells [252]. It should be noticed that
Arc targets respiratory chain complex I in skeletal muscles, which induces AMPK activation
and has beneficial effects on metabolic disorders in obese mice models [253].

Table 6. Arctigenin-mediated impact on metabolic pathways in cancer models.

Metabolic
Pathway Affected Related Targets Type of

Neoplasia Description Reference

OXPHOS Lung cancer
Inhibited mitochondrial
respiration and ATP
production

[251]

OXPHOS

Mitochondrial
chain
complexes II
and IV

Pancreatic
cancer

Inhibited mitochondrial
chain complexes II and
IV and selectively killed
only the
OXPHOS-dependent
cancer cells

[252]

FAO CPT1

Colitis-induced
colorectal
cancer mouse
model

Down-regulated NLRP3
inflammasome, CPT1
and FAO in
macrophages; inhibited
cancer development

[254]

FAO PPARγ and
C/EBPα

Non-cancer cell
model
(adipocytes)

Down-regulated PPARγ
and C/EBPα and FAO [255]

Brecht and colleagues have shown that Arc-mediated targeting of the OXPHOS-
dependent pancreatic cancer cells was accompanied by ER stress induction (increase in
GRP78, CHOP, and ATF4) [252]. However, under glucose deprivation conditions, Arc was
able to suppress the unfolded protein response by GRP78, GRP94, and ATF4 decrease [256].
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Different types of antineoplastic therapy induce ER stress. Unfolded protein response
mediators, such as GRP78, PERC, CHOP, ATF4, and others, are responsible for ER stress
mitigation, which leads to the survival of malignant cells. Thus, targeting ER stress proteins
is now considered an antineoplastic approach [257,258].

Collectively, these data suggest the potential use of Arc in combination with any com-
pounds targeting glycolysis and glucose uptake. The glucose deprivation and inhibition of
glycolysis induce both ER stress and respiration as an adaptation way to prevent deficiency
of energy [259,260]. As Arc suppresses respiration and ER stress upon glucose deficiency, it
may confer a synergistic effect with inhibitors of glucose uptake and glycolysis.

Arc may affect not only respiration but also has inhibitory activity toward the
metabolism of fatty acids. NLRP3 inflammasome plays an important role in the devel-
opment of colitis and colorectal cancer [261]. Qiao and colleagues have established a
mouse model of induced colorectal cancer and studied the potential therapeutic effect
of Arc [254]. They observed Arc-mediated down-regulation of NLRP3 inflammasome
activity and β-oxidation of fatty acids in macrophages. Mechanistically, the metabolomic
and metabolic assays revealed that Arc decreased FAO, suppressed expression level, and
enzymatic activity of CPT1 [254]. Thus, Arc prevented the progression of colitis and
protected against colon carcinogenesis.

In another study, Arc was shown to down-regulate peroxisome proliferator-activated
receptor-gamma (PPARγ) and CCAAT/enhancer-binding protein-alpha (C/EBPα) in dif-
ferentiated adipocytes, which also implies the inhibitory activity of this natural compound
on fatty acid metabolism [255].

A number of studies reported the negative impact of Arc on the Akt/mTOR path-
way, which boosts anabolic processes in malignant cells. Arc down-regulates Akt and
mTOR phosphorylation and induces autophagy in prostate, breast, hepatic cancer, and
glioblastoma [248,262–264].

5.3. Shikonin

Shikonin, a naphthoquinone compound extracted from the root of Lithospermum
erythrorhizon (Figure 12).
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In malignant cells, shikonin suppressed ERK and β-catenin-mediated signaling [265],
up-regulates p21 and arrests cells in G2/M [266], targets cell division cycle 25 (Cdc25)
phosphatases [267], induces apoptosis via activation of FOXO3a/EGR1/SIRT1 [268]. Also,
it has a negative impact on cancer metabolism (Table 7).

In lung cancer cells, shikonin suppressed PFKB at both mRNA and protein levels.
It down-regulated proliferation, migration, invasion, glucose uptake, ATP, and lactate
production in doses of 10–50 µM, as well as increased the number of apoptotic cells [269].

Chen et al. have studied the inhibitory activity of shikonin on a set of glycolytic
enzymes in the cell extract derived from MCF7 breast cancer cells [270]. The authors carried
out a 1 h incubation of cells with shikonin followed by the measurement of enzymatic
activity. Interestingly, the concentration of shikonin inside cells was higher than its extra-
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cellular concentration, which means that cells may accumulate shikonin. IC50 values for
enzyme inhibition were 9.7, 17.2, 96.8, 89.5, and 12.2 µM for HK, PFK-1, PGI, PGK, and PK,
respectively [270].

However, first of all, shikonin is known as a PKM2 inhibitor. Shikonin was shown to
significantly inhibit in vitro and in vivo growth of tumor cells in orthotopic mice models—
Lewis carcinoma and B16 melanoma [271]. In these systems, shikonin ameliorated PKM2
phosphorylation but did not alter its protein level. Shikonin reduced glucose uptake, and
lactate production induced apoptosis in doses of 10–20 µM [271].

In esophageal squamous cell carcinoma patient-derived xenografts, shikonin down-
regulated p-PKM2, HK, GLUT1, and p-STAT3, glucose uptake, and lactate production,
which was accompanied by suppression of tumor growth [272].

Cisplatin-based chemotherapy is often overcome in bladder cancer. However, shikonin
was reported to be able to overcome cisplatin resistance, which was dependent on the
inhibitory effect on PKM2 and aerobic glycolysis [273].

