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1 Introduction

The (weak) rare decays of B-mesons have been the focus point of theorists and experi-
mentalists for some time, which is due to the potential they provide for the tests of the
Standard Model (SM) at scales of several hundreds of GeV. Getting experimental infor-
mation on rare decays puts strong constraints on the extensions of the SM, or can lead
to disagreements with the SM predictions, providing evidence for new physics. To make
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a rigorous comparison between experiment and theory, one has to get refined theoretical
predictions for the rare decay at hand. For the inclusive rare B-decays, the perturbative
strong interaction effects result in sizable contributions.

In view of the expected increase in precision for the experimental measurements of
the decay B → Xsγ, a full next-to-next-to-leading logarithmic order (NNLL) calculation
is necessary to reduce the theoretical uncertainties and to enable us to perform a rigorous
comparison with existing and future experimental data. The first estimate of the branching
ratio at O(α2

s), leading to B(B → Xsγ) = (3.15 ± 0.23) × 10−4, was done in [1], which is
consistent with the experimental averages at the 1.2 σ level. An updated version for this
branching ratio, incorporating all results for NNLL contributions and lower-order pertur-
bative corrections that have been calculated after 2006, was published in our paper [2]. For
the CP- and isospin-averaged branching ratio we found B(B → Xsγ) = (3.36±0.23)×10−4

which is in agreement with the current experimental averages.
It is well known that a part of the α2

s contributions in [2] was obtained via interpolation,
i.e., using the results obtained through the large mc asymptotic expansion on one hand and
the results formc = 0 on the other hand. In the process of evaluating α2

s corrections directly
at the physical value of mc in [3], the part stemming from diagrams with closed fermion
loops on gluon lines that contribute to the interference of the current-current and photonic
dipole operators was calculated, extending previous work on such contributions [4–6].

The present paper is devoted to the computation of virtual α2
s corrections to the decay

amplitude for b→ sγ associated with the current-current operators1 O1 and O2, where we
concentrate on contributions which do not involve closed fermion loops on gluon lines. The
corresponding three-loop diagrams are rather complicated to calculate and we therefore
divide the complete work into several (gauge invariant) classes of diagrams. In this paper
we describe in detail our computational methods and explicitly work out those diagrams
where no gluons are touching the b-quark line (see figure 1).

The remainder of this paper is organized as follows: in section 2 we briefly present
the theoretical framework and a few conventions. In section 3 we decompose the decay
amplitude into form factors which can be written as linear combinations of scalar integrals
(SIs); we then reduce the SIs to master integrals (MIs) and formulate differential equations
for the latter. Furthermore we discuss that two methods are needed to work out the master
integrals. In section 4 we present the method based on the canonical form of the differential
equations which allows us to analytically work out the MIs for many diagrams. However,
for four diagrams we did not manage to transform the corresponding MIs into canonical
form. Therefore, in section 5, we present another method to compute these MIs which
is based on an expansion in powers and logarithms of z (z = m2

c/m
2
b) around z = 0. In

section 6 we write the results for all diagrams calculated in this paper as an expansion on
this type, retaining terms up to z5 (and keeping all the accompanying powers of log(z)).
In section 7 we summarize our work and give a short outlook. The results for individual
diagrams (or sets thereof) are submitted in electronic form together with the paper, as
described in appendix A.1.

1The present paper is an extension of our old work on the corresponding α1
s corrections [7].
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2 Theoretical framework

B-meson or b-quark decay amplitudes are usually calculated within the Weak Effective
Theory (WET) where the SM particles with EW-scale masses have been integrated out.
The WET Lagrangian then contains QCD and QED interactions, and a tower of higher
dimensional local operators which is typically truncated at dimension six [8, 9]. The part
of the WET Lagrangian which is relevant for the contributions discussed in this paper is:

LWET = L(4) + 4GF√
2
V ∗tsVtb

[
C1O1 + C2O2 + C7O7

]
, (2.1)

where

O1 = (s̄γµPLT ac)(c̄γµPLT ab) , O2 = (s̄γµPLc)(c̄γµPLb) ,

O7 = e

16π2mb(s̄σµνPRb)Fµν . (2.2)

L(4) contains the usual kinetic terms and the mass terms of the quarks u, d, s, c, b as well
as their interactions with the photon and the gluons. We use the following conventions:
PR,L = (1 ± γ5)/2, σµν ≡ (i/2)[γµ, γν ], the covariant derivative is given by Dµq = (∂µ +
ieQqAµ + igsT

AGAµ )q, and mb = mb(µ) denotes the MS b-quark mass. In our calculation
of order α2

s corrections from O1,2, the scheme dependence of mb is a higher order effect.
Furthermore, we will neglect the strange quark mass throughout our paper.

3 Reduction of the decay amplitude to master integrals

In this section we briefly describe the algebraic steps which reduce the evaluation of a given
three-loop diagram in figure 1 to the computation of so-called master integrals (MIs). To
this end, we decompose in section 3.1 the individual diagrams into form factors which can
finally be represented as a linear combination of Scalar Integrals (SIs). In section 3.2 we
decompose these SIs into MIs. In section 3.3 we derive differential equations which govern
the dependence on the charm quark mass of the MIs. In section 3.4 we briefly discuss our
intention of how to calculate the MIs appearing in the various diagrams.

