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1 Introduction

Gauge theories with non-compact gauge groups are notoriously difficult to make sense of,
issues including questions of convergence and propagators with the wrong signs which make
unitarity and hence the physical meaning of the theory far from clear. One set of theories
for which one may make some headway are topological field theories where a particle
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interpretation is not required. Our first investigation in that direction where the partition
function can be evaluated exactly [1] was to consider the Schwarz type theories [2–4] formally
representing the Ray-Singer Torsion [5, 6] which have non-compact symmetries. These
symmetries though are essentially Abelian and we would like to consider now a class of
theories with non-Abelian non-compact gauge groups. In particular we have in mind the
topological BF theories [7–10] based on a compact gauge group G. In two dimensions such
a theory is the zero coupling limit of Yang-Mills theory with gauge group G and as such
does not have an associated non-compact symmetry. In dimension greater than or equal to
3, however, BF theories possess additional non-compact shift symmetries. We will focus
on 3-dimensional BF theory here, where the combined gauge group turns out to be the
non-compact group TG, the tangent bundle group of G.

Witten [11] first introduced 3-dimensional BF theories as a variant of Chern-Simons
theory [12] for non-compact gauge groups (in fact, it can be regarded as a Chern-Simons
theory for the non-compact gauge group TG). The action is

IBF =
∫
M

Tr (B ∧ FA) (1.1)

where A is a connection on a G-bundle over M and B is a Lie algebra valued 1-form. The
action enjoys the usual compact G gauge symmetry, as well as a non-compact shift gauge
symmetry B → B + dAΛ. This theory is deceptively simple. The path integral over B
yields a delta function constraint on the curvature 2-form FA, so that formally the path
integral for the partition fuction of BF theory is

ZBF [M,G] =
∫
DADB exp

(
i

∫
M

Tr (B ∧ FA)
)
'
∫
DAδ (FA) (1.2)

This seems to suggest that the path integral simply reduces to an integral over the moduli
space of flat connections, with some measure. In general, however, this is not correct.
Rather, the complete classical equations of motion are

FA = 0, dAB = 0 (1.3)

which taken together (and modulo gauge transformations) can formally be viewed as
describing the tangent bundle of the moduli space M[M,G] of flat G connections on the
3-manifold M , TM[M,G]. The partition function is then an integral over this space (and
ghost zero modes etc.), again with some measure to be determined. However, in general
this space can be very singular and the finite dimensional integral is ill-defined. The various
types of singularities that lurk inside the path integral associated with the action (1.1)
include issues with reducible connections (manifested as ghost zero modes) as well as the
non-compactness of the moduli space itself (due to B zero modes).

One situation in which it is pretty clear what sort of contribution one should find from
the path integral is when one expands the path integral around an isolated irreducible flat
connection. In that case, there are no non-trivial solutions to the equations of motion for B
and no ghost zero modes, and following Witten [11], the contribution of such an acyclic
connection ω on a 3-manifold M can be shown to be precisely the Ray-Singer analytic
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torsion τM (ω) [5, 6] of that connection. Thus on manifolds on which the moduli space
of flat connections includes such acyclic flat connections, one should perhaps expect the
partition function to take the form

ZBF [M,G] =
∑

acyclic
τM (ω(α)) + . . . (1.4)

where the ellipses indicate the contributions from the non-acyclic flat connections. If M is
an Integral Homology Sphere (Z Homology Sphere, H1(M,Z) = 0), then for G = SU(2) the
trivial connection is the only reducible flat connection, and there are indeed Z Homology
Spheres for which all the flat connections are isolated. In such a situation one should expect
the BF partition function to be largely captured by the above expression. One of the aims
of this paper will be to check to which extent this expectation is borne out by actual explicit
evaluations of the path integral of BF theory.

Moreover, by using the Massive Ray-Singer Torsion τM (ω, µ) introduced in [1] (among
other reasons precisely with its application to BF theory in mind), one can extend the
considerations of Witten to the case that the flat connections are not necessarily irreducible
and isolated, and thus obtain a formal expression for the regularised partition function of
BF theory (section 2), which takes the form (2.20)

ZBF [M,G;µ] =
∑∫

τM (ω(α), µ) (1.5)

of a sum / integral over the moduli space of flat connections. This expression can in turn
be expanded in the mass-parameter µ to reproduce different kinds of contributions to the
partition function [1]. However, this approach outlined above to defining the partition
function of BF theory is rather formal: one would need to determine by hand the spaces of
flat connections and zero modes associated with them, calculate the (massive) Ray-Singer
torsion by some means, etc. So this does not all by itself lead to an evaluation of the BF
partition function via path integral methods.

