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Abstract. Recently it has been questioned, notably in the context of the scalar singlet
dark matter model with m, ~ 60 GeV, how efficiently kinetic equilibrium is maintained if
freeze-out dynamics is pushed down to low temperatures by resonant effects. We outline
how Langevin simulations can be employed for addressing the non-equilibrium momentum
distribution of non-relativistic particles in a cosmological background. For a scalar singlet
mass my, ~ 60 GeV, these simulations suggest that kinetic equilibrium is a good approxima-
tion down to T' ~ 1 GeV, with the deviation first manifesting itself as a red-tilted spectrum.
This reduces the annihilation cross section, confirming findings from other methods that a
somewhat larger (< 20%) coupling than in equilibrium is needed for obtaining the correct
abundance.
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1 Introduction

Determining the abundance of dark matter in a given model requires ingredients from general
relativity, quantum field theory, and non-equilibrium statistical physics. While the first two
are well-established frameworks, non-equilibrium statistical physics is an open construction,
with even the specification of the state hard to achieve in full generality. Therefore it is not
rare that cosmological computations call for physical intuition.

Often, a fruitful approach is to estimate the rates at which various processes take place,
and then divide the variables into two classes, the fast and slow ones. A tractable problem
is found if the fast variables undergo many interactions within the observation period; they
can then be assumed to thermalize, constituting a heat bath. The slow variables remain out
of equilibrium, but since there are fewer of them, the problem is easier to handle.

In dark matter computations, we normally assume that all Standard Model particles
are fast variables. For dark matter particles, the fastest processes are soft elastic scat-
terings, which may be assumed to decohere the system. Subsequently we can focus on
classical notions, like the momentum distribution of the dark matter particles (“kinetic non-
equilibrium”), and their overall number density (“chemical non-equilibrium”).

Adjusting the momentum distribution towards the thermal (Bose-Einstein or Fermi-
Dirac) form only requires elastic scatterings. In the non-relativistic regime, these are much
faster than inelastic ones. Therefore, it is often a good assumption to impose kinetic equilib-
rium from the outset, and only focus on deviations from chemical equilibrium.

Recently, however, the validity of this picture has been questioned. In particular, the ex-
ample of the scalar singlet dark matter model (cf., e.g., refs. [1-4] and references therein) has
been intensively discussed in the non-relativistic freeze-out regime [5-9] (cf., e.g., refs. [10-14]
for similar effects in other models). To be clear, let us remark that in the so-called freeze-in
scenario, dynamics takes place in the relativistic regime, and then there is in general no hi-
erarchy between the kinetic and chemical equilibration rates, so that kinetic non-equilibrium
is certainly present.

Following their use in the context of heavy ion collision experiments [15], we propose
here to employ Langevin simulations for studying the efficiency of kinetic equilibration in
the non-relativistic regime. The effect of the fast variables is encoded in the values of two
matching coefficients, which can be defined and computed at the NLO [16] or even at the



non-perturbative level [17]. Therefore Langevin simulations offer for a systematically im-
provable framework for studying strongly coupled systems, notably dark matter scattering
off a Standard Model plasma at temperatures of a few GeV.

This paper is organized as follows. We start by reviewing how the Langevin equation
can be set up in an expanding background, in section 2. This is followed by a description of an
algorithm for its numerical solution, and a summary of the corresponding simulation results,
in section 3. In section 4 we show how the non-equilibrium momentum distribution can be
implemented in a freeze-out computation. Conclusions are collected in section 5, relegating
the computation of the matching coefficients for the scalar singlet model to appendix A.

2 Langevin equation in an expanding background

We assume the universe to be described by a homogeneous, isotropic and spatially flat
Friedmann-Lemaitre-Robertson-Walker background, with the metric

ds? = dt* — a®(t) dx?. (2.1)

The physical 4-momentum of an on-shell particle is denoted by p*. The covariant derivative
of its spatial components reads

pa=p+Hp, (2.2)
where H = a/a is the Hubble rate and p = dp/dt. Viewing p’ as a slow variable, the
Langevin equation takes the form

p= —(n+ Hp' + [ (2.3)

where 7 is a friction (or “drag”) coefficient and f? is a random force, taking care of detailed
balance (i.e. returning thermal energy to the heavy particle, in exchange for that lost through
friction). The force obeys the autocorrelator

(fi(t) fta)) = €69 6(t1 —t2), (2.4)

where ( is called the momentum diffusion coefficient. The constraint that the system should
thermalize to a temperature 7" imposes the fluctuation-dissipation relation
¢(v?)

n=gre (2.5)

The average velocity can in turn be expressed as <v2> ~ 3T /m, where we have introduced
the notation m,, for the mass of a generic non-relativistic dark matter particle.