3.1 Form factor decomposition and scalar integrals

Using the standard Feynman rules in momentum space, the contribution to the decay
amplitude A(b→ sγ) from a given Feynman diagram i in figure 1 can be written as A(i) =
M

(i)
µ εµ, where εµ denotes the polarization vector of the emitted photon. After performing

purely algebraic manipulations like reductions of tensor integrals to scalar integrals (or
alternatively using appropriate projection techniques) and freely using the equations of
motion of the quark spinors and putting the strange quark mass to zero (ms = 0), M (i)

µ

can be written in the form

M (i)
µ = ūs(ps)PR

[
A(i) qµ +B(i) pµ + C(i) γµ

]
ub(p) . (3.1)

In this equation ub(p) denotes the Dirac spinor of the b-quark with four-momentum p,
us(ps) is the analogous quantity for the s-quark with four-momentum ps and q = p− ps is
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Figure 1. List of those three-loop contributions to b → sγ associated with O1 and O2 which are
worked out in this paper. A cross or a dot on a quark line represents a possible place where the
photon can be emitted. While the diagrams marked by a dot will be taken into account in a future
work (in connection with renormalization), we worked out the effects on the b→ sγ decay amplitude
of all diagrams with numbered and unnumbered crosses in this figure. To this end, as discussed in
detail in section 3.1, only the diagrams with numbered crosses had to be calculated explicitly.

the four-momentum of the emitted photon. At this level, the form factors A(i), B(i), C(i)

are given in terms of linear combinations of scalar three-loop integrals. After performing
these integrals and taking into account that q2 = 0 in our process, these form factors are
functions of mb and mc (and depend also on the renormalization scale µ).

Consider now a sum of diagrams which is gauge invariant with respect to QED. The
quantity Mµ corresponding to this sum then satisfies qµMµ = 0, leading to the relation
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C = −mb
2 B, where B and C denote form factors of the this sum. Using this relation, the

corresponding gauge invariant amplitude A = Mµε
µ can then be written as

A = − 4π2

emb
B 〈O7〉tree , (3.2)

where the tree-level matrix element of the operator O7 reads

〈O7〉tree = emb

16π2 ūs(ps)PR [−4pµ + 2mbγµ]ub(p) εµ . (3.3)

Form eq. (3.2) we see that a gauge invariant amplitude A can be written in such a way
that only the form factor B appears. As the aim of our paper is to calculate the sum of all
the diagrams in figure 1, which is gauge invariant, it is sufficient to calculate only the form
factors B(i) of each individual diagram i. It is easy to see that those diagrams in figure 1
which are marked with a cross that does not carry a number, only would contribute to the
form factors C(i). Therefore only the diagrams with numbered crosses (1–44) have to be
worked out. A remark concerning the diagrams, where the photon emission is marked by
a “dot”, is in order: we will take into account these contributions when working out the
2-loop counter-terms in a further publication.

We now discuss how to evaluate the scalar quantities B(i) for the three-loop diagrams
listed in figure 1. To have a concrete example let us have a look at diagrams 1 and 2
for which the momentum routings can be chosen such that the same propagators (i.e.
denominators) appear which allows to sum these two diagrams from the very beginning.
The results for the functions B(i) are given in terms of dimensionless three-loop scalar
integrals of the type:

j[n1, . . . , n12] = (2π)−3d
∫ (m2

b)N−6(µ̃2)3ε dd` ddr1 d
dr2

Pn1
1 Pn2

2 Pn3
3 Pn4

4 Pn5
5 Pn6

6 Pn7
7 Pn8

8 Pn9
9 Pn10

10 Pn11
11 Pn12

12
(3.4)

where the numbers ni are integers (positive or negative), with N =
∑12
i=1 ni, the objects Pi

are propagators (see below). In addition, d = 4 − 2ε, and µ̃2 ≡ µ2eγE/4π, with µ the MS
scale. Our choice of momentum routings fixes the first eight propagators, while the other
four (sometimes called artificial propagators) are chosen such that the twelve propagators
form a linearly-independent set (in the sense that all occuring scalar products involving
only loop-momenta or scalar products between loop-momenta and external momenta can
be written as a linear combination of these propagators). Explicitly, the complete list of
propagators needed for diagrams 1 and 2 reads:

P1 = (`+ q)2 −m2
c , P2 = `2 −m2

c , P3 = (`+ r2)2 −m2
c ,

P4 = (`+ r1 + r2)2 −m2
c , P5 = r2

1 , P6 = r2
2 , (3.5)

P7 = (r2 + ps)2 , P8 = (r1 + r2 + ps)2 , P9 = (r1 + r2)2 ,

P10 = (`+ ps)2 , P11 = (r1 + q)2 , P12 = (r2 + q)2 .