In addition, shikonin prevents di- and tetramerization of PKM2 in macrophages, which
ameliorates colitis in mice [274].

Noteworthy, shikonin suppressed the growth of cholangiocarcinoma cells and induced
apoptosis of up to 70% in a dose of 0.5–1.5 µM, which means that these types of tumors may
be extremely susceptible to this compound [275]. In colorectal cancer, shikonin inhibited
HIF-1α protein synthesis without affecting the expression of HIF-1α mRNA or degrading
HIF-1α protein, which leads to inactivation of mTOR/p70S6K/4E-BP1/eIF4E [276].

Beyond the energy metabolism, shikonin is reported to suppress the important enzyme
of amino acid metabolism—PYCR1, in T cell leukemia/lymphoma, which, in pair with
ALDH18A1, makes proline from glutamate. This was associated with up-regulation of
autophagy and apoptosis [277]. It is noteworthy that PYCR1, together with ALDH18A1,
are the two most overexpressed enzymes among 19 tumor types and the most up-regulated
genes in hepatocellular carcinoma [278].

Chen and colleagues have also shown that even 1 µM of shikonin was sufficient to
down-regulate more than 50% of colon carcinoma cells. The authors have coupled transcrip-
tomic and metabolomic data and demonstrated that purine and pyrimidine metabolism,
as well as arginine biosynthesis and metabolism of other amino acids, were affected by
shikonin intervention. Furthermore, supplemental dNTPs and arginine rescued shikonin-
induced cytotoxicity [279]. These results suggest a global negative impact of shikonin on
cancer metabolic networks.

Table 7. Shikonin-mediated impact on metabolic pathways in cancer models.

Metabolic
Pathway Affected

Related
Targets

Type of
Neoplasia Description Reference

Glycolysis PFK Lung cancer
Down-regulated PFK,
ATP, and lactate
production

[269]

Glycolysis HK, PFK, PGI,
PGK, PK Breast cancer

Down-regulated a
number of glycolytic
enzymes

[279]

Glycolysis PKM2
Lung cancer
and melanoma
mouse models

Inhibited PKM2
phosphorylation,
glucose uptake, and
lactate production

[271]

Glycolysis GLUT1, PKM2,
HK

Esophageal
squamous cell
carcinoma

Reduced the number of
glycolytic enzymes,
glucose uptake, and
lactate production

[272]
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Table 7. Cont.

Metabolic
Pathway Affected

Related
Targets

Type of
Neoplasia Description Reference

Glycolysis HIF-1α Colorectal
cancer

Inhibited HIF-1α
protein synthesis;
inactivated
mTOR/p70S6K/4E-
BP1/eIF4E
axis

[276]

Amino acid
metabolism PYCR1 T cell leukemia/

lymphoma

Down-regulated PYCR1,
which is involved in
proline synthesis

[277]

Biosynthesis of
nucleotides and
amino acids

Colon
carcinoma

Interfered with purine
and pyrimidine
metabolism, as well as
arginine biosynthesis

[279]

5.4. Betulinic Acid

Betulinic acid is a pentacyclic triterpene of the lupane type derived from birch bark
extracts (Figure 13). Dozens of studies have demonstrated the potential of BA to treat
malignancies and immunological disorders [280,281]. In cancer cells, BA induced ROS
production and autophagy, activated the mitochondrial apoptotic pathway, and inhibited
EMT [282].
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BA hampered the intensity of glycolysis, glucose uptake, and lactate production and
suppressed c-Myc, LDHA, and PDK1 in breast cancer cells [283] (Table 8). In human
melanoma cells, BA decreased both glycolysis and respiration in a dose-dependent man-
ner [284]. Regarding breast cancer, BA also suppresses glycolysis and the development
of metastasis in vivo. Mechanistically, it prevents the interaction of glucose-regulated
protein 78 (GRP78) with the endoplasmic reticulum stress sensor (PERP), which leads to the
inhibition of β-catenin and c-Myc expression, as well as c-Myc-mediated glycolysis [285].
In lung cancer cells, BA also down-regulated c-Myc and cancer stem cell markers CD133
and ALDH [286]. In the other study, BA suppressed aldolase, enolase, LDHA, and PKM2
in colorectal cancer [287].

Besides glycolysis, BA is shown to negatively regulate the metabolism of glutamine
and lipids. In recent studies, BA-loaded liposomes efficiently targeted glycolysis, glu-
taminolysis, and fatty acid metabolism. In the research of Wang and colleagues [287], such
liposomes suppressed proliferation and glucose uptake, decreased glycolytic enzymes HK2,
PFK-1, PEP, and PKM2 as well as an important enzyme of fatty acids biosynthesis—ACSL1,
and the rate-limiting FAO enzyme—CPT1a.
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It was also shown that BA directly inhibits glutaminase with IC50 of 0.31 mM, although
this concentration seems rather high [288].

Although no information is available for malignant cells yet, a couple of papers
describe that BA lowers lipid accumulation in adipocytes by modulating PPARγ [289,290].
However, the potential impact of BA on lipid metabolism in cancer remains to be addressed.

Table 8. Betulinic acid-mediated impact on metabolic pathways in cancer models.

