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Abstract: Alterations in DNA damage response (DDR) and related
genes are present in up to 25% of advanced prostate cancers (PCa).
Most frequently altered genes are involved in the homologous
recombination repair, the Fanconi anemia, and the mismatch repair
pathways, and their deficiencies lead to a highly heterogeneous
spectrum of DDR-deficient phenotypes. More than half of these
alterations concern non-BRCA DDR genes. From a therapeutic
perspective, poly-ADP-ribose polymerase inhibitors have demon-
strated robust clinical efficacy in tumors with BRCA2 and BRCA1
alterations. Mismatch repair–deficient PCa, and a subset of
CDK12-deficient PCa, are vulnerable to immune checkpoint
inhibitors. Emerging data point to the efficacy of ATR inhibitors in
PCa with ATM deficiencies. Still, therapeutic implications are
insufficiently clarified for most of the non-BRCA DDR alterations,
and no successful targeted treatment options have been established.
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A lterations in DNA damage response (DDR) and related
genes constitute one of the molecular hallmarks of

prostate cancer (PCa).1–3 Up to 25% of metastatic PCa
(mPCa) harbor DDR alterations, most frequently involving
the homologous recombination repair (HRR), the Fanconi
anemia (FA), and the mismatch repair (MMR)
pathways1,2,4–6 (Fig. 1). The most frequently altered genes in
mPCa are BRCA2 (9% to 13%), ATM (5% to 7%), CDK12
(≈5%), Fanconi Anemia Complementation Group A
(FANCA) (1% to 5%), MSH2 (≈ 2%), BRCA1 (1% to 2%),

and checkpoint kinase 2 (CHEK2) (1% to 2%),7–12 and ≈8%
of these alterations are germline.8 The HRR pathway plays
an essential role in the repair of DNA double-strand breaks
(DSBs), along with the error-prone nonhomologous end-
joining (NHEJ) pathway. While the HRR pathway is
mainly active in the S and G2 cell cycle phases, the NHEJ is
active during all phases of the cell cycle.4,13,14 DNA inter-
strand crosslinks (ICLs) and replication fork stalling are
resolved by the FA pathway in cooperation with nucleotide
excision repair, HRR, and translesion synthesis, while
nucleotide mismatches are resolved by the MMR
pathway.15,16 Decomposition by mutational signatures of
PCa tumor samples showed the relevant contribution of
several DDR-related single-base substitutions (SBSs) and
indel (ID) mutational signatures.3,12,17 In previous work, we
analyzed the prevalence of alterations in DDR genes in a
large PCa brain metastases cohort and could correlate the
presence of specific DDR-related SBS signatures (SBS44)
with underlying genomic alterations (MSH2 defects).12 In
the same cohort, a high representation (> 10% of mutations)
of the HRR defective SBS3 signature was identified.12 From
a therapeutic perspective, relevant efforts have been made to
target DDR alterations in mPCa. However, the most rele-
vant clinical benefit from poly (ADP-ribose) polymerase
inhibitors (PARPis) has been demonstrated for BRCA1- and
BRCA2-alterations.18–22 PARPis are synthetically lethal
with BRCA1/2 deficiencies, leading to the accumulation of
DNA single-strand breaks in cells with pre-existing deficient
DSB repair. For many other DDR alterations, including
ATM, responses to PARPi are less prominent and much
more heterogeneous, underlining their distinct impact on the
DNA repair phenotype. Moreover, for BRCA2- and
PALB2-deficiencies, higher efficacy of PARPis has been
observed for PCa tumors harboring biallelic alterations.19

Further, PCa tumors deficient for mismatch proteins [mis-
match repair–deficient (dMMR)] or with microsatellite
instability (MSI-high), and a subset of tumors with CDK12
deficiency, are vulnerable to treatment with immune
checkpoint inhibitors (ICIs). We aimed to review the most
common non-BRCA DDR genomic alterations in mPCa
and analyze their current and emerging clinical implications.