Returning to the complete list of diagrams in figure 1, we define the following sets
of diagrams, in order to economize our calculation: (1, 2), (3, 4), (5, 6), (7, 8), (9, 10),
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(11, 12), (13, 14), (15, 16, 17, 18), (19, 20), (21, 22, 23), (24, 25), (26), (27), (28, 29), (30),
(31), (32, 33), (34), (35, 36), (37, 38, 39, 40), (41, 42) and (43, 44). In a given set the mo-
mentum routings can be chosen in such a way that the same propagators appear, allowing
to sum the diagrams in this set from the very beginning. In the supplementary material
submitted together with the present paper, we will give for each set j the corresponding
form factor contribution B(j). In the following we describe the analytic calculation of the
three-loop scalar integrals.

3.2 IBP reduction and master integrals

At this point, the result for a given set j of diagrams is a linear combination of many
scalar integrals. We can now apply integration-by-parts identities (IBPs) to reduce the
scalar integrals to a small set of master integrals (MIs). For this purpose we use the code
KIRA [10–15] which implements Laporta’s algorithm [16]. In earlier stages of our work
also the program LiteRed [17, 18] was used.

After reduction, we are left with N three-loop MIs for the considered set. For example,
for set (1, 2) we get the MIs Ji (i = 1, . . . , 27), which are listed in appendix B.

We now perform some simplifying operations on the master integrals. First, we express
the integrands in terms of the dimensionless variable

z ≡ m2
c/m

2
b . (3.6)

Second, in order to do a rational transformation to a canonical basis of master integrals
whenever possible, we make a change of variable z 7→ x, where x = x(z) is a function to be
specified later. In terms of this new variable the dimensionless MIs are denoted as Ji(ε, x).

3.3 Differential equations for the master integrals

For a given set we first construct the system of differential equations for the MIs:

∂x Jk(ε, x) = ak`(ε, x) J`(ε, x) , (3.7)

where a is a N × N matrix depending on ε and x. The derivatives of the MIs Jk are
performed by differentiating the integrands, which produce new scalar integrals, and then
applying the IBP reduction again on these scalar integrals to express the derivatives ∂x Jk
themselves in terms of the MIs Jk. One can then read off the matrix a.

3.4 Methods used to calculate the master integrals

For all sets except (11, 12) and (13, 14), we managed to transform the corresponding dif-
ferential equations into canonical form. These canonical equations can then be iteratively
solved as an expansion in the dimensional regulator ε. In these solutions the dependence
on the charm-quark mass is contained in Generalized Polylogarithms (GPLs). In each it-
eration step new integration constants come into the game. The details for computation
of the MIs for these diagrams (including comments about fixing the integration constants)
are presented in section 4. We stress that this method is purely analytic and therefore the
preferred one.
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For the MIs in sets (11, 12) and (13, 14), however, we did not manage to find a trans-
formation to a canonical basis. We therefore used another method by performing a series
expansion at z = 0 (i.e., in terms of powers and logarithms of z = m2

c/m
2
b). This method

is described in some details in section 5.

4 Solving MIs via canonical form

In this section we explain the details of the calculation of the MIs whose differential
equations can be transformed to canonical form (i.e., the MIs of all sets except (11, 12)
and (13, 14)).

4.1 Canonical form and iterative solution

Adapted to our situation where the MIs depend (besides the dimensional regulator ε) only
on one variable x, a basis of MIs is said to be “canonical” [19] if a(ε, x) = εA(x), with
A(x) being a N ×N matrix independent of ε. Given a canonical basis ~M , the differential
equation has the form:2

∂x ~M(ε, x) = ε A(x) ~M(ε, x) . (4.1)

Once a canonical basis is found, the system of differential equations can be solved
automatically order by order in ε. To keep the notation as simple as possible in this
section, we will assume that all the master integrals in the canonical basis are regular in
ε (if not, we redefine them by multiplying all of them with the same appropriate power of
ε). We then write the ε-expansion for the master integrals

~M(ε, x) =
∞∑
n=0

εn ~Mn(x) (4.2)

and the differential equation reads:

∂x ~Mn(x) = A(x) ~Mn−1(x) . (4.3)

Using partial fraction decomposition, A can be written in the form

A(x) =
∑
j

Aj

x− wj
, (4.4)

where Aj is a set of constant matrices, and the quantities wj are called the “weights”,
which in our application are just constants.3

The differential equation (4.3) can be solved iteratively: as ~M−1(x) = 0 (see eq. (4.2)
and the text before this equation), (4.3) implies that ~M0(x) is constant, i.e., ~M0(x) = ~C0.

2A similar presentation is given in our paper [20] for the case where the MIs depend on two variables x
and y.

3In all diagrams calculated with this method the denominators on right-hand side of eq. (4.4) only
contain linear powers.