When we implement the Langevin equation in a cosmological context, time and tem-
perature are not independent variables. If the system does not undergo phase transitions, so
that the temperature evolves smoothly, we may take

v = 1n<T‘;f"), () = d(a“), (2.6)

as a time-like variable (we choose Tiax = 5GeV). The Jacobian to physical time is

d
di; = 3¢2H, (2.7)



where ¢ = Op/0e is the speed of sound squared. Furthermore the entropy density, s, satisfies
$4+3Hs =0, and consequently sa® = const. If we now define dimensionless momenta as

o P

and denote ¢
A Ui 2
= = —— 2.
g 3¢2H’ ¢ 3c2Hs2/3’ (29)
then Langevin dynamics can be expressed as
(") = —ap' + f (fiar) fx2)) = (67 6(x1 —2). (2.10)

Given the constancy of sa?, we note that p' o< ap’ = k*, known as a comoving momentum.
A key element of the dynamics is that the coefficients 9 and { are not constant but
evolve rapidly with x. The Hubble rate reads

o= |5 (2.11)
3m2’
pl

where e is the energy density and my, ~ 1.22091 x 10 GeV is the Planck mass. Since e ~ T
in the Standard Model plasma, H scales as ~ T2. The entropy density scales as s ~ T°. The
coefficient ( is suppressed by the mass of the dark matter particle and that of the mediator
between the visible and dark sectors. For dimensional reasons, we may write it as

_ ¢
¢ = (100 GeV)4’ (212)
with £ displaying modest temperature dependence. Different contributions to £ in the scalar
singlet model, derived in appendix A,! are shown in figure 1 (left). The speed of sound
squared can often be approximated as 3¢2 ~ 1, though it experiences corrections when mass
thresholds are crossed. Putting all of these scalings together, we expect 9 o< (7//GeV)* and
{ o« (T/GeV)3 (cf. figure 1 (middle, right)). This implies that kinetic equilibrium is likely to
be lost at low T
Equation (2.10) is a linear inhomogeneous first order differential equation, and as such
it can be given an explicit formal solution,

T

laz) = o) exp| - [Cayit) |+ [asfie) e [ ‘:dymy)} . (2.13)

1 1

Taking an average over the noise, moments can be obtained, for instance

(B*(22)) = (%(ar)) exp| -2 /fdymy)] +3 [0 exp 2 /m:dymy)]. (2.14)

1

!The computation of ¢ in appendix A amounts to the quantum-field theoretic evaluation of the 2-point
real-time correlation function of the force that changes momenta. The force in turn is identified as the
time derivative of the spatial components of the particle number current. Subsequently, model-dependent
but weakly coupled fields (dark matter, mediator) can be handled perturbatively, leaving over a correlation
function of strongly coupled objects (QCD currents composed of quarks and gluons), which could in principle
be evaluated non-perturbatively.
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Figure 1. Left: the momentum diffusion coefficient obtained from eqgs. (A.17) and (A.20), originating
from scatterings off quarks or gluons, converted into £ as defined by eq. (2.12), with m,, ~ 60 GeV and
k =~ 0.00064 [18]. Confining effects in the vicinity of the QCD crossover have been modelled via the
substitution N, — N e < 3 [19], and the difference to the tree-level value N, = 3 has been displayed
as a grey band. Middle and right: the corresponding 7 and é from eq. (2.9), either with £ as displayed
in the left panel (solid line), or for various fixed values of . For thermodynamic potentials we have
inserted estimates from ref. [20], tabulated at http://www.laine.itp.unibe.ch/eos15/.

A numerical illustration is shown in figure 2. Compared with such moments, the advantage
of a direct numerical solution of eq. (2.10) is that all moments can be obtained at once, from
the momentum distribution.