Metabolic
Pathway Affected

Related
Targets

Type of
Neoplasia Description Reference

Glycolysis c-Myc
LDHA Breast cancer

Decrease in c-Myc,
LDHA, and PDK1;
down-regulation of
glycolysis

[283]

Glycolysis
OXPHOS Melanoma

Dose-dependent
down-regulation of
glycolysis and
respiration

[284]

Glycolysis
GRP78,
β-catenin,
c-Myc

Breast cancer

Interferes with
GRP78/PERP
interaction, decreases
β-catenin and c-Myc
expression, suppresses
glycolysis

[285]

Glycolysis
HK2 PFK-1
PKM2 ACSL1
CPT1A

Colorectal
cancer

Liposome-loaded BA
decreased proliferation,
glucose uptake,
suppressed enzymes
indicated

[291]

Glutaminolysis GLS In vitro study Direct inhibition of GLS
(IC50 = 0.31 mM) [288]

Glycolysis c-Myc Lung cancer

Suppressed c-Myc,
cancer stem markers
ALDH, CD133, and
anti-apoptotic proteins
Bcl2 and Mcl1

[286]

5.5. Cucurbitacins

Cucurbitacins are groups of tetracyclic triterpenoid compounds produced by mem-
bers of the Cucurbitaceae family, including cucumber, pumpkin, melon, and watermelon
(Figure 14). These compounds attract attention by their anticancer, anti-inflammatory,
antiviral, antimicrobial, hyperglycemic, antioxidant, and hepatoprotective properties in
humans (reviewed in [292]). Cucurbitacin B (CucB) has been used in Chinese medicine in
the form of tablets.

According to the literature data, they confer strong antineoplastic effects regarding
different types of malignancies—breast, lung, prostate, pancreatic, gastric, etc. [293], neg-
atively affecting Jack/STAT, NFκB, PI3K/Akt/mTOR, MAPK/ERK, and Wnt/β-catenin
signaling pathways [292]. A number of studies have shown cucurbitacin-mediated sen-
sitization of neoplastic cells to anticancer therapeutics, including doxorubicin, paclitaxel,
dodetaxel, cisplatin, irinotecan, gemcitabine, and methotrexate (summarized in [294]).
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In prostate cancer, cucurbitacin D in sub-micromolar concentration decreased glucose
uptake and lactate production and reduced AKT, GLUT1, and the c-Myc protein level
(Table 9). It mediated G2/M cell cycle arrest and apoptosis and attenuated the growth
of xenografts [295]. In another research on prostate cancer, cucurbitacin B also reduced
xenograft growth and induced apoptosis, which was dependent on CucB-mediated down-
regulation of ACLY phosphorylation [296]. Ji and colleagues investigated the impact of
CucB on tumor metabolism of c-Met/AKT-overexpressing hepatocellular carcinoma in mice.
They observed the inhibitory activity of CucB on several metabolic networks, including de
novo lipogenesis. CucB suppressed the activity of AKT and mTOR, glycolytic enzymes
HK2 and PKM2, down-regulated SPEBP1, and its two main transcriptional targets—FASN
and ACC [297].

In breast cancer cells, CucB inhibited the expression of telomerase (hTERT) and c-
Myc [298]. Interestingly, in other research on breast cancer, the authors have reported that
CucB significantly elevated the level of DNMT1 and induced extensive methylation of the
promoter regions of c-Myc, cyclin D1, and survivin genes, resulting in the down-regulation
of these oncogenes and suppression of the growth of cancer cells [299].



Antioxidants 2023, 12, 2012 28 of 52

Table 9. Cucurbitacins-mediated impact on metabolic pathways in cancer models.

Metabolic
Pathway Affected

Related
Targets

Type of
Neoplasia Description Reference

Glycolysis GLUT1
c-Myc Prostate cancer

0.1–1 µM CucD
inhibited glucose
consumption and
lactate production

[295]

De novo
lipogenesis ACLY Prostate cancer

0.3 µM CucB inhibited
xenograft growth in an
ACLY-dependent
manner

[296]

Glycolysis
De novo
lipogenesis

mTOR
HK2
PKM2
SPEBP1
FASN ACC

Hepatocellular
carcinoma

CucB down-regulates a
number of metabolic
enzymes in
AKT/c-Met-induced
HCC mice

[297]

Glycolysis c-Myc
cyclin D1 Breast cancer

CucB induced
DNMT1-mediated
methylation of c-Myc
and cyclin D1 promoters

[299]

Glycolysis c-Myc
Laryngeal
carcinoma stem
cells (LCSCs)

CucE decreased c-Myc,
ABCG2, and P-gp
in LCSCs

[300]

Glycolysis HIF-1α Cervical
carcinoma

CucB inhibited HIF-1α
protein synthesis
without any impact on
the transcriptional level
both in vitro and in vivo

[301]

The treatment of osteosarcoma cell lines with cucurbitacin I inhibited STAT3 signaling
and decreased the expression of cyclin D1, Mcl-1, c-Myc, and survival [302].

Jiang and colleagues have studied the influence of CucE on the properties of laryngeal
carcinoma stem cells (LCSCs) [300]. The authors have shown that treatment with CucE
significantly decreased the invasion potential of LCSCs and suppressed xenograft growth
a quarter more effectively than doxorubicin, as well as enhanced doxorubicin-mediated
toxicity. Moreover, CucE decreased the protein level of c-Myc and multidrug resistance pro-
teins ABCG2 and P-gp, which are referred to as LCSC markers [300]. Besides c-Myc, CucB
was shown to inhibit HIF-1α protein synthesis without any impact on the transcriptional
level in cervical carcinoma cells both in vitro and in vivo. This effect was accompanied by
the inactivation of ERK1/2, mTOR, and its down-stream effectors: ribosomal protein S6
kinase (p70S6K) and eukaryotic initiation factor 4E-binding protein-1 (4E-BP1) [301].