– 7 –
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From ~M0(x), we can get ~M1(x) by just integrating (4.3) for n = 1 with respect to x. This
step brings in a new integration constant ~C1. Repeating this procedure, we get

~M0(x) = ~C0 ,

~M1(x) =
∑
j1

[
Aj1 G(wj1 ;x)

]
~C0 + ~C1 ,

~M2(x) =
∑
j2,j1

[
Aj2 Aj1 G(wj2 , wj1 ;x)

]
~C0 +

∑
j2

[
Aj2 G(wj2 ;x)

]
~C1 + ~C2 ,

~M3(x) = · · · (4.5)

etc., in terms of Generalized Polylogarithms (GPLs) [21], defined iteratively as [22]

G(w1, . . . , wn;x) =
∫ x

0

dt

t− w1
G(w2, . . . , wn; t) ; G(;x) = 1 ; G(~0n;x) = logn x

n! , (4.6)

where ~0n denotes n consecutive zeroes.
Thus, the problem of calculating the MIs is reduced to find a canonical basis and

to fix the integration constants, which is a much more tractable challenge. In order to
find canonical master integrals, we used the mathematica program CANONICA [23] (and
for some checks also the program Libra [42]). The CANONICA code is able to look for
transformations that involve rational functions of the argument x. For this reason, the
“right” variable x must be found before using this program. Starting from our original
variable z = m2

c/m
2
b , we define x as

x = 1√
1− 4z

(4.7)

in all sets considered in this paper. In terms of this variable and with the help of CANON-
ICA, we are able to find linear transformations

Mk = (T−1)k`(ε, x) J` , (4.8)

such that the MIs Mk constitute a canonical basis. The weights occuring in the considered
sets read:

w0 = 0, w1 = 1, w2 = −1, w3 = i√
3
, w4 = − i√

3
, w5 = 1√

5
, w6 = − 1√

5
. (4.9)

We stress that the chosen variable x has the property that it tends to zero when z goes
to infinity. In this limit, the functions G(. . . ;x) can be expanded in a straightforward way
for small values of x. This turns out to be very useful when fixing the integration constants
in the following section, because we will heavily make use of the asymptotic properties of
the originals integrals Jk in the limit where x goes to zero.

4.2 Fixing integration constants

Once the canonical basis is found for a given set of diagrams and the general solution of the
differential equations in this basis is constructed, we have to fix the integration constants.

– 8 –
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To this end we transform in a first step the MIs ~M back to the original basis consisting of
the MIs Jk by making use of the transformation matrix T (i.e. eq. (4.8)). The constants
are then determined by computing some of the simpler MIs Jk in a traditional way (i.e.
through Feynman parametrization), while for the more difficult MIs asymptotic properties
in the limit z → ∞ can be worked out. These properties follow in a straightforward way
from the heavy mass expansion (HME) of a given integral [24].

To be somewhat more concrete, we briefly explain which properties/statements were
used to fix the constants for the 27 MIs appearing in the set (1, 2) (see equations (B.1)
and (3.5)):

1. J1 and J2 can easily be worked out traditionally.

2. In the limit for large mc (mc � mb) the other 25 integrals can be naively Taylor
expanded in the external momenta and in mb. Note that in set (1, 2) the only
contributing subdiagrams of the MIs in the sense of the HME are just the full diagrams
(i.e. the full MIs) and therefore the naive Taylor expansion is justified. The leading
power (i.e. the maximal power) in the large mc-expansion of a given integral Jk is
then of the form mn−6ε

c , where the integer n is identical to the mass dimension of the
integral (strictly speaking of the integral in which the factor (m2

b)N−6(µ̃2)3ε in the
definition (3.4) is understood to be omitted); the structure of Jk is

Jk = Kmn−6ε
c P (m2

b/m
2
c) , (4.10)

where K is a constant prefactor (w.r.t. mc) and P is a polynomial of the indicated
argument. The GPLs in the general solution for the MIs (from the differential equa-
tions) can easily be expanded for large z. Very often, the expanded solution for a
given integral contains higher powers in mc than that determined from the HME
argumentation. The requirement that these terms are absent allows to determine
some of the integration constants. From the HME structure it is also clear that n in
equation (4.10) is an even integer; this information again fixes some of the integra-
tion constants.

3. The leading power in mc of the MI J6 (which scales like m4−6ε
c in the large mc limit)

coincides with J2.

4. The HME of the MI J23 produces only the following powers of mc: mn−6ε
c , where n

is an integer in the range n = 2, 0,−2,−4, . . . . Therefore, when multiplying J23 with
m+6ε
c and then expanding in ε, there can be no logarithms in mc. This property fixes

the remaining constants in set (1, 2).

It is worth emphasizing that in set (1, 2) all constants can be fixed by the explicit knowledge
of J1 and J2 and structural information resulting from HME on the (integer parts) of the
powers of mc and on the logarithms in mc. The explicit HME evaluation of the MIs is not
even necessary.

For many other sets of diagrams the fixing of the integration constants works in a
similar way. However, in some sets the HME of certain MIs requires to analyze genuine

– 9 –
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subdiagrams which make the extraction of the constants somewhat more complicated.
Furthermore, in set (21, 22, 23) a three-loop tadpole integral with four charm-lines appears
which we could not calculate analytically; we took the results from [25] where this integral
was calculated numerically to very high precision. To close this section, we note that
our final results for all MIs have been checked numerically using Sector Decomposition as
implemented in SecDec [26, 27] or PySecDec [28–38].