GERMLINE DNA DAMAGE REPAIR ALTERATIONS
IN PROSTATE CANCER

Most frequent germline alterations in PCa concern
DDR genes, including MMR genes. Previous studies iden-
tified the presence of germline alterations in around 8% of
PCa patients, most frequently occurring in BRCA2 (≅5%),
ATM (≅1%), and BRCA1 (< 1%).23 Further studies showed
even higher frequencies of genomic alterations, identifying
up to 17.2% of included patients (BRCA2, 4.7%; CHEK2,
2.9%; MUTYH, 2.4%; and ATM, 2.0%).24 On the other
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hand, germline variants are most frequently found for PCa
harboring genomic alterations in PALB2, CHEK2, BRCA1,
BRCA2, and ATM.25 For instance, a germline ATM

alteration is related to a 4-fold increase in PCa risk.26

Moreover, higher variant allele frequencies in next-gen-
eration sequencing results increase the probability of an

FIGURE 1. DNA repair pathways most frequently altered in prostate cancer. Most frequent DDR genomic alterations in prostate cancer
concern genes involved in the homologous recombination repair pathway (BRCA2, BRCA1, ATM, PALB2, CHEK2), in the Fanconi Anemia
pathway (FANCA), and the mismatch repair pathway (MSH2, MSH6). Schematic representation of the (A) HRR and FA pathways and (B)
NHEJ and MMR pathways. DDR indicates DNA damage response; FA, Fanconi anemia; FANCA, Fanconi Anemia Complementation Group
A; HRR, homologous recombination repair; MMR, mismatch repair; NHEJ, nonhomologous end joining.
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underlying germline alteration.25 HOXB13 is another gene
in which germline alterations lead to an increased risk of
PCa and are related to familial PCa.27 In the Cancer
Genome Atlas cohort, which included samples from local-
ized PCa, the frequency of germline alterations was lower
(4.6%).10

Following current NCCN and ESMO guidelines,
patients with tumors with pathogenic or likely pathogenic
mutations in BRCA1, BRCA2, ATM, PALB2, and CHEK2,
as well as Lynch syndrome-associated genes, should
undergo germline counseling and/or testing.28,29

MOLECULAR LANDSCAPE OF NON-BRCA DNA
DAMAGE RESPONSE ALTERATIONS IN

PROSTATE CANCER

Homologous Recombination Repair and
Nonhomologous End-joining Pathways

Ataxia Telangiectasia Mutated
Ataxia telangiectasia mutated (ATM) is a protein

kinase crucial in DSB signaling, whose activation leads to
the amplification of the DNA damage signal resulting in
stimulation of the HRR and the NHEJ pathways.30 ATM
activation is induced by DNA DSBs and the resulting
recruitment of the MRN complex (MRE11, RAD50, and
NBS1) to the site of the damage promotes HRR. However,
other DNA lesions, such as single-strand break, top-
oisomerase I cleavage complexes,31 and complex cellular
events, such as oxidative stress32 eventually lead to ATM
activation. When activated, the ATM homodimer under-
goes monomerization, promoting the initial stages of DNA
resection through the CtBP-interacting protein (CtIP) in
collaboration with the MRN complex. Along the HRR
pathway, ATM interacts with multiple other key compo-
nents, including EXO1 and BRCA1, and PALB2. Besides
HRR, ATM is also activated in the context of the NHEJ
pathway. Upon recognition of the DNA DSBs by the Ku
heterodimer (Ku70-Ku80), DNA pyruvate kinase catalytic
subunits (DNA PKcs) are recruited to the DNA damage
foci. These DNA PKcs are phosphorylated by ATM,
stimulating the DNA repair process. On the other side,
DNA PKcs also phosphorylate ATM, repressing its inter-
action with the MRN complex.33 ATM also regulates the
TP53 binding protein 1 (53BP1), which governs the DNA
end resection and promotes NHEJ in favor of the HRR
pathway.33,34 Preclinical studies have shown that NHEJ-
dependent DSB repair is impaired in ATM-deficient cells.35