In non-small cell lung adenocarcinoma cells, cucurbitacin B induced the lysosomal
degradation of EGFR in a dose of 0.01–0.1 µM and strongly suppressed xenograft growth.
This effect is of high translational value because mutant EGFR confers constitutive prolifer-
ation to cancer cells and is resistant to standard anti-EGFR therapies, creating problems
for lung cancer therapy. By being active at the level of EGFR lysosomal degradation, CucB
may effectively target cancer cells bearing either wild-type or mutant EGFR [303].

5.6. Ginsenosides

Ginsenosides is a group of compounds that are principally responsible for the medical
attributes of ginseng—one of the most popular plants of traditional medicine. Regarding
chemical structure, ginsenosides are steroidal saponins with a triterpenoid dammarane
nature, having a four-ring, steroid-like configuration with sugar moieties conjugated
(Figure 15). About 100 different ginsenosides have been isolated from roots, stems, and
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leaves of Panax species, and notably, 10 of them are characterized and possess well-known
pharmacological properties [304,305].
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Dozens of studies have been published that reveal ginsenoside’s potential to treat
diabetes [306], inflammatory [307], and neurodegenerative [308] diseases and cancer [305].
Ginsenosides exercised antineoplastic properties in multiple ways, including inactivation
of EGFR, Akt, ERK, and STAT3 signaling, inhibition of EMT markers, migration, invasion,



Antioxidants 2023, 12, 2012 30 of 52

and angiogenesis. Also, they can reverse multidrug resistance induced by MDR1 and MRP1
and induce autophagy, ROS, and apoptosis (reviewed in [309,310]).

Different ginsenosides target metabolic rewiring in neoplastic cells [310] (Table 10).
A number of studies reported about ginsenosides-mediated down-regulation of PI3K/
AKT/mTOR pathway and glycolysis. In a rat model, Rg3 mitigates gastric precancerous
lesions by reducing angiogenesis. Mechanistically, it down-regulated VEGF, GLUT1,
and GLUT4 in both the rat model and human gastric cancer cells [311]. In hepatocellular
carcinoma cells, Rg3 significantly enhanced the activity of sorafenib. The Rg3/sorafenib
combinational treatment attenuates p-PI3K, p-Akt, and HK2 [312].

Table 10. Ginsenosides-mediated impact on metabolic pathways in cancer models.

Metabolic
Pathway Affected Related Targets Type of

Neoplasia Description Reference

Glycolysis GLUT1
GLUT4 Gastric cancer

Rg3 down-regulated
GLUT1/4 and VEGF
both in vitro and in vivo

[311]

Glycolysis

GLUT1
HK2
PFKL PKM2
LDHA

Esophageal
carcinoma

Rh4 reduced the
number of glycolytic
enzymes

[313]

Glycolysis GLUT1
PKM2 LDHA

Non-small cell
lung cancer

Rh2 STAT3/c-Myc axis,
which reduced GLUT1,
PKM2, LDHA, and
suppressed EMT

[314]

Glycolysis
HK2
PKM2
c-Myc

Hepatocellular
carcinoma

Compound K (CK)
attenuated the
AKT/mTOR/c-Myc
axis, leading to HK2 and
PKM2 down-regulation

[315]

Glycolysis
HIF1α
GLUT1, HK2,
LDHA

Hepatocellular
carcinoma

Compound K (CK)
down-regulated HIF1α,
GLUT1 and key
glycolytic enzymes
under hypoxia

[316]

Glycolysis HIF1α
HK2 Ovarian cancer

Rh3 inhibited glycolysis
thought
DNMT3A-mediated
DNA methylation in
promoter region of
miR-519a-5p, which
targets HIF1α

[317]

Glutamine
metabolism

c-Myc
GLS1

Hepatocellular
carcinoma

Rk1 suppressed
ERK/c-Myc/GLS1 axis [318]

Glutamine
metabolism

c-Myc
ASCT2
GLS1
GLUD1

Triple-negative
breast cancer

Compound K (CK)
inhibited
glutaminolysis;
decreased glutamate,
proline, aspartate,
asparagine, ATP, and
glutathione production

[319]

In esophageal carcinoma, ginsenoside Rh4 in a dose of 20–60 µM was able to decrease
the protein level of GLUT1, HK2, PFKL, PKM2, LDHA, p-Akt, and p-mTOR. This ob-
servation was associated with a decrease in both glycolysis and respiration levels, ATP,
and lactate production [313]. In NSCLC, ginsenoside Rh2 targeted the STAT3/c-Myc axis,



Antioxidants 2023, 12, 2012 31 of 52

which resulted in GLUT1, PKM2, and LDHA inhibition and was associated with EMT
suppression and apoptosis induction [314].

Another ginsenoside, compound K (CK), attenuated AKT/mTOR/c-Myc signaling in
hepatocellular carcinoma, which also led to HK2 and PKM2 suppression and apoptosis [315].

Besides the AKT/mTOR/c-Myc axis, ginsenosides suppressed HIF1α-dependent
pathways. In hypoxic hepatoma cells and xenografted models, ginsenoside CK in a dose
of 20–60 µM down-regulated the protein level of HIF1α, glycolysis, GLUT1, glycolytic
enzymes HK2, and LDHA, as well as PDK1 [316]. In ovarian cancer, ginsenoside Rh3
up-regulates miR-519a-5p, which, in turn, targets HIF1α. It inhibits DNMT3A-mediated
DNA methylation in the promoter region of miR-519a-5p [317].