4.3 Expansion around z = 0

The MIs of all sets (except (11, 12) and (13, 14)) are now given in terms of GPLs and all the
integrations constants are fixed. However, the corresponding expressions are lengthy and
the numerical evaluation (for example using GiNaC [39–41]) of the large number of GPLs
is time-consuming. We therefore decided to expand all GPLs around z = 0 (leading to
powers and logarithms of z). Needless to say, the physical value of z ∼ 0.1 is considerably
smaller than 0.25, corresponding to the radius of convergence of this expansion. Using the
expanded versions of the MIs, we worked out the form factor contributions B(i) for the
individual sets i of diagrams. The results for these B(i) quantities, consistently expanded
up to the power z10 (and including all power of log(z)), can be found in the mathematica
file ancillary.m available as supplementary material (for details see appendix A.1).

5 Calculating the MIs in sets (11, 12) and (13, 14)

5.1 Solving the differential equations as an expansion for small z

As we already mentioned in section 3.4, we could not find transformations of the MIs Jk
to a canonical basis for the sets (11, 12) and (13, 14), and therefore we propose another
method for these two sets. As the physical value of z = m2

c/m
2
b is a small parameter

(actually of order 0.1), we construct a series expansion for the solutions around z = 0. We
start with the differential equation in matrix form as

∂z ~J(ε, z) = A(ε, z) ~J , (5.1)

where A(ε, z) is an N ×N matrix (N is the number of MIs) which depends on z and ε in
a rational way. First of all we transform the differential equation into Fuchsian form (see
e.g. [42]), i.e. in such a way that the transformed version of A has at most 1/z singularities
in all entries. This can be achieved by transforming ~J 7→ ~J ′ = L−1 ~J with a diagonal
matrix L with entries of the form Lii = zni , where ni are suitably chosen integers. The
transformed matrix, denoted by A1 then reads

A1 = ∂L−1

∂z
L+ L−1AL . (5.2)

By construction, the singular part of A1, denoted by As, is then proportional to 1
z . In

the next step we apply a further transformation ~J ′ 7→ ~J ′′ = S−1 ~J ′ which brings As to
Jordan form, i.e. to a matrix with upper triangular form, for which only the elements on
the diagonal and above the diagonal are nonzero. Practically, this is done in Mathematica,

– 10 –
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using the command S = JordanDecomposition[As][[1]]. Note that S depends on ε, but not
on z. The MIs ~J ′′ then obey the differential equation

∂z ~J
′′ = A2(ε, z) ~J ′′ with A2 = S−1A1S . (5.3)

This first-order linear differential equation, which we now want to solve, will have N linearly
independent fundamental solutions: ~J ′′1 , . . . , ~J ′′N . We first construct the leading part of these
solutions which correspond to take the 1

z part of A2 in (5.3). We stress that these parts can
be easily obtained (e.g. in Mathematica), because the leading part of A2 is by construction
in Jordan form. It is instructive to explicitly display the leading part for a few of the N
solutions as they appear when calculating the MIs for set (11, 12) (where the number of
MIs is 31). Using ` = log(z), we have:

~J ′′1,lead = z(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~J ′′5,lead = z2−3ε(0, 0, 0, 0, `, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~J ′′6,lead = z2−3ε(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~J ′′9,lead = z3−2ε(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

~J ′′26,lead = z3−3ε
(

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, `
2

2 , `, 1, 0, 0, 0, 0, 0
)
.

(5.4)

We see that the leading solutions are proportional to z(n0−m0 ε) and also involve powers of
log(z). When taking into account all the N fundamental solutions, we find that n0 = 1, 2, 3,
m0 = 0, 1, 2, 3, 4 and the maximal power of log(z) is 2. In order to get the subleading terms
of the fundamental solutions (i.e. higher powers in z), we make an ansatz: when the leading
power of a given fundamental solution is proportional to zn0−m0 ε, we add to i-th component
of the leading part the following term

nmax∑
n=n0+1

zn−m0 ε(c0
i,n + c1

i,n log(z) + c2
i,n log2(z)) , (5.5)

where the quantities c0,1,2
i,n denote ε-dependent coefficients. We then insert this ansatz into

the differential equation (5.3) and expand the left- and right-hand side up to order nmax−1.
Requiring the corresponding powers of z and log(z) to be equal, leads to a system of linear
algebraic equations for these coefficients, which can be solved directly. In such a way we
get N linear independent fundamental solutions ~J ′′1 , . . . ,

~J ′′N which contain powers up to
znmax−m0 ε together with log(z)-terms up to second power. Then we transform back each
of these N fundamental solutions to the original basis by doing the inverse transformations
with S and L, leading to the N fundamental solutions ~J1, . . . , ~JN . The original MIs ~J ,
which we are finally interested in, are then linear combinations of the N fundamental
solutions, i.e.,

~J =
N∑
i=1

Ci(ε) ~Ji . (5.6)
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The N coefficients Ci(ε) play the role of integration constants, which we will fix below
by exploiting suitable information extracted from the integral representations of the MIs
near z = 0. We note that so far no expansion in ε was performed. Also note that the
MIs ~J are known with a maximum power of z which is less than nmax, because the back
transformation matrix L contains terms proportional 1

zi with positive i.