Moreover, further preclinical studies have demonstrated
that RAD51 foci formation is not impaired in irradiated
ATM knock-out (ATMKO) PCa cell lines, indicating a lower
impact of ATM deficiency on the HRR function.36 This
finding was also confirmed when HRR function was
assessed by DR-GFP assay.36 ATM is altered in ≈5% to 7%
of PCa and is enriched in high Gleason tumors.37 Drug
sensitivity studies in ATMKO PCa cell lines showed
increased sensitivity to ATR inhibitors compared to PARP
inhibitors.36 ATR inhibitors block phosphorylation of
CHK1, leading to cell cycle arrest in S and G2/M.38 This
synthetic lethality with ATR inhibitors has also been
observed in other neoplastic cell lines with ATM deficiency,
such as chronic lymphocytic leukemia cell lines.39 In the
clinical scenario, several recent trials showed a somewhat
limited benefit for PARP inhibitors in patients with ATM-

deficient metastatic castration-resistant PCa (mCRPC)
compared to patients with BRCA-deficient tumors.20,40,41

Partner and Localized of BRCA2
PALB2 (Partner and Localized of BRCA2) is an

essential component of the HRR pathway.42 Following direct
interaction with BRCA1, PALB2 recruits BRCA2 and
RAD51 monomers to the sites of DNA DSBs and supports
strand invasion within the HRR pathway.42 Moreover,
PALB2 plays a relevant role in maintaining genomic stability
under exposure to DNA-damaging agents.43 In the bio-
marker analysis performed within the TOPARP-B trial
patient population, patients with biallelic loss of PALB2
received benefit from treatment with olaparib, along with
patients harboring homozygous BRCA2 alterations.19 In
contrast, monoallelic alterations did not derive major
benefits.19 A recent study in a Polish PCa population showed
that PALB2 alterations were associated with an age-adjusted
hazard ratio for mortality of 2.52 (P= 0.0023), pointing to a
derived more aggressive tumor phenotype.44 Moreover,
biallelic alterations in PALB2 (also termed FANCN) have
been reported to cause a severe subtype of FA disease, leading
to increased cancer predisposition (eg, acute myeloid leuke-
mia or neuroblastoma) in childhood.45 In melanoma, the
presence of mutations in PALB2 has been correlated with
higher tumor mutational burden.46

Checkpoint Kinase 2
CHEK2 encodes the serine/threonine kinase CHK2

and is altered in about 1% to 2% of PCa.11,47 The occurrence
of DNA DSB promotes CHK2 phosphorylation through
ATM, which leads to CHK2 dimerization and autophos-
phorylation. Following activation, CHK2 phosphorylates
multiple nuclear proteins involved in DNA repair, such as
BRCA1 and BRCA2, promoting the HRR pathway.48

CHK2 also phosphorylates p53 and other proteins involved
in the cell cycle and apoptosis regulation.47 Following DNA
DSB damage, CHK2 promotes cell cycle arrest in G1/S and
G2/M. Also, phosphorylation of p53 promotes cell cycle
arrest in the G1/S phases.49,50 Specific alterations in CHEK2
(1100delC and I157T mutations) have been correlated with
an increased risk of PCa. However, no association with
familiar PCa has been shown.51

Fanconi Anemia Pathway

Fanconi Anemia Complementation Group A
The FA pathway is essential for repairing DNA ICLs,

which leads to DNA replication fork stalling.15 Among the
multiple DNA repair proteins involved in the FA pathway,
Fanconi Anemia Complementation Group A (FANCA) is
the most commonly altered in PCa (2.5% to 3%), including
deep deletions in ≈2.5% tumors and mutations in ≈ 0.5%.1,52

Besides being a key component of the FA core complex,
FANCA is also involved in other DDR pathways, such as the
single-strand annealing pathway, contributing to the DNA
DSB repair.15,53 Once established, ICLs are identified by
the FANCM-FAAP24-MHF1-MHF2 complex, which then
recruits the rest of the components of the FA core complex.15