In order to be able to verify to which extent an actual evaluation of the BF path integral
reproduces the above formal expectations, one needs a class of manifolds for which explicit
path integral calculations can be performed. To that end we will concentrate on Seifert fibred
3-manifolds. These spaces allow for a significant simplification in the calculations via suitable
gauge choices. The first of these is that the ‘time’ (fibre) components of both A and B (the
components of A and B along the fibres of the defining Seifert fibrations) can be taken to be
constant along the fibre. This is a generalisation of the usual temporal gauge ∂0A0 = 0 of a
gauge field on a circle, and allows one to partially push the calculation down a dimension, to
the base of the Seifert fibration. And now further simplification comes from the approach [13–
18] to evaluating the path integral through Abelianisation. For Chern-Simons theory with
gauge group G the end result is a finite dimensional integral over the Cartan subalgebra t

of the Lie algebra g of G. One of the characteristic features of this approach is that the
reduction to a finite-dimensional integral (over a linear space) completely bypasses the
need to define (and integrate over) the moduli space of flat connections. Nevertheless, this
approach can be shown to reproduce the results of perturbative or localisation calculations
(when available), which in principle require an exact evaluation of the latter.
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Returning to BF theory, the main technical result of this paper is to show that this
calculational method can be extended to BF theory with its non-compact gauge group
TG. The result is a finite-dimensional integral over the space t⊕ t, which plays the role
of the Cartan subalgebra of the Lie algebra of TG. This once again bypasses the need to
integrate over the moduli space of flat connections. The finite-dimensional integrals that
we find are similar to those for Chern-Simons theory, but they are more singular than their
Chern-Simons counterparts, having poles on the integration contour an integral over λ
which is a distribution, and hence require a definition. For example, the partition function
for SU(2) and M a Z Homology Sphere devolves to

ZBF [M, SU(2)] '
∑
n0

∫
R×R

τM (φ) . exp (iλ (φ/P + 2πin0)) (1.6)

(see the body of the paper for all the definitions). The important point to note here is
that the Ray-Singer Torsion τM (φ) has poles at φ = mπ m 6= sP and zero when m is
proportional to P . The λ integral sets φ = Pn0 which formally avoids the poles. Still we
can only conclude what the integral should be after it is properly regularised (defined).

In the case of Chern-Simons theory the integrals that we find there also have poles,
however, there we could argue that the contributions at the poles should not be included
(lying on the walls of the Weyl chamber) and we introduced a mass regulator that essentially
allowed us to avoid them. Unfortunately, in the present setting of BF theory, we do not
have a guiding principle and so we offer 3 different possible definitions of BF theory and
discuss their advantages as well as their shortcomings:

1. Direct Definition via Residues

The first, and the one we spend most time on (section 4), is through the direct
definition of the finite-dimensional integral (1.6). In order to get a handle on the
poles of the Ray-Singer Torsion on t× t, one defines the theory in such a way that it
is given by the residue of all the possible poles including delta function contributions.
We find that, rather remarkably, this does reproduce the expected contributions of
reducible flat connections which we can follow by making use of the Massive Ray-
Singer Torsion. In particular we show in detail how this gives the expected results,
as a sum over contributions from the isolated non-trivial flat connections, for Lens
spaces. Indeed, this definition appears to capture the essence of the contribution
of reducible connections in general. However, this approach does not reproduce the
expected result (1.4) for connections that are isolated and irreducible. We note that,
suprisingly, some of the poles on the contour correspond to irreducible flat connections,
while others correspond to ‘complex’ flat connections. We offer a brief attempt at
an explanation (related to gauge fixing) for why the irreducible connections arise in
this way.