5.2 Fixing the integration constants Ci(ε)

We briefly describe how to fix the integration constants Ci(ε) which appear in eq. (5.6).
To this end, it is convenient to cast this equation in component form:

Jk =
N∑
i=1

Ci(ε)Ji,k . (5.7)

Note that the ε dependence of the fundamental solutions Ji,k on the right hand side of this
equation is still exact (i.e. not expanded), while the z-dependence is contained in terms of
the form

zn−m0ε , zn−m0ε log(z) , zn−m0ε log2(z) , (5.8)

where n is a non-negative integer and m0 = 0, 1, 2, 3, 4. For each Jk we now build a leading
power version J lead

k by keeping for any given m0 only all the terms with the smallest n.
To gain information on the integration constants, we use the method of regions (see

e.g. [43–45]), in particular the version formulated in Feynman- or α-parameter space as
described in sections 9.2 and 9.3 in [44, 45], respectively. This version is implemented in
the program FIESTA5 [46] (which we mainly called with the QMC integrator [47]; for
checks we also called FIESTA5 with the VEGAS integrator [31]). This program (after
some minor adaptions done by us) allows to numerically calculate the leading versions of
the MIs Jk directly from their integral representations. For many MIs we could check
specific regions even analytically by using the program HyperInt [48].

The requirement that the leading versions of the left- and the right-hand side of eq. (5.7)
coincide, fixes the integration constants.

5.3 Numerical consistency studies for set (11, 12)

In this section we investigate a few aspects of the form factor contribution B(11,12) corre-
sponding to the set (11, 12). We write this contribution as

B(11,12) = pref · B̂ with pref = −emb

4π2 g4
s

(
µ2

m2
b

)3ε

. (5.9)

Figure 2 shows the finite part (i.e. ε0 part) of the dimensionless quantity B̂, where the solid
curves are obtained as described in sections 5.1 and 5.2. The results for negative values of
z are related to those for positive z (i.e. physical values) via analytic continuation through
the lower z-half-plane. As a consistency check, we calculated B̂ for the values z = 1/100,
z = 1/15, z = 1/10 and z = 1/8 by directly working out the 31 MIs numerically at these
values for z using SecDec and/or PySecDec (without using method by region features).
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Figure 2. Form factor contribution 104 × B̂ as defined in eq. (5.9). See text for details.

These results are shown by red dots in figure 2. Furthermore, we did a similar direct
numerical calcuation using FIESTA5 for the corresponding negative values for z (again
without using method by region features). These results are also shown by red dots in
figure 2. Finally, we did a completely new calculation by putting z = 0 from the very
beginning. In this case, the form factor contribution B̂ is given in terms of only 3 MIs,
viz. J7, J18 and J25 (see eq. (C.2)), which we calculated for mc = 0 using SecDec. The
corresponding result is also show by a dot. We think that figure 2 nicely shows the intrinsic
consistency of our approach.

6 Result as a power series on z and log(z)

In this paper we worked out the contributions to the b→ sγ decay amplitude of all three-
loop diagrams in figure 1 which are marked with crosses (both numbered and unnumbered
crosses). We denote the contributions related to the operators O1 and O2 as A1 and A2,
respectively. These diagrams form a gauge invariant set (w.r.t. to QED) and therefore,
as detailed in section 3.1, it is sufficient to explicitly calculate the form factor B (see
eq. (3.2)) to which only the diagrams with numbered crosses contribute. While the form
factor contributions B(i) from the individual sets of diagrams are given in electronic form
in the file ancillary.m (see appendix A.1), we give here the results for A1 and A2 as
power series on z where we list terms up to z5. For a given power of z we retain all powers
of log(z), which practically means up to log5(z) as there are no higher log-powers. The
results read (for k = 1, 2)

Ak = g4
s

(
µ2

m2
b

)3ε

〈O7〉tree

c(k,−2)

ε2
+

5∑
i=0

5∑
j=0

(1
ε
c

(k,−1)
ij + c

(k,0)
ij

)
zi log(z)j

 , (6.1)
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O1,
1
ε z0 z1 z2 z3 z4 z5

log(z)0 0.298 + 0.255I 1.047− 1.616I 0.733 + 3.407I −1.441− 3.546I −0.390− 0.258I −0.224− 1.412I

log(z)1 0 0.834− 1.138I 2.870− 0.550I −1.268 + 1.300I −0.0821− 0.0111I −0.449− 0.0691I

log(z)2 0 −0.240− 0.653I −0.0875− 0.852I 0.207 + 0.0664I −0.00176 −0.0110

log(z)3 0 −0.0693 + 0.0187I −0.0904 0.00704 0 0

log(z)4 0 0.00148 0 0 0 0

log(z)5 0 0 0 0 0 0

Table 1. Numerical values for 103 × c(1,−1) (see equation (6.1)).

O1, ε
0 z0 z1 z2 z3 z4 z5

log(z)0 0.0702 + 0.281I 1.248− 0.655I −3.087 + 1.928I 4.573− 1.446I −1.544− 1.130I 2.270− 1.244I

log(z)1 0 0.444− 0.0479I 1.128 + 0.958I −1.392− 1.805I −0.0765 + 1.372I −0.201− 1.063I

log(z)2 0 −0.033− 0.158I −0.257− 0.162I −0.0339 + 0.261I 0.360− 0.0760I −0.185− 0.0401I

log(z)3 0 −0.001 + 0.099I 0.00390 + 0.164I 0.00704− 0.0334I −0.00789− 0.0412I −0.00315 + 0.0265I

log(z)4 0 0.0131− 0.000829I 0.0198− 0.00296I −0.00318 −0.00328 0.00211

log(z)5 0 −0.000142 −0.000188 0 0 0

Table 2. Numerical values for 102 × c(1,0) (see equation (6.1)).