In this pathway step, an interaction with ATR and BRCA1 is
required to recruit the FA core complex successfully. The
activation of the FA core complex enables the mono-
ubiquitylation of the paralogue FANCD2 and FANCI het-
erodimers, which promotes the nucleotide excision by
ERCC4-ERCC1, required to release one of the DNA strands
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at the ICL (unhooking).15,54 The missing nucleotides are
inserted and extended by a DNA polymerase within trans-
lesion synthesis. The insertion step generates many mutations
at the initial ICL location. Once this translesion synthesis is
completed, incisions leading to DNA DSBs are generated at
the initial ICL location. The BRCA2-PALB2 complex plays,
in combination with RAD51, an essential role in the repair of
these DSB breaks through the HRR pathway. Moreover, an
interaction of FANCJ or BRIP1 with the MMR proteins
MLH1 and PMS2, which constitute the hMutLa hetero-
dimer, is also required for the correct ICL repair.55 Interest-
ingly, the FA pathway downregulates the activity of the
NHEJ pathway but promotes the alternative end-joining
pathway.15 In recent work, molecular characterization of
squamous cell carcinomas from patients with FA showed that
deficiencies in the FA function lead to a high prevalence of
structural variants and complex genomic rearrangements.56

Cyclin-dependent Kinase 12
Cyclin-dependent kinase 12 (CDK12) alterations are

found in ~5% of PCa.57–59 Loss-of-function alterations of
CDK12 impairs DNA repair through modulating expres-
sion levels of several DNA repair genes. By suppressing
polyadenylation, CDK12 supports the production of full-
length transcripts, a process relevant to many DNA repair
genes. Therefore, the loss of CDK12 leads to impaired
expression of several DDR genes.60,61 This effect is gene-
length dependent, leading to transcription termination at 3′
and polyadenylation, which leads to earlier cleavage of long
genes (> 45 kb). Moreover, DDR genes, such as BRCA1,
BARD1, or RAD51, are enriched in polyadenylation sites,
which makes them especially vulnerable to the absence of
CDK12. In PCa, biallelic CDK12 deficiency constitutes a
distinct and unique molecular subtype of PCa, with mutual
exclusivity with SPOP mutations and ETS fusions.57

CDK12-deficient PCa is characterized on the genomic level
by focal tandem duplications and high neoantigen burden,
making these tumors vulnerable to ICIs. This increased
neoantigen burden is associated with higher immune infil-
tration, with enrichment in CD4+ FOXP3- T regulatory
cells.57,62 Moreover, CDK12-deficient tumors lack genomic
signatures characteristic of HRD tumors. These tumors are
typically characterized by poor prognosis, show poor
responses to androgen receptor (AR) signaling inhibition
(ARSI), PARPi, and taxane-based chemotherapy, and
exhibit variable responses to ICIs.62,63

Mismatch Repair Pathway
3% to 4% of PCa harbor alterations in the MMR

genes. Mismatch DNA lesions are recognized by the
hMutSa heterodimer (MSH2 and MSH6), which preferen-
tially identifies single-base mismatches, or by the hMutSa
(MSH2 and MSH3) complex, which recognizes mismatches
originating through small insertions or deletions.16 More-
over, the hMutLa heterodimer (MLH1 and PMS2) is
recruited to the DNA lesion. This heterodimer has endo-
nuclease activity and is required to support the nucleotide
excision by EXOI 3′→5′, which can independently resect in
the direction 5′→3′). Proliferating cellular nuclear antigen
(PCNA) interacts with both heterodimers supporting the
initiation of DNA synthesis, which is performed by the
DNA polymerase δ. In mCRPC, the most common MMR
alterations are found in MSH2 and MSH6.8,10,11 On the
IHC level, the loss of MSH2 usually co-occurs with MSH6,
either due to germline or biallelic somatic mutations in

MSH2, MSH6, or EPCAM. However, the loss of MSH6
may present independently of conserved MSH2 IHC. We
summarized the main available methods and assays able to
assess DDR and MMR defects in Table 1.

Correlation With Histologic Variants
PCa tumors harboring BRCA2 defects, especially

biallelic alterations, have been correlated with higher
Gleason scores and more aggressive histologic subtypes,
such as cribriform histology, as well as with the presence of
intraductal carcinoma.64–68 However, an association with
germline BRCA2 alterations could not be demonstrated.68