In view of this, we approach the problem from a different point of view in section 5,
based on the fact that the gauge group TG can be regarded as a contraction of either the
compact group G×G or the complex group GC. Correspondingly, the other 2 definitions
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that we consider are to regard BF theory as arising either in the large k limit of G×G
Chern-Simons theory at levels k and −k, or in certain limits of the coupling t = k + is of
GC Chern-Simons theory. This regularises the theory to some extent and also side-steps
the gauge-fixing issue alluded to above.

2. Definition via a large k Limit of G×G Compact Chern-Simons Theory

The advantage of using the compact G×G theory is that the Hilbert space of states is
finite dimensional and only goes over to the infinite dimensional Hilbert space of states
of BF theory in the limit. This therefore acts as a natural regulator. A disadvantage
is that certain conditions must be met by the connections so that the correspondence
that we need exists. We offer examples of Brieskorn Z Homology Spheres (Seifert
manifolds with 3 exceptional fibres) [19] where the conditions are met and one obtains
the partition function of BF theory in the expected form (1.4). These conditions are
not met by all manifolds, however. For example, the equality between BF theory and
the large k limit of the G×G theory fails for certain Lens spaces. As the Lens spaces
are Q Homology Spheres one would like to conjecture that the correspondence holds
for isolated flat connections of Z Homology Spheres in general.

3. Definition via a large k Limit of GC Complex Chern-Simons Theory

As forGC Chern-Simons theory [20–22] with complex level k+is, there are many formal
correspondences with BF theory. The most obvious is to set k = 0 and let s→∞,
which leads directly to the BF action (1.1) and its non-compact symmetries (2.2).
Given the difficulties we face with this action, this is not the limit that we consider.
Rather, we take s = 0 and k →∞. An advantage of this approach is that the finite
dimensional integrals that arise are slight variants of those discussed by Lawrence
and Rozansky [24] for SU(2) and for general G by Mariño [25] in the context of G
Chern-Simons theory. In principle then the same strategies that apply there can be
used here, though we leave that for the future.

To the extent that the perturbative large k evaluation of Chern-Simons theory reduces
to a sum over contributions from flat connections, this is then also true for the partition
function of BF theory. Overall, the definition of BF theory via GC Chern-Simons
theory appears to be the most complete (however, one needs to ensure that one does
not count complex flat connections that cannot be conjugated into flat G connections).

One approach not followed here but which is certainly of interest is resurgence [26].
Gukov, Mariño and Putrov [27] show that for SU(2) one can start with the Abelian
contribution to the Chern-Simons partition function in the large k limit and Borel resum in
order to obtain contributions from non-Abelian flat connections. Once in the complex space
of connections there is the possibility that SL(2,C) connections which are not (conjugate to)
SU(2) flat connections will contribute. They show that miraculously this does not happen.
The importance of this for us is that, as we will see, we appear to obtain contributions
from connections in our first approach that would, from this point of view be considered to
be ‘complex’.
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This paper is organised as follows. Section 2 follows Witten’s [11] approach to obtaining
the partition function for isolated irreducible flat connections. There we also consider what
formally happens when the connections are either not isolated or are reducible. In these
cases we can profitably make use of the massive Ray-Singer Torsion introduced in [1]. This
allows us to express our expectations for the form of the partition function in concrete terms.

In section 3 we formulate BF theory on Seifert 3-manifolds which are either Z or Q
homology spheres. Particular attention is paid to issues with gauge fixing of φ and λ, the
components of A and B along the fibre respectively. We will shows that φ and (with an
assumption about φ) λ can be chosen to be constant along the fibre (temporal gauge), and
to simultaneously take values in a fixed Cartan subalgebra t⊕ t of TG (Abelianisation in
TG). We then give a brief outline of how to pass from the functional integral to a finite
dimensional integral over t⊕ t.

As already mentioned, the integral in question has poles on the integration contour
and so requires a definition. In section 4 we thus give our first definition of BF theory, as a
residue of a particular function related to the integrand of the finite dimensional integral,
and analyse its consequences. Given the shortcomings of that definition, the alternative
Definitions 2 and 3 described above are explored in section 5.

Certain technical details are relegated to an appendix (A for information about the
group TG and its Lie algebra, and B for details about a certain useful discrete symmetry of
complex Chern-Simons theory on Seifert manifolds).

2 BF -theory on a 3-manifold and path integrals

In this section we give a brief review of 3-dimensional BF theory and Witten’s formula
for the path integral which holds when there are no zero modes. This is followed by a
discussion of a generalisation which takes zero modes into account.