Finally we note that the would-be equilibrium distribution, at any given temperature, is
obtained by assuming the coeflicients temperature-independent, so that there is a lot of time
for the system to adjust to the given situation. If we normalize the momentum distribution
in analogy with cosmological power spectra, so that

[aw@) PG =1, 5 = |pl. (215)
then the equilibrium form reads
~3 AN 3/2 O
p° (4mi) PN
Peq = 271'2<é‘\> exp(— 6 > (216)

To see how fast the system approaches this limit, we can make the approximation of tem-
perature-independent coefficients in eq. (2.14), obtaining

52 o 52 36 =27 (z2—21) 36
= - — — 2.17
() L [(BPan)) — 5 | e + 5 .17
For 7(zy — 21) < 1 the terms 3(/(27) cancel, so that non-equilibrium manifests itself by
the system staying close to the old value. For 7j(zg — x1) > 1, the system loses memory of
initial conditions and moves towards the equilibrium value (p?)eq = 3¢/ (27)) ~ my/T. As
the variable z is of O(1), we can say that kinetic decoupling starts when 7 < 1.

3 Time discretization and numerical simulations

We now move on to a numerical integration of eq. (2.10). The problem is technically non-
challenging (unless one is interested in the distribution of momenta in the far UV tail), and
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Figure 2. The average rescaled momentum squared, from eq. (2.14) (dashed and dotted lines),
compared with the equilibrium value, from eq. (2.17) (solid black line), and from fits based on eq. (3.3)
to Langevin simulation data (crosses). The system started from an equilibrium configuration at
T =5.0GeV. The larger £ (cf. eq. (2.12)), the longer the system stays close to equilibrium.

we employ a simple-minded approach. The time-like variable x is discretized, and we denote
by i, fin and én the values of the momenta and coefficients on the corresponding grid. For
eq. (2.10) we use the Ito discretization with Gaussian noise,

Dt =B = nBpde + vz, (Fifl) =0 6" b (3.1)
Here, the thermodynamic functions appearing in 7, and fn are interpolated from the tabu-
lated values given in [20] by the cubic-spline method [21].

As the coefficients in eq. (3.1) change by 4 orders of magnitude in the temperature range
studied (cf. figure 1), it is important to have a small enough time step. We have found that
this requirement can be sufficiently satisfied with do = 1075. The initial p*’s are drawn from
the equilibrium distribution at T' = 5 GeV. The momentum distribution at each x is obtained
by histograms produced from N = 10° independent runs. The error in each histogram bin is
calculated from a jackknife analysis, with a block size of 103.

If the momentum distribution obtained from the simulation is denoted by P, then a
useful observable is its ratio to the would-be equilibrium value from eq. (2.16),

P
r = Peq (3.2)
Snapshots of r as obtained from the simulations are illustrated in figure 3. For &, we consider
a number of fixed values (cf. figure 1), spanning the range that is realistic for the model
considered in appendix A. It is clear from figure 3 that the system rapidly departs from
equilibrium if £ is small, and that it does so by retaining power at small momenta, as a
remnant from an earlier time (cf. the discussion around eq. (2.17)).
We find that the simulation results are well represented by the functional form of
eq. (2.16), parametrized however by a different coefficient which we denote by «,

3/2

4p3a
P ~ d

(o) B

N3 ’ _204’@7é

(3.3)

i}
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Figure 3. Examples of the non-equilibrium modification of the momentum distribution, denoted by r
(cf. eq. (3.2)), for various temperatures and values of ¢ (data points), compared with fits to eq. (3.3)
(lines). The good performance of the fits confirms that the momentum distribution maintains a
Gaussian form even after the system falls out of equilibrium.

The corresponding fits are illustrated in figure 3. These results lead to an easy crosscheck
of the accuracy of the solution, as illustrated by the crosses in figure 2. This implies that
the information in figure 2, originating from eq. (2.14), is sufficient for determining the full
momentum distribution. The conclusion that kinetic non-equilibrium is captured by the
value (p?) is not new but appears frequently in the literature, however we have arrived at it

as a result of a systematic computation, rather than adopted it as a starting point.