Ginsenoside Rk1 suppressed ERK/c-Myc signaling, down-regulated glutaminase
GLS1, and decreased glutathione production, which stimulates ROS and apoptosis in
hepatocellular carcinoma [318].

Another report about ginsenoside’s impact on glutamine metabolism comes from
triple-negative breast cancer. Zhang and co-authors have reported that the treatment
with ginsenoside CK down-regulates glutamine transporter ASCT2, glutaminase GLS1,
glutamine dehydrogenase GLUD1 (GDH), and their transcriptional regulator c-Myc at
both mRNA and protein levels [319]. In line with the glutamine uptake and glutaminolysis
suppression, CK increased the glutamine level and decreased glutamate, proline, aspartate,
and asparagine. Moreover, CK inhibited ATP and glutathione production, hence increasing
ROS [319].

There is also evidence about ginsenosides-mediated potential negative impact on lipid
metabolism. Thus, ginsenosides Rb1, Rg1, Rg3, and CK reduce intracellular cholesterol and
promote cholesterol efflux in glioblastoma cells, which interferes with lipid rafts distribution
on membranes and reverses temozolomide resistance [320]. Regarding lipid metabolism in
non-cancer models, ginsenosides are known to suppress FASN and SREBP1 [321,322].

Thus far, we have discussed several plant-derived natural compounds that negatively
affect various metabolic pathways in malignancies. The summarizing diagram of how
these compounds impact different biochemical pathways is shown in Figure 16.
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6. The Bioavailability and Safety of Compounds Reviewed

Despite the prominent antineoplastic properties of natural compounds, their transla-
tion to human studies and therapy is frequently limited due to their low bioavailability.
Bioavailability is the fraction of an ingested substance that is absorbed by the body and is
available for participation in physiological activities. It is derived from absorption, distribu-
tion, metabolism, and excretion (ADME). Low water solubility is one of the main challenges.
Metabolism of compounds includes mainly intestine (by both microbiota and enterocytes)
and liver metabolism. Generally, there are phase I and phase II drug-metabolizing enzymes,
including cytochrome P (CYPs) and UDP-glucuronosyltransferases (UGTs) [7,323].

Normally, the bioavailability and bioactivity of a certain compound may be improved
by the use of either bioenhancers or drug carrier systems, which may include liposomes,
silver or silica nanoparticles, PLGA (poly-lactic-co-glycolic acid), PLA (poly(D,L-lactic
acid)) nanoparticles, polymeric micelles, chitosan nanoparticles, and other types [324]. For
instance, self-microemulsifying drug delivery systems (SMEDDSs) are frequently devel-
oped, which are isotropic mixtures of oils, surfactants, or (alternatively) co-surfactants and
co-solvents. The application of SMEDDSs significantly improved the stability, effectiveness,
peak drug concentration (Cmax), and area under the curve (AUC) values of curcumin,
quercetin, and resveratrol [325].

At least one clinical trial with control phase III significant results is required for the
Food and Drug Administration (FDA) and the Europe Medicine Agency (EMA) to launch
the compound into clinical use [7,326]. Even the widely consumed substances may display
a hazardous toxicity level when they are ingested in increased doses. For example, serious
hepatotoxicity occurred in people who consumed excessive amounts of green tea or its
extracts as dietary supplements.

Thus, to translate into therapeutics, all-natural compounds should be studied in a
panel of preclinical and clinical trials regarding their safety. Below, we briefly discuss the
bioavailability and safety properties of the natural compounds reviewed.

Kaempferol. Kaempferol has low water solubility, bioavailability, and absorption [164].
Thus, the intake of 15 mg of kaempferol in humans resulted in a plasma concentration
of 58 nM [327]. However, experiments in rats revealed an extremely short half-life of
kaempferol, which was about 4 min [328].

To address the poor bioavailability, kaempferol-carrying nanoparticles were developed,
which have both in vitro and in vivo increased antineoplastic activity toward hepatocellular
carcinoma [329,330].

Quercetin. Although a number of studies have shown a direct link between ingested
quercetin and its beneficial biological activities in humans (summarized in [331]), its
bioavailability is often limited by poor water solubility and chemical stability in foods
and the human gut [332]. Thus, different encapsulation technologies have been applied to
improve quercetin bioavailability (reviewed in [333,334]). For instance, recently, quercetin-
loaded PLGA nanoparticles were developed which efficiently targeted mammary adeno-
carcinoma in rats [335].

There are four clinical studies on quercetin safety (reviewed in [331]). In all of them,
quercetin was ingested as aglycone; a single dose ranged from 150 to 5000 mg. Only a small
increase in TNF-α was reported in one study [336], whereas other studies have reported no
significant side effects [331]. Thus, quercetin has an FDA (Food and Drug Administration)
status “Generally Recognized as Safe (GRAS)” as a food supplement up to 500 mg per serving.

EGCG. Despite its hydrophilic nature, EGCG has a low oral bioavailability, which is
the lowest among other catechins. It has extremely low stability post digestion, with <10%
available for absorption [337]. Interestingly, the use of green tea with milk, ascorbic acid,
or juices significantly ameliorates EGCG bioavailability. Besides low stability, metabolism,
and biotransformation, which occur in the mouth, intestine, and liver, further decrease
bioavailability [338]. Despite this, several studies have shown that taking the decaffeinated
green tea extracts in capsules—Polyphenon E, Teavigo®, and FontUp®, which represent a
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catechin mixture on an empty stomach after an overnight fast may enhance bioavailability
and lead to its significant blood concentrations [339,340].