2.1 BF theory as a TG Chern-Simons theory

As recalled in the Introduction, 3-dimensional BF theory on a 3-manifold M is defined by
the action (1.1)

IBF =
∫
M

Tr (B ∧ FA) (2.1)

with A a connection on a G-bundle over M and B ∈ Ω1(M, g). The gauge symmetries of
this action are the usual G gauge symmetry acting on A and B, as well as a shift gauge
symmetry for the field B,

(A,B)→ (g−1Ag + g−1dg, g−1 (B + dAΛ) g) (2.2)

This shift gauge symmetry is non-compact, parametrised by Λ ∈ Ω0(M, g), and thus, even
for G a compact Lie group, 3-dimensional BF theory is an example of a gauge theory with
a non-compact gauge group (and this is the main reason we are interested in this theory
here). In fact, BF -theory is not just some non-compact analogue of Chern-Simons theory:
in a precise sense it is a Chern-Simons theory for the non-compact gauge group TG, the
tangent bundle group of G. As it will frequently be useful to have this perspective in the
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back of one’s mind in the following, here (and in more detail in appendix A) we quickly
review the relevant facts regarding the group TG, its Lie algebra tg, and Chern-Simons
theory based on it.

Thus, consider a compact semi-simple Lie group G (throughout we will also assume
that G is connected and simply-connected) with Lie algebra g, a basis of generators ja and
commutation relations [ja, jb] = f cabjc. Then the Lie algebra tg of the Lie group TG has
generators (ja, pa) and commutation relations (A.8)

[ja, jb] = f cabjc , [ja, pb] = [pa, jb] = f cabpc , [pa, pb] = 0 . (2.3)

For the considerations of section 5 it will be useful to keep in mind, that this algebra can
be obtained as a contraction of the Lie algebra of G×G or GC (see (A.12)).

Given an invariant non-degenerate scalar product gab = Tr jajb on g, an invariant and
non-degenerate scalar product on tg is (A.18)

� ja, jb �=� pa, pb �= 0 , � ja, pb �= gab . (2.4)

A TG-gauge field can be expanded as

C = Aaja +Bapa , (2.5)

with field strength
FC = dC + 1

2 [C,C] = F aAja + dAB
apa . (2.6)

The Chern-Simons action for C with respect to the above scalar product is (with a for
present purposes convenient choice of normalisation, and with an integration by parts)

ICS ≡ 1
2

∫
M
� C, dC + 1

3 [C,C]�=
∫
M

TrB ∧ FA = IBF (2.7)

The equations of motion (1.3) of BF -theory are then evidently simply the flatness conditions
for the connection C,

FC = 0 ⇔ FA = 0, dAB = 0 (2.8)

Moreover, the gauge symmetries (2.2) of BF -theory are precisely the TG gauge symmetries
of the TG-connection C.

2.2 Path integral for BF theory: formal considerations

Evidently (and as recalled in the Introduction), formally, the path integral for the partition
fuction of BF theory is

ZBF [M,G] =
∫
DADB exp

(
i

∫
M

Tr (B ∧ FA)
)

'
∫
DAδ (FA) (2.9)

so that we may expand about flat connections to give a more complete evaluation. Following
Witten [11], we use the standard Faddeev-Popov covariant gauge-fixing procedure around
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these flat connections. More details about gauge fixing Chern-Simons theory with non-
compact gauge groups can be found in [28]. The action and symmetries about a flat
background connection ω(α) are

IBF =
∫
M

Tr
(
B ∧ FA+ω(α)

)
(2.10)

(A+ ω(α), B)→ (g−1(A+ ω(α))g + g−1dg, g−1
(
B + dA+ω(α)Λ

)
g) (2.11)

while the covariant background field gauge fixing conditions

dω(α) ∗A = 0. dω(α) ∗B = 0 (2.12)

require us to make a choice of metric on M . Then the ghost and gauge fixing action is

IGF =
∫
M

Tr
(
udω(α) ∗B + vdω(α) ∗A+ fdω(α) ∗ d(ω(α)+A)f + gdω(α) ∗ d(ω(α)+A)g

)
(2.13)