4 Chemical equilibration with non-equilibrium momentum distribution

Having determined the non-equilibrium momentum distribution in section 3, the next step
is to implement it in the equation governing the dark matter number density. For the scalar
singlet model in the resonant regime, it was demonstrated in ref. [18] that inelastic processes
are to a very good approximation described by the leading-order ¢ <+ h reaction, where h
stands for the Standard Model Higgs boson, set on-shell. Noting furthermore that freeze-out
physics takes place deep in the non-relativistic regime, where 71" < m,,, we may employ the
Boltzmann form for the equilibrium distribution function. We denote the non-equilibrium
phase space distribution by f, and the equilibrium one by ﬁo = exp(—¢€,/T). The Boltzmann
equation for f, then takes the form

’i2v2(2ﬂ-)45(6<ﬂ1 + €py — 6h)(s(g)(pl + p2 —
86901 €po€h

ph) (fwfw - ﬁmfm) )

(4.1)
where €, = \/p? + ma, pi = |pil, fpi =/ éigg, and unspecified notation is explained in the
context of eq. (A.1).

To proceed, we integrate eq. (4.1) over p;. The number density is denoted by n, =
Jo; fioi» and the left-hand side becomes (0; + 3H)ny, after partial integration. The system
is closed by noting that on the right-hand side, we may parametrize the non-equilibrium
distribution function with the information obtained in section 3, as

(8t—Hp18p1)fso1 ~ _/p

2,Ph

n,
T
f“’i:ﬁi

@)

T(ﬁz) f_Sﬂi ) 1= 17 27 (4.2)



— — 2T
with the constraints that [, 7(5:)fp, = [, fo; = Ny = %KQ(%), where K5 denotes a

modified Bessel function. The constraint on r follows from the definition in eq. (3.2). Going
over to the variables Y, = n,/s, Y, = n,/s, and again replacing time through z from
eq. (2.6), we can rewrite the evolution equation as

0,Y, ~ [{ovre) Y2 — (00 Y2 ] . (4.3)

_5
3c2H

Here the first annihilation cross section is averaged over the non-equilibrium momentum
distribution,

o w20 (et e — 1P ] ) £ F () o)
<0'Urel> :/p

-2
1,P2 deg €y (€py + €4y) L
+ 2 2 2 2
HQUZ /ood /QPQ d f f 6501 mw 6502 m@ (4 4)
= ——F € € T —_— T —_— .
327.‘_3”% e ¥1 6;2 w2 Jp1Jp2 81/3 81/3 )

where the integration bounds can be established as

2 2

+ mh mp, mh

64,02 = (W — 1) G‘Pl + %\l (47712 — 1) (6301 — mg}) . (45)
©

v

The second term in eq. (4.3) contains an average with respect to equilibrium distributions,

K202 T\ /m3 —4m2 my,
K (—]. (4.6)

327302 T

<ﬁrel> = (UUrel> |r:1 =

For a numerical illustration, we have fixed m, ~ 60 GeV and x ~ 0.00064, which would
yield the correct dark matter abundance in kinetic equilibrium according to ref. [18]. However
we vary £ (cf. eq. (2.12)), in order to obtain an ensemble of non-equilibrium momentum distri-
butions (cf. figure 3). The corresponding (ovyel)/(G0re1) is shown in figure 4 (left). Inserting
into eq. (4.3), we obtain the dark matter yield, Y,,, as illustrated in figure 4 (right). As the
system falls out of kinetic equilibrium, the annihilation cross section is reduced, and conse-
quently freeze-out takes place earlier, leading to a larger dark matter abundance. To keep the
dark matter abundance at the correct value, the coupling would need to be correspondingly
increased, however for our benchmark the effect is only on the 20 percent level.