However, nano-delivery systems that significantly improve EGCG bioavailability and
bioactivity have been developed, including different types of nanoparticles, nanoemulsions,
and nanoliposomes [210,341].

Several clinical studies confirmed the safety of EGCG [342,343]. However, high doses
(more than 800 mg) can be associated with hepatotoxicity [344–346]. The daily intake
of doses equal to or above 800 mg EGCG may be associated with a significant increase
in serum transaminases [347], whereas up to 704 mg EGCG/day consumed in beverage
form or 338 mg EGCG/day ingested as a concentrated solid bolus dose is considered as
safe [348].

Resveratrol. Resveratrol exists in two geometrical isomers—the trans- and -cis forms.
The cis- form arises from the -trans one by isomerization under UV light and high pH [349].
Whereas generally, the -trans form of resveratrol is sought to be more biologically active, the
-cis form may also have beneficial properties that are not similar to the -trans isoform [350].

Despite about 70% of resveratrol absorption and a peak plasma concentration of 2 µM
after administration of 25 mg, it has low bioavailability due to extensive metabolism in
both the intestine and liver, which results in sulfate and glucuronic acid conjugation and
hydrogenation of the aliphatic double bond [351,352]. The dose escalation up to 5 g led
to the increase in unchanged resveratrol up to 530 ng/mL [353]. In order to increase its
bioavailability, a couple of dozen resveratrol nanoformulations have been developed, which
efficiently suppress tumor growth [354,355].

A number of clinical studies have provided evidence about the safety of resvera-
trol [349,356,357]. Randomized clinical trials have shown that a daily intake of 500 mg
resveratrol was safe and improved body mass index and insulin secretion in patients with
diabetes [358,359]. Generally, resveratrol is well tolerated at doses of up to 5 g/day; how-
ever, mild to moderate side effects may occur at a dose of more than 1 g/kg [357]. Several
clinical studies (summarized in [179]) suggest that patients with colon, gastric, and hepatic
cancer may benefit from the administration of resveratrol.

Curcumin. As the major component of turmeric, curcumin has been used by people for
several millennia and is called the “wonder drug of life”. According to the Food and Drug
Administration (FDA) classification, turmeric is Generally Recognized as Safe (GRAS),
and the consumption of curcumin at a dose of 3 mg/kg body weight is permitted. Due to
its high biological activity and suitable safety, curcumin is now free-marketed as a food
supplement. It has been successfully studied in a dozen clinical trials (reviewed in [360]) to
treat various diseases, including cancers [361].

The disadvantage of curcumin is that it has a low bioavailability which is collectively
raised from low water solubility, limited gastrointestinal tract absorption, quick metabolism,
rapid systemic clearance, and restricted blood–brain barrier penetration [226].

To improve bioavailability, a number of adjuvants (EGCG, piperine) and curcumin
nanoformulations (nanoparticles, nanoemulsions, nanocomposite, hydrogels) were devel-
oped, including patented and commercially available ones (reviewed in [226,362]). For
instance, curcumin in the form of galactomannoside complex (CurQfen®) has a signifi-
cantly improved bioavailability, blood–brain barrier permeability, and cellular uptake and
demonstrates safety in clinical trials in a dose of ~380 mg of curcuminoids consumed by
healthy volunteers for 90 days [363,364].

Taking together high biological activity and suitable safety, it seems that curcumin has
big potential as an adjuvant in antineoplastic therapy.

Shikonin. The intake of 200, 400, and 800 mg/kg shikonin for several months by
Wistar rats did not elicit any toxicity [365]. In addition, none, or minor, adverse effects
were observed on Beagle dogs ingested 100–2000 mg/kg shikonin during 1–3 weeks [366].
Moreover, shikonin has been used in six clinical trials (summarized in [367]), half of which
were aimed at treating cancer and leiomyoma. However, shikonin is reported to be a
reversible inhibitor of UGT (UDP-glucuronosyltransferases) and may potentially display
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toxicity in drug–drug or food–drug interactions [368]. It may also inhibit members of the
cytochrome P450 family [369]. Generally, in vitro toxicity of shikonin is much higher than
in vivo [367], which may be attributed to its low bioavailability.

A number of nanodrug-carrying systems were developed to improve it. Albreht and
colleagues have shown that the solubility of shikonin can be increased up to 181-fold by
the addition of β-lactoglobulin [370]. On the other hand, the encapsulation of shikonin in
nanoparticles coated with saponin and sophorolipid significantly improved its solubility
and bioavailability [371]. In another research, shikonin was loaded to MPEG-PCL micelles
(methoxy poly (ethylene glycol)-b-poly (ε-caprolactone)) which effectively inhibited EMT
in endothelial model cells [372].

Furthermore, shikonin encapsulated in liposomes has displayed increased activity
in vivo (reviewed in [373]). Thus, hyaluronic acid-coated shikonin liposomes were prepared
for efficient targeting of TNBC (triple-negative breast cancer) cells through CD44-mediated
endocytosis [374]. In another study, membrane-camouflaged micelle loaded with shikonin
were developed to target TNBC tumors in mice [375].