On the other hand, an especially high (49%) prevalence of
DNA repair alterations has been reported in a cohort of
ductal PCas (14% of patients had an alteration within the
MMR genes and 31% within the HRR pathway).69 Rele-
vantly, 20% of the patients had an underlying DDR germ-
line autosomal dominant mutation. Moreover, intraductal
histology has been correlated with higher genomic insta-
bility scores.70 A retrospective analysis of a PCa patient
cohort (n= 60) with at least one monoallelic alteration in
CDK12 showed a very high prevalence of high Gleason
scores (93.3%) and the presence of intraductal histology in
15.4% of the patients.62,63 Similarly, dMMR/MSI-H PCas
usually present as undifferentiated tumors (grade group 5)
and are also frequently associated with intraductal
histology.71 However, the recommendation to perform
germline testing based on the presence of intraductal or
cribriform histology variant is highly controversial, and only
recommended as optional by the current guidelines.28

PRECISION ONCOLOGY TARGETING OF NON-
BRCA DNA DAMAGE REPAIR ALTERATIONS IN

PROSTATE CANCER

Established Therapeutic Strategies

Chemotherapy Agents, Androgen Signaling Inhibition,
and Radiotherapy

“Classical” DNA-targeting drugs, such as top-
oisomerase II inhibitors (mitoxantrone) or DNA cross-
linking agents (carboplatin), have been commonly used in the
treatment of mCRPC. For platinum-based chemotherapy,
studies including PCa molecular characterization have con-
firmed the enhanced activity of platinum-derivates in tumors
with DDR alterations.72–75 Several studies have shown that
AR signaling upregulates the expression of DDR proteins so
that a combination of radiotherapy with androgen depriva-
tion therapy (ADT) is considered synergistic.76 In fact, radi-
otherapy treatment for localized PCa is usually combined
with ADT±ARSI.77,78 However, PCa tumors withBRCA1/2
alterations classically show shorter responses to ARSI.79

Moreover, several studies have analyzed how the
presence of specific DDR proteins correlates with the effi-
cacy of radiotherapy treatment in PCa. For instance, high
ATM expression in PCa tumor tissue was correlated with
worse clinical outcomes in patients with localized PCa
treated with radiotherapy.80 In addition, 2 metastases-
directed radiotherapy studies for oligometastatic disease
(ORIOLE and STOMP) pointed to a larger benefit from
radiotherapy treatment in patients with alteration in ATM,
BRCA1/2, Rb1, or TP53.81
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Poly-ADP-ribose Polymerase Inhibitors
Established targeted treatment options for mPCa with

DDR alterations include PARPi and immunotherapy with
ICIs. Across distinct clinical trials, treatment with PARPi has
shown major clinical efficacy in BRCA1/2-mutated
PCa.19–22,40,41 The PROfound phase 3 trial showed overall
survival (OS) benefit for the cohort of patients with BRCA1,
BRCA2, and ATM alterations. However, BRCA1/2-altered
patients had the greatest benefit.40 Following these results,
olaparib received FDA approval for patients with HRR-
altered mCRPC who progressed after ARSI.40 Rucaparib also
received approval for patients with mCRPC harboring somatic
or germline BRCA1/BRCA2 mutations who previously
received chemotherapy with a taxane.41 The recently published
TRITON3 phase 3 trial showed progression-free survival
(PFS) benefit and preliminary OS benefit for rucaparib after
ARSI in patients with mCRPC with BRCA1/2-mutated
tumors.20 However, there was no benefit regarding tumor
responses or PFS for patients with defects in ATM.20 More-
over, the first-line mCRPC phase 3 trials PROPEL and
MAGNITUDE trials showed PFS benefit for the combination
olaparib or rucaparib, respectively, and abiraterone-prednisone
in HRR-altered tumors, which was more relevant for BRCA1/
2-mutated tumors.21,22 Similarly, biomarker analysis from the

phase 2 TOPARP-B trial illustrated that the activity of
olaparib in mCRPC was highly dependent on the underlying
DDR defect.19 This study showed that the alterations con-
ferred the greatest sensitivity were homozygous BRCA2 dele-
tions, biallelic defects in PALB2, and ATM deficiency with
protein loss.19 In conclusion, effective targeted treatment
strategies are currently lacking for most non-BRCA DDR
alterations, which constitute at least 50% of all DDR
alterations (Fig. 2).