O2,
1
ε z0 z1 z2 z3 z4 z5

log(z)0 −1.227− 1.051I −4.920 + 7.970I −4.460− 17.128I 7.240 + 18.141I 2.066 + 1.436I 1.157 + 7.770I

log(z)1 0 −3.441 + 5.822I −14.052 + 3.298I 6.608− 6.454I 0.457 + 0.0664I 2.473 + 0.415I

log(z)2 0 1.278 + 2.912I 0.525 + 4.106I −1.027− 0.398I 0.0106 0.066

log(z)3 0 0.309− 0.112I 0.436 −0.0422 0 0

log(z)4 0 −0.0089 0 0 0 0

log(z)5 0 0 0 0 0 0

Table 3. Numerical values for 103 × c(2,−1) (see equation (6.1)).

O2, ε
0 z0 z1 z2 z3 z4 z5

log(z)0 −0.330− 1.157I −2.922 + 2.250I 1.091− 6.952I 0.0581 + 1.884I −16.856 + 5.502I 3.643 + 10.932I

log(z)1 0 −1.284− 1.243I −5.118 + 2.733I −1.066− 6.449I 1.349 + 11.105I 3.797− 7.035I

log(z)2 0 0.107 + 0.0505I 2.071 + 1.250I −2.180 + 1.694I 2.752− 0.124I −2.469− 0.441I

log(z)3 0 −0.120− 0.515I 0.193− 0.671I 0.282 + 0.131I −0.0142− 0.335I −0.0534 + 0.311I

log(z)4 0 −0.0642 + 0.0162I −0.0861− 0.0271I 0.0136 −0.0267 0.0248

log(z)5 0 0.00156 −0.00172 0 0 0

Table 4. Numerical values for 102 × c(2,0) (see equation (6.1)).

where c(1,−2) = 0.00002701 + 0.000006681 z, c(2,−2) = −0.0001115 − 0.00004008 z, and
c

(1,−1)
ij , c(1,0)

ij , c(2,−1)
ij , c(2,0)

ij are given in tables 1, 2, 3 and 4. We mention that the reader
can easily obtain results for A1 and A2 up to the z10 by using the information in the file
ancillary.m. The results when going up to z5 and those when going up to z10 are close
to each other, for instance for z = 1/8 the relative difference is only of order 0.5%.
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7 Summary and outlook

In this paper we worked out three-loop diagrams (of order α2
s) contributing to the decay

amplitude for b → sγ associated with the current-current operators O1 and O2 at the
physical value of mc. As the corresponding calculations are among the hardest we have
ever done, we concentrated only on the well-defined class of diagrams where no gluon is
touching the b-quark line (see figure 1) in this paper; note that we did not work out the
diagrams with closed fermion bubbles inserted into gluon-lines, because these contributions
already exist in the literature. For many diagrams we could solve the master integrals using
differential equations in the canonical form, as presented in section 4. However, for the four
diagrams (11–14) we could not find a transformation to canonical form and we therefore
calculated in section 5 the corresponding master integral directly as an expansion around
z = 0, retaining power terms up to z10 and keeping the accompanying log(z) terms to all
powers. The results for the sum of all considered diagrams are given in tabular form in
section 6 and also in electronic form in the file ancillary.m, which is submitted together
with this paper (see appendix A.1). Making use of the two methods discussed in this paper,
we are confident that we will manage to work out the remaing three-loop diagrams (at the
physical value of mc), completing the virtual QCD corrections of order α2

s to the decay
amplitude A(b→ sγ) associated with O1 and O2.
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A Details on the supplementary material

A.1 Results for the individual contributions to the form factor B in elec-
tronic form

In the mathematica-file ancillary.m (available as supplementary material) we give the
contributions to the form factor B (see eq. (3.1)) for the following 22 sets of diagrams:
(1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12), (13, 14), (15, 16, 17, 18), (19, 20), (21, 22, 23),
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(24, 25), (26), (27), (28, 29), (30), (31), (32, 33), (34), (35, 36), (37, 38, 39, 40), (41, 42) and
(43, 44). In this file, the contributions from sets (1, 2) and (37, 38, 39, 40) are denoted as
“B1to2” and “B37to40”, respectively (and so on). The expressions contain the results as
an expansion in z (around z = 0), where terms up to z10 are retained. Note that for a
given power of z all powers of log(z) are kept. The formulas contain the symbolic prefactor
“pref”, which amounts to

pref = −emb

4π2 g4
s

(
µ2

m2
b

)3ε

, (A.1)

as well as symbolic color-factors “col[i]”. The actual values for these color-factor are also
given in this file for both, the O1- and the O2-contributions; they are given as mathematica-
lists denoted by “coloro1” and “coloro2”, being written in terms of the number of colors
Nc (Nc = 3). If the form factor contributions related to O1 are of interest, the following re-
placement should be done (e.g. in the mathematica notebook into which the supplementary
material is imported):

col[i−] :> coloro1[[i]] (A.2)

Furthermore the formulas contain the symbolic charge-factors Qc and Qs (whose numerical
values are Qc = 2/3 and Qs = −1/3).