Arctigenin. Arctigenin has a poor bioavailability and an extensive first-pass
metabolism [376]. The oral administration of 70 mg/kg arctigenin to rats led to its
tissue concentration peaking at 30 min and was quickly eliminated within 4 h. The
highest concentration of arctigenin was observed in the spleen, followed by the liver and
other organs [377]. In a clinical trial involving pancreatic cancer patients, the oral dose of
Arctium lappa extract GBS-01 at a dose of 12 g arctigenin per person, its peak concentration
in the plasma was 66.56 ± 26.81 ng/mL, with AUC487.97 ± 368.86 ng·h/mL [378].

The absorption, distribution, metabolism, and elimination of arctigenin in in vitro and
in vivo models and clinical trials are summarized in [376].

The safety of arctigenin remains not well studied yet. One work reports that it may be
toxic for breast non-tumor cells [379]. However, a phase I clinical trial of an arctigenin-rich
burdock fruit extract (GBS-01) was performed in 15 patients with advanced pancreatic
cancer refractory to gemcitabine. The authors reported that the dose of 4 g/day of GBS-
01 resulted in favorable clinical responses and no significant toxicity [378]. Moreover,
arctigenin was also studied in three other clinical trials, revealing its efficiency in treating
diabetic nephropathy [376].

Cucurbitacins. Cucurbitacin B is the most studied compound among all cucurbitacins,
and hence, the literature information about the bioavailability and safety of this compound
is the most comprehensive. Experiments with Wistar rats have shown that the oral bioavail-
ability of cucurbitacin B was 10%, with the highest concentration in plasma ranging from 1
to 100 ng/mL and reaching maximum value approximately within 30 min [380]. Moreover,
cucurbitacin B displayed a high tissue-to-plasma ratio, accumulating around 10-fold in
several organs. The maximum accumulation of cucurbitacin was observed in the lungs,
spleen, and kidneys, followed by the liver, stomach, and small intestine, and then the brain
and heart [381]. The intake of 8 mg/kg cucurbitacin B by Wistar rats resulted in a peak
drug concentration (Cmax) of 34.16 ± 2.91 ng/L [382].

As mentioned earlier, cucurbitacin B in its pure form had a median lethal dose of
~5 mg/kg (oral route) and 1 mg/kg (intraperitoneal) in mice, 0.5 mg/kg (intravenous) in
rabbits, and 0.32 mg/kg (intravenous) in felines. Cucurbitacin B in the form of tablets has
been used in China as an adjuvant for the treatment of chronic hepatitis and liver cancer
since the 1980s (reviewed in [383]). A number of clinical studies revealed that cucurbitacin
B -augmented the overall survival time in the hepatic cancer patients’ cohort, concomitantly
decreasing the hepatitis-associated clinical symptoms [384].

As far as we are aware, no specific clinical studies on cucurbitacin safety profiling
in humans have been described in the literature so far. No information on its acute and
prolonged toxicity is available either. Thus, intensive preclinical and clinical studies are
required to establish the safety profile and optimal doses of cucurbitacin B and other
cucurbitacins in mammals, including humans.
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Betulinic acid. Due to its triterpene nature, betulinic acid has a poor bioavailability.
Intraperitoneal injection of 500 mg/kg betulinic acid in the skin of mice resulted in Cmax
300.9 µg/mL, a half-life of 11.8 h, with significant accumulation in the ovary, spleen,
mammary gland, uterus, bladder, lymph node, and liver [385].

To improve bioavailability, different BA delivery systems were created, including
carbon nanotubes, magnetic and polymeric nanoparticles, conjugates, nanoemulsions, lipo-
somes, and cyclodextrins (reviewed in [281]). Thus, Saneja and colleagues have developed
BA-monomethoxy polyethylene glycol (mPEG) conjugate, which significantly improved
BA solubility and antitumor efficiency. BA-mPEG internalized and induced apoptosis in
hepatic cancer cells and was significantly superior in the reduction of tumors in Ehrlich
ascite carcinoma mice in comparison with unconjugated BA [386]. In addition, different
derivates of BA have been synthetized and evaluated [387,388]. For instance, modifica-
tions at positions C-3, C-20, and C-28 can improve water solubility without affecting its
pharmacological activity [282].

According to several studies, BA has no significant adverse effects, demonstrating
selective cytotoxicity against cancer cells [282]. It has been studied in several clinical
trials [387]; however, its clinical studies are limited first of all due to its poor water solubility.
As BA is a very promising antineoplastic compound, we are waiting for clinical trials
involving nanoformulated BA-based therapeutics.

Ginsenosides. Ginsenosides are characterized by the complex biotransformation
during and after their absorption. Generally, they have low aqueous solubility, poor
membrane permeability, and metabolic instability. Thus, their bioavailability is low and is
usually less than 10% (ranging from 0.3 to 25%) (reviewed in [389]). Li and colleagues have
shown that after oral administration of ginsenosides Rg1, Rb1, and Rd to rats, their highest
level was detected in the liver, lung, kidney, and spleen [390].

Micronization of ginsenoside Rh2 increased its bioavailability to the level of 32% [391].
Moreover, piperine may be an efficient enhancer of Rh2 bioavailability [392]. Moreover, a
plethora of nanoformulation technologies are applied to enhance ginsenosides’ bioavail-
ability and transform them into antitumor therapy [393].

In a randomized clinical trial, the volunteers received either red ginseng extract
or ginsenoside compound K (CK) with one conjugated glucose molecule (CK-30)—the
fermentation product of ginsenoside CK. When compared with the red ginseng extract, the
CK-30 displayed a 118.3-fold increase in Cmax [394].