5 Conclusions

The goal of this paper has been to demonstrate that Langevin simulations are well suited
to studying the efficiency of kinetic equilibration of non-relativistic dark matter candidates,
produced through the freeze-out mechanism. The advantage of the Langevin framework,
compared with the more standard Boltzmann one, is that it cleanly factorizes the slow non-
equilibrium problem from the effect of fast reactions. The role of the latter is to determine
the values of the matching coefficients in the Langevin description. The computation of
the matching coefficients can be viewed as a quantum field theoretic problem, and therefore
pursued up to higher orders of perturbation theory, or in principle even non-perturbatively,
as could be relevant for strong interactions at temperatures of a few GeV (cf. the discussion
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Figure 4. Left: (owvy) from eq. (4.4) compared with the equilibrium (G7,q) from eq. (4.6), for
various values of £. For small £, the non-equilibrium momentum distribution is red-tilted (cf. figure 3),
having then less weight in the domain that contributes to the annihilation cross section. Right: the
corresponding Y,,, obtained from eq. (4.3). Because of the smaller annihilation cross section, the
overall yield freezes out earlier, and thus to a larger value. Between ¢ = 10~7 and £ = 1077, there is
a ~ 45% difference in the final yield, which could be compensated for by a ~ 20% change of .

around eq. (A.14)). However, we have remained at the leading order in the current study, in
order to conform with the accuracy of literature studies making use of Boltzmann equations.

As far as the non-equilibrium problem goes, our numerical simulations confirm that the
momentum distribution retains the Gaussian form despite the rapidly evolving matching co-
efficients (that said, the resolution of our setup is not sufficient for studying momenta in the
far UV tail of the distribution; for this, more advanced techniques would be required). There-
fore, for practical purposes, it is enough to know the width of the momentum distribution,
given by the quadratic expectation value (p?) (cf. eq. (2.14)).

In order to illustrate these general points, we chose the example of the scalar singlet
model, in a mass regime where an efficient s-channel resonance drives the freeze-out dynamics
down to low temperatures. This is among the main examples for which the viability of the
kinetic equilibrium assumption has been questioned. If the same processes are included in
the computation of the momentum diffusion coefficient (cf. figure 1 (left)) as in the respective
literature [5-9], our final phenomenological conclusion turns out to be similar. In particular,
if all processes are included, then & > 107 in the domain 7" > 1GeV in which the freeze-
out dynamics take place (cf. figure 1 (left)). Then kinetic non-equilibrium has a < 45%
influence, as shown by a comparison of the ¢ = 107 and ¢ = 107 curves in figure 4 (right),
the latter of which represents practically the equilibrium solution. In terms of the coupling
(cf. eq. (A.1)), this corresponds to a < 20% effect.
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A  Momentum diffusion coefficient in the scalar singlet model

We illustrate the computation of the momentum diffusion coefficient ¢ of eq. (2.4) with the
help of the scalar singlet model, defined by the Lagrangian

1 1
L= Lo+t {251@0%@— [

5 (mo +r01) <p2+i&oso4} } (A1)

where ¢ is the Higgs doublet. The computation can be carried out in a local Minkowskian
frame. In the Higgs phase, where ¢ ~ (0 v)/ \/i, with v ~ 246 GeV, the scalar singlet mass
is denoted by m,, and has the value mi o~ mw + kv?2/2. We consider freeze-out dynamics,
taking place in the regime 77" < m, < v. Then ¢ can be represented by an effective
non-relativistic field v, defined as

1
Y= V/2my,

Inserting this in eq. (A.1), integrating over fast oscillations, and anticipating the presence
of a conserved charge (cf. eq. (A.4)), whereby we introduce a chemical potential u > T
guaranteeing a small overall number density, we find that the dynamics of ¢ is described by

2
/dtﬁ 5 /dw {zao— +v—’“’h+...}zp, (A.3)

My 2my

(emimet 4 y=eimet ). (A.2)

where h is an off-shell mode of the Higgs field, with energy e;, < m,. Relative to the
structures shown, the terms omitted are suppressed by powers of dy/my,, h/v, or A,.

Now, the low-energy description of eq. (A.3) has an emergent U(1) symmetry, corre-
sponding to conserved particle number. The Noether current reads

. Im(y*0;
Fo=yrp, gi=0) (A4)
My

where the higher-order terms are suppressed by V2 /mi What is important for us is the
“force” acting on the dark matter particles. By making use of equations of motion and
integrating over the force density, this can be expressed as

/ M WA

,]_-1

(A.5)

where the terms omitted are of the same type as in egs. (A.3) and (A.4).