According to section 3.1, the decay amplitude corresponding to the diagrams considered
in this paper (see figure 1) is obtained through

Ak = − 4π2

emb
Bk 〈O7〉tree (k = 1, 2) , (A.3)

where Bk is the sum of the 22 form factor contributions associated with the operator Ok
(k = 1, 2). In order to check that the supplementary material works properly, the reader
is invited to reproduce the coefficents in eq. (6.1) (which are given in tables 1, 2, 3 and 4).

B List of master integrals for diagrams 1 and 2

In this appendix we list the master integrals (MIs) J1, . . . , J27 which appear in the calcu-
lation of the three-loop diagrams 1 and 2 contained in figure 1. The notation is described
in equation (3.4) and the explicit form of the propagators is given in equation (3.5).

The 27 MIs read:

J1 = j[1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] J2 = j[1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0]
J3 = j[1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0] J4 = j[1, 0, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0]
J5 = j[1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0] J6 = j[1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0]
J7 = j[1, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0, 0] J8 = j[1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0]
J9 = j[1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0] J10 = j[1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0]
J11 = j[1, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 0] J12 = j[1, 0, 1, 1, 0, 2, 0, 1, 0, 0, 0, 0]
J13 = j[1, 0, 1, 2, 0, 1, 0, 1, 0, 0, 0, 0] J14 = j[1, 0, 2, 1, 0, 1, 0, 1, 0, 0, 0, 0]
J15 = j[1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0] J16 = j[1, 0, 0, 1, 1, 1, 0, 2, 0, 0, 0, 0]
J17 = j[1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0] J18 = j[1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0]
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J19 = j[1, 0, 1, 1, 1, 1, 0, 2, 0, 0, 0, 0] J20 = j[1, 0, 1, 1, 1, 2, 0, 1, 0, 0, 0, 0]
J21 = j[1, 0, 1, 1, 2, 1, 0, 1, 0, 0, 0, 0] J22 = j[1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0]
J23 = j[1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0] J24 = j[1, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 0]
J25 = j[1, 0, 1, 2, 0, 0, 1, 1, 0, 0, 0, 0] J26 = j[1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0]
J27 = j[1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0] .

(B.1)

C List of master integrals for diagrams 11 and 12

In this appendix we list the master integrals (MIs) J1, . . . , J31 which appear in the calcu-
lation of the three-loop diagrams 11 and 12 contained in figure 1. The set of propagators
reads (where again the first eight are physical and the remaining four are artificial):

P1 = `2 −m2
c , P2 = (`+ q)2 −m2

c , P3 = (`+ r1)2 −m2
c ,

P4 = (`+ r2)2 −m2
c , P5 = (`+ r1 + r2)2 −m2

c , P6 = r2
1 ,

P7 = r2
2 , P8 = (r1 + ps)2 , P9 = (`+ ps)2 ,

P10 = (r1 + q)2 , P11 = (r2 + q)2 , P12 = (r2 + ps)2 .

(C.1)

The 31 MIs read:
J1 = j[1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] J2 = j[1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]
J3 = j[0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0] J4 = j[0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0]
J5 = j[0, 1, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0] J6 = j[1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0]
J7 = j[0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0] J8 = j[0, 1, 1, 1, 1, 0, 0, 2, 0, 0, 0, 0]
J9 = j[0, 1, 1, 1, 2, 0, 0, 1, 0, 0, 0, 0] J10 = j[0, 1, 2, 1, 1, 0, 0, 1, 0, 0, 0, 0]
J11 = j[1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0] J12 = j[1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 0, 0]
J13 = j[0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0] J14 = j[0, 1, 1, 1, 0, 0, 1, 2, 0, 0, 0, 0]
J15 = j[0, 1, 1, 1, 0, 0, 2, 1, 0, 0, 0, 0] J16 = j[0, 1, 1, 2, 0, 0, 1, 1, 0, 0, 0, 0]
J17 = j[0, 1, 2, 1, 0, 0, 1, 1, 0, 0, 0, 0] J18 = j[0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0]
J19 = j[0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 0, 0] J20 = j[0, 1, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0]
J21 = j[0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0] J22 = j[0, 1, 0, 1, 1, 0, 1, 2, 0, 0, 0, 0]
J23 = j[0, 1, 0, 1, 2, 0, 1, 1, 0, 0, 0, 0] J24 = j[1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0]
J25 = j[0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0] J26 = j[0, 1, 2, 1, 1, 0, 1, 1, 0, 0, 0, 0]
J27 = j[0, 2, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0] J28 = j[0, 1, 1, 1, 2, 0, 1, 1, 0, 0, 0, 0]
J29 = j[0, 1, 1, 2, 1, 0, 1, 1, 0, 0, 0, 0] J30 = j[0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0]
J31 = j[1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0] .

(C.2)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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