Immune Checkpoint Inhibitors
Immunotherapy with ICIs is highly active in dMMR/

MSI-high PCa tumors and has shown variable activity in
CDK12-deficient tumors. On the contrary, ICIs have shown
a very limited efficacy in biomarker unselected mCRPC,
and PCa are globally considered immunologically cold
tumors.82–86 The efficacy of the anti-PD1 ICI pem-
brolizumab was assessed in the KEYNOTE-158 phase 2
study in relapsed/refractory MSI-H/dMMR solid tumors.
This study included 8 patients with mPCa and showed a
response rate of 30.8% and a median OS of 20.1 months
(95% CI: 14.1–27.1) for the global pan-tumor patient
population.87 Based on these data, pembrolizumab is
approved for the treatment of relapsed/refractory MSI-H/

TABLE 1. Summary of Testing Platforms for DDR and MMR Alterations

Methodology Platform/assay Scope and thresholds

DDR tumor testing
NGS(targeted

assays)
Myriad Genetics MyChoice CDx Mutations and large rearrangements in 15 DDR genes: ATM, BARD1,

BRCA1, BRCA2, BRIP1, CDK12, CHEK1, CHEK2, FANCL,
PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, RAD54L

Genomic instability score: LOH + LST + TAI (threshold: ≥ 42)
Myriad Genetics MyChoice CDx Plus Mutations and large rearrangements in BRCA1 and BRCA2

Genomic instability score: LOH + LST + TAI (threshold: ≥ 42)
TruSight Oncology 500 HRD SNV, indels, and CNV in 523 genes, rearrangements in 55 genes

Genomic instability score: LOH + LST + TAI (threshold: ≥ 42)
MSI status and TMB

FoundationOne CDx SNV, indels, and CNV in 324 genes, rearrangements in 36 genes
LOH (threshold: ≥ 16%)
MSI status and TMB

Oncomine Comprehensive Assay Plus SNV, indels, and CNV in 517 genes, rearrangements in selected genes
LOH
MSI status and TMB

MMR tumor testing
IHC (MMR

proteins)
MLH1, MSH2, MSH6, PMS2 Intensity of staining: 0-3; percentage of positivity: 0-3

Product score, threshold: ≤ 3
Microsatellite PCR Bethesada panel Microsatellite markers: 2 short mononucleotide repeat (SMR) markers

(Bat-25, Bat-26) and 3 dinucleotide (D2S123, D5S346, and D17S250)
Threshold: ≥ 2 positive markers (shifts in allelic bands)

MSI Analysis System Version 1.2/
OncoMate MSI Dx Analysis System

5 SMR markers (BAT-25, BAT-26, NR-21, NR-24, and MONO-27)
and 2 pentanucleotide repeat markers (Penta C and Penta D)

Threshold: ≥ 2 positive markers (shift in allelic bands)
LMR MSI Analysis System 4 SMR markers (BAT-25, BAT-26, NR-21, and MONO-27), 4 long

mononucleotide repeat (LMR) markers (BAT-52, BAT-56, BAT-59,
and BAT-60), and 2 pentanucleotide repeat markers (Penta C and
Penta D)

Threshold: ≥ 3 positive markers (shifts in allelic bands)
NGS (targeted

assays)
MSK-IMPACT Assay compares tumor and normal

MSISensor score ≥ 10=MSI-H
Other NGS-targeted panels (eg,
TruSight Oncology 500 HRD)

SNV, indels, CNV in MMR genes
MSI status

CNV indicates copy number variations; IHC, immunohistochemistry; LOH, loss of heterogeneity; LST, large-scale transitions, MMR, mismatch repair;
MSI, microsatellite instability; NGS, next-generation sequencing; PCR, polymerase chain reaction; SNV, single nucleotide variants; TAI, telomeric allelic
imbalance; TMB, tumor mutational burden.
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dMMR mPCa (https://www.accessdata.fda.gov/drugsatfda_
docs/label/2021/125514s096lbl.pdf). Further work showed
that alterations in MMR correlate with PD-L1 expression
levels in PCa.88

In a cohort of 60CDK12-altered PCa, around half of the
patients had biallelic loss.59 These tumors are characterized
by genomic instability, with frequent tandem duplications
and gene fusions.59 CDK12-deficient PCa poorly responds to
treatment with ARSI, PARPi, or taxane-based chemotherapy
and have a variable vulnerability to ICIs (Fig. 2).59