In accordance with eq. (2.4), the momentum diffusion coefficient ¢ is given by the auto-
correlator of the force. In quantum field theory, it is advantageous to define the autocorrelator
as the zero-frequency limit of a time-symmetrized expectation value,

01,05 = lim Oodtei“t<%{(91(t)7(92(0)}>. (A.6)

w—0t —00

In addition, correlation functions should be normalized so that the overall density drops out,
which can be done with the help of the conserved Noether charge,

= [(7°0°%.7°0.0)), (A7)



where the time can be taken to be Euclidean. Thereby the momentum diffusion coefficient
can be obtained as [17]

1 3 7 7
C _ ?,z:i1fx>];[]:x7]:0]7 (A8)

where the subscript in FZ denotes the spatial position, and the definition is from eq. (A.5).

In order to evaluate eq. (A.8), the first step is to insert eq. (A.5), go over to a path
integral representation, and carry out the contractions over the fields ¢ and *. The propa-
gators are non-relativistic (i.e. with poles only in one half-plane). The contractions represent
the thermally averaged amplitude squared for a process in which a heavy v interacts with
an off-shell h. Let k be the momentum transfer from h, so that q = p + k, where p and q
are the momenta of 1 before and after the interaction. Estimating p ~ /m,T and k ~ T
(see below), and employing non-relativistic energies €, = p?/(2my) and ¢, = ¢*/(2my,), the
Boltzmann weight does not depend on k to leading order in 7'/m,,

_ .k T
A S L S e (A.9)
T m@T m(p
Therefore the thermal average over k effectively localizes hy,

//eik'x hyx = ho . (A.10)
k Jx

Furthermore the overall density of the charge matter particles (determined by the chemical
potential ) cancels between the numerator and denominator. Thus we are left with

2

K 'U2 3
5 ZF[@iho, @ho] + ... (A.ll)
® i=1

= Tom

The next step is to consider various interactions experienced by the Higgs boson,
S o / hX) O(X) + ... | (A.12)
X=(t,x)

where only operators linear in i need to be included at leading order. Going to momentum
space and contracting over the (off-shell) Higgs boson yields

k202 k2 .
‘- 12mg20/k(k2+m%)2/xe [[Ox, Oo] + ... (A.13)

where k = k|, [, = [ %1)‘3, and we went to the static limit as required by the definition of I'.

A further simplification follows by noting that the momentum integral is saturated by
k ~ 7T < my, cf. egs. (A.16) and (A.19). Therefore the momentum diffusion coefficient can
be approximated as

K]QU2 -
¢~ 7/1@2/ RXT[Of, O] + ... . (A.14)
k

2.4
12m@mh x

In other words, the Higgs exchange is a contact interaction at low energies. We stress that
the operator Oy is gauge invariant under QCD, and that therefore eq. (A.14) is defined and
computable beyond perturbation theory.
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To proceed with a leading-order evaluation of eq. (A.14), consider first a fermionic
operator containing the b quark, -
hy bb
Op = ——. A.15
F \/i ( )
In the numerical illustrations in figure 1, we also include the ¢ quark. A few-page thermal
field theory computation yields

ex hiNo(k* 4+ 4mi)T
/Xek T[Opx, Opo] = 22 (47Tk b) nF(./k2/4+mg>+O(hZas), (A.16)

where ny is the Fermi distribution. Changing variables, we finally get

4K*mZN.T 3, 2 9 313 k2m2 N7
N d - < A7
Cr 3B o, yy (y~ —my)ne(y) < 8omZmi (A.17)

where the upper bound is saturated in the limit m; < «7T. Numerically, the upper bound
gives a fairly good approximation for charm quarks.
As a second example, we consider the bosonic operator obtained by integrating out the

top quark [22],
asGL, G
O, = —_"mw= A.18
B 1271'7} ) ( )
whose relevance for thermal considerations has been underlined in ref. [23]. In this case we

obtain

: 2(N2-1)KT k
/ X XT[Opx, Opo] = ( s ) (N ) ng () +0(a?), (A.19)
x ’ ’ 127v T 2
where ng is the Bose distribution. Changing variables and carrying out the integral yields
JNZ-1)T 1673 k%02(N2 — 1)T7
~ d = . A.20
s 277r5m2 mh / vy nn(y 405mamh ( )

In order to illustrate the magnitude of these corrections, we show in figure 1 (left) how
they can be converted into the coupling &, defined in eq. (2.12).
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