Different studies have shown that ginsenosides are well tolerated and have a safety
profile [395–397]. According to Song et al., the daily intake of 2 g of Korean red ginseng for
24 weeks is safe [398].

7. Conclusions and Future Perspectives

In the present review, we discussed the anticancer properties and their mechanisms of
action for several natural compounds isolated from plants. Based on their wide-spread use
and multitarget specificity, these compounds may have a great potential to become novel
antineoplastic therapeutics. As mentioned earlier, all of them target multiple biochemical
and signaling pathways and meet the criterion of multitarget therapeutics. Moreover,
beyond the antitumor activity, all of these compounds display different beneficial phar-
macological properties in healthy tissues, including anti-inflammatory, cardio-, neuro-,
hepatoprotective, hypoglycemic, and more. These properties are of great value to cancer
patients undergoing chemotherapeutic intervention because they inevitably will face the
harmful off-target effects of chemotherapy, and these natural compounds may help negate
the unwanted consequences.

It can be inferred from the above studies that many of these compounds can sensitize
cancer cells to various therapeutics. Another possible approach is the combination of
compounds described to enhance their negative impact on multiple metabolic and signaling
pathways, which drive the development of malignancies.
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One of the main challenges to translating natural compounds to clinics is their low
bioavailability. However, there are numerous successful efforts described in the literature to
increase their bioavailability by nano-delivery systems or bioenhancers. Obviously, further
developments in this direction are absolutely necessary to transform natural compounds
into clinically available therapeutics.

All compounds discussed demonstrate a wide range of safety profiles. Many of
them have been studied in various clinical trials and/or are approved for use as dietary
supplements. However, for the majority of them, there is not enough data on their safety
and dozing to become full-fledged antineoplastic drugs.

By combining the development of nano-delivery systems suitable for these compounds
with comprehensive pre- and clinical studies, we would be able to unleash the great
potential of natural compounds to improve our efforts in fighting against cancer.
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Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; et al. Scientific opinion on the safety of green tea catechins. EFSA J.
2018, 16, e05239. [PubMed]

348. Hu, J.; Webster, D.; Cao, J.; Shao, A. The safety of green tea and green tea extract consumption in adults–results of a systematic
review. Regul. Toxicol. Pharmacol. 2018, 95, 412–433. [CrossRef]

349. Chimento, A.; De Amicis, F.; Sirianni, R.; Sinicropi, M.S.; Puoci, F.; Casaburi, I.; Saturnino, C.; Pezzi, V. Progress to improve oral
bioavailability and beneficial effects of resveratrol. Int. J. Mol. Sci. 2019, 20, 1381. [CrossRef] [PubMed]

350. VanAntwerp, I.R.; Phelps, L.E.; Peuler, J.D.; Kopf, P.G. Effects of trans-versus cis-resveratrol on adrenergic contractions of the rat
tail artery and role of endothelium. Physiol. Rep. 2021, 8, e14666. [CrossRef]

351. Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E.; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in
humans. Drug Metab. Dispos. 2004, 32, 1377–1382. [CrossRef]

352. Walle, T. Bioavailability of resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 9–15. [CrossRef]
353. Boocock, D.J.; Faust, G.E.; Patel, K.R.; Schinas, A.M.; Brown, V.A.; Ducharme, M.P.; Booth, T.D.; Crowell, J.A.; Perloff, M.; Gescher,

A.J. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent.
Cancer Epidemiol. Biomark. Prev. 2007, 16, 1246–1252. [CrossRef]

354. Sharifi-Rad, J.; Quispe, C.; Mukazhanova, Z.; Knut, E.; Turgumbayeva, A.; Kipchakbayeva, A.; Seitimova, G.; Mahomoodally,
M.F.; Lobine, D.; Koay, A. Resveratrol-based nanoformulations as an emerging therapeutic strategy for cancer. Front. Mol. Biosci.
2021, 8, 649395. [CrossRef]

355. Annaji, M.; Poudel, I.; Boddu, S.H.; Arnold, R.D.; Tiwari, A.K.; Babu, R.J. Resveratrol-loaded nanomedicines for cancer
applications. Cancer Rep. 2021, 4, e1353. [CrossRef]

356. Almeida, L.; Vaz-da-Silva, M.; Falcão, A.; Soares, E.; Costa, R.; Loureiro, A.I.; Fernandes-Lopes, C.; Rocha, J.F.; Nunes, T.; Wright,
L. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol. Nutr. Food
Res. 2009, 53, S7–S15. [CrossRef]

357. Patel, K.R.; Scott, E.; Brown, V.A.; Gescher, A.J.; Steward, W.P.; Brown, K. Clinical trials of resveratrol. Ann. N. Y. Acad. Sci. 2011,
1215, 161–169. [CrossRef]

358. Sergides, C.; Chirilă, M.; Silvestro, L.; Pitta, D.; Pittas, A. Bioavailability and safety study of resveratrol 500 mg tablets in healthy
male and female volunteers. Exp. Ther. Med. 2016, 11, 164–170. [CrossRef] [PubMed]

359. Méndez-del Villar, M.; González-Ortiz, M.; Martínez-Abundis, E.; Pérez-Rubio, K.G.; Lizárraga-Valdez, R. Effect of resveratrol
administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Metab. Syndr. Relat. Disord. 2014, 12, 497–501.
[CrossRef] [PubMed]
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