Emerging Therapeutic Strategies
Data from preclinical studies have suggested that

ATR inhibitors are active in ATM-deficient tumors and
may act synergistically with PARPi and platinum-based
chemotherapy.36,89–91 Combined ATR and PARP inhibition
was synergistic in ATMKO clones of PCa cell lines (22RV1).89

These ATM-deficient cells showed variable sensitivities to
rucaparib and platin but homogeneous vulnerability to irradi-
ation. Preclinical data demonstrate that opposite to BRCA loss,
KO of ATM alone does not lead to a classical HRD phenotype
with a lack of Rad51 foci formation. However, a combined
ATM and ATR inhibition does confer an HRD phenotype.89

The same results have also been observed when using DR-GFP
reporters.89 Early-phase clinical trials with ATR inhibitors (eg,
ATG-018, RP-3500, AZD6738) are ongoing for refractory
DDR-altered solid tumors, including PCa. The phase 1
TRESR trial (NCT04497116), assessing the safety and
preliminary efficacy of the ATRi camonsertib in DDR-deficient
solid tumors showed a modest response rate (12%) in ATM-
deficient mCRPC.92 A CHK1/2 inhibitor (AZD7762), which

acts downstream of ATR, has shown sustained clinical activity
in a RAD50-mutant, functionally ATM-deficient small-cell
carcinoma.93 In FANCA-deficient cell lines, ATM inhibitors
have shown preclinical activity.94,95 Several ATM inhibitors
(eg, M4076, AZD0156) are being assessed in early-phase trials
for advanced refractory solid tumors. To our knowledge, no
targeted therapeutic strategies distinct from PARPi have been
successfully developed for CHEK2-altered tumors. CRISPR
screen performed in PCa cell lines showed that CHK2 loss
confers resistance to PARPi, and that combined PARP and
ATR inhibition can overcome this resistance (Fig. 2).96

Several commonly altered genes in PCa, such as AR,
PTEN loss, or the TMPRSS2-ERG fusion, have been related to
impaired DNA repair function.97While conserved AR signaling
enhances DDR response, ADT sensitizes PCa cells to DNA-
damaging agents, such as radiotherapy, a synergy routinely used
in the biochemical relapse setting.97,98 Loss of PTEN has been
reported to be synthetically lethal with ATM inhibition in pre-
clinical models.97,99 TMPRSS2-ERG has been shown to
downregulate the NHEJ pathway.97,100 Other common PCa
genomic alterations related to impaired DDR function are
SPOP mutations and loss of CHD1, both downregulating the
HRR pathway.97 Moreover, a recent work uncovered the
presence of lower levels of XRCC1 in formalin-fixed paraffin-
embedded PCa tumor tissue of African American patients, as
well as increased uracil and pyrimidine lesions and increased
uracil DNA glycosylase levels, pointing to an impaired base
excision repair pathway function.101 XRCC1 prevents the trap-
ping of PARP1 during base excision repair, a DNA repair
pathway that removes damaged or incorrect bases.102,103

DISCUSSION
DDR alterations are prevalent in advanced PCa and con-

stitute a highly heterogenous group of molecular alterations
leading to distinct DNA repair–deficient phenotypes. A yet
unresolved question is how to optimally assess the presence of a
DDR-deficient phenotype that could predict vulnerability to
targeted treatment with PARPi. Previous studies have shown
that ATM and CHEK2-altered PCa exhibit lower genomic
instability scores, assessed as a combination of loss-of-hetero-
zygosity, large-scale transitions, and telomeric allelic imbalance,
as compared to tumors with BRCA2 alterations.104 Another
study showed that PCa with alterations in BRCA1, BRCA2,
FANCA, and ATR had higher loss-of-heterozygosity scores,
assessed by targeted NGS with FoundationOne CDx, as com-
pared, for instance, withCDK12-altred PCa.11 In a recent study,
Ritch et al105 proposed using a machine-learning tool, DARC
Sign, to identifyDDRdefects based onwhole-exome sequencing
of plasma circulating cell-free DNA. This model outperformed
previous classifiers, such as CHORD106 or HRDdetect,107 based
on analysis of whole-genome sequencing data.105 These results
should be, however, validated in further independent cohorts.

From a therapeutic perspective, several clinical trials
within the mCRPC setting have shown that BRCA2, BRCA1,
and PALB2 alterations, especially in biallelic loss, are most
vulnerable to targeted treatment with PARPi.19,20,40 These
alterations lead to a classical HRD phenotype. On the other
hand, PCa tumors with alterations in MMR genes, which lead
to a dMMR/MSI-high phenotype, and alterations in CDK12,
lead to a genomic instability phenotype with increased neo-
antigen burden. These tumors, especially dMMR/MSI-high,
show high response rates to treatment with ICIs, which other-
wise lackmeaningful activity in PCa.87 However, other frequent
alterations, such as ATM, are less vulnerable to PARP

FIGURE 2. Molecularly targeted treatment for DNA repair altered
metastatic prostate cancer. Established molecularly targeted
treatment options for DDR-deficient mCRPC are PARPi and
immunotherapy with ICIs. PARPi, in monotherapy or combined
with ARSI, has demonstrated major clinical efficacy in BRCA2-
altered and BRCA1-altered PCa, and tumors with biallelic loss of
PALB2. dMMR/MSI-high PCa and a subset of CDK12-altered PCa
are sensitive to immunotherapy with ICIs. The preclinical data
point to the potential efficacy of ATR and ATM inhibitors in
ATM-deficient and FANCA-deficient tumors, respectively. The
efficacy of these drugs is currently being assessed in early-phase
clinical trials in relapsed/refractory solid tumors. Defects in BRCA1,
BRCA2, and, possibly, FANCA confer sensitivity to platinum-based
chemotherapy. ARSI indicates androgen receptor signaling
inhibition; DDR, DNA damage response; ICI, immune checkpoint
inhibitor; mCRPC, metastatic castration-resistant PCa; PARPi,
poly-ADP-ribose polymerase inhibitor; PCa, prostate cancer.
Please see this image in color online.
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inhibition.20,40 ATM-deficient PCa account for ≅5% to 7% of
all PCa, concerning a numerically relevant cohort of patients.
For ATM deficiency, preclinical studies point to increased
sensitivity to ATR inhibitors. Currently, ATR inhibitors are
being assessed in early clinical trials for advanced solid tumors,
in monotherapy, and in combination with PARPi. For
instance, in the refractory mCRPC setting, the phase 2 TRAP
trial assesses the combined activity of the ATR inhibitor cera-
lasertib and the PARPi olaparib in DDR-deficient and profi-
cient tumors.108 However, preliminary results point to a modest
activity in ATM-deficient tumors. A recent preclinical study
suggested that ATR inhibition might boost the efficacy of anti-
PD-L1 tumors in PCa.109 Further, preclinical as well as clinical
studies showed increased sensitivity to ionizing radiation in
ATM-deficient tumors.110–112 Moreover, efficacy data from a
cohort of patients with PCa treated radioligand therapy
(177Lu-617-PSMA) point to increased PSA responses in patients
carrying ATM pathogenic mutations.113 Preliminary results
from the phase 1 LuPARP trial, which assessed the safety and
preliminary efficacy of the combination of 177 Lu-617-PSMA
radioligand therapy combined with olaparib, showed so far
good safety profile but a similar rate of PSA50 responses as
compared to treatment with177 Lu-617-PSMA alone.114

CONCLUSIONS
DDR alterations are found in approximately a quarter of

all PCa and constitute the most frequently altered genes in the
germline. Distinct genomic alterations lead to highly hetero-
geneous DNA repair–deficient phenotype. To date, successful
targeted treatment options have been established for a subset of
DDR-deficient PCa, such as tumors withBRCA1 andBRCA2-
alterations, which exhibit synthetic lethality with PARPi, and
dMMR/MSI high tumors, which are vulnerable to ICIs. The
discovery of novel DDR alterations that might sensitize PCa
tumors to DNA-damaging therapies is of great relevance for
further improving personalized cancer therapy.
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