If the space of flat connections is not made up of isolated points then one would need to
integrate over them which one could do through the introduction of collective coordinates.
One should also take into account the possible zero modes of both B and of the ghosts.
Those zero modes form non-compact spaces H1

ωα(M, g), and H0
ωα(M, g) respectively. Taking

the above caveats into account the path integral formally becomes

ZBF [M,G] =
∑
α

∫
DADB exp (iIBF + iIGF )

=
∑∫
TMα

τM (ω(α)) (2.14)

Here the sum and integral symbol over TMα is meant to indicate that one sums over distinct
components of the moduli spaces of classical solutions and integrates over the moduli of
continuous families of solutions. These spaces include the zero modes of A and B as well as
of those of the ghosts f and g (the multiplier field and anti-ghost zero modes canonically
cancel each other). The space TMα space can be very singular and so (2.14) as it stands is
rather symbolic in general.

On the 3-manifolds of interest in this paper, the moduli space includes acyclic flat
connections, i.e. flat connections which are isolated and irreducible, so that there are no zero
modes at all at these solutions. The path integral around such a connection simplifies by
using the following scaling argument. About such an isolated and irreducible connection send

A→ tA, B → t−1B, t ∈ R+ (2.15)

(with compensating scaling for the multiplier fields). This transformation has trivial
Jacobian, and the action remains well defined in the limit t→ 0. Indeed, in this limit,

IBF →
∫
M
Bdω(α)A

IGF →
∫
M

Tr
(
udω(α) ∗B + vdω(α) ∗A+ f ∗∆ω(α)f + g ∗∆ω(α)g

)
(2.16)
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and the partition function around this connection is simply a standard path integral
representation [3, 9] of the Ray-Singer torsion [5] τM (ω(α)) of the flat connection ω(α),

τM (ω(α)) =
(
Det ∆0

ω(α)

)3/2
.
(
Det ∆1

ω(α)

)−1/2
(2.17)

(the superscripts on the twisted Laplacians indicating the degrees of the forms on which
they act). Thus on such 3-manifolds, the partition function now becomes

ZBF [M,G] =
∑

acyclic
τM (ω(α)) + . . . (2.18)

where the ellipses indicate the rest of the contributions to the path integral. As we
have already explained, there may be zero modes to deal with in the extra terms (2.18)
which manifest themselves as zeros of the determinants in (2.17) and which invalidate the
simplifications that we were allowed to make for the isolated irreducible connections.

One way to proceed is to adopt the prescription of Ray and Singer [6] by first excising
the zero modes and then adding a correction term to ensure metric independence. This
‘extra’ gauge fixing of the zero modes may be achieved by a BRST procedure [9] the details
of which have been eplained in some detail in [1]. The advantage of this method is that then
the torsion is a natural measure for the finite dimensional integral that appears in (2.14).
While this defines the integrand, one is still confronted with the problem of determining and
defining the space over which this is to be integrated. Thus, while formally this appears to
be a good definition, at a practical level it seems somewhat intractable at the moment.

2.3 Path integral for BF theory and massive Ray-Singer torsion

An alternative method for regularising such zero modes, and for keeping track of the ellipses
in the formula (2.18) was advocated in [1]. The idea is to add a mass to the Laplacians
that appear in (2.17), thus lifting all the zero modes and side-stepping (or at least initially
bypassing) the problem of having to deal with them directly. As a first step, what this
means is that instead of using the twisted Laplacian ∆ω in the definition of the Ray-Singer
Torsion we instead use the massive Laplacian ∆ω + µ2 which now manifestly has a positive
definite spectrum. The Massive Ray-Singer Torsion, on a 3-manifold, for a flat connection
ω, is then defined to be

τM (ω, µ) =
(
Det (∆0

ω + µ2)
)3/2

.
(
Det (∆1

ω + µ2)
)−1/2

(2.19)

One can then define a regularised partition function by

ZBF [M,G;µ] =
∑∫

τM (ω(α), µ) (2.20)

where we do not necessarily attempt to integrate over the tangent space as those modes
have been lifted. Here a caveat is required: in [1] we showed that for manifolds which are
mapping tori it is possible to maintain complete gauge invariance even with the introduction
of a mass. However, a mass term cannot be introduced in a gauge invariant way on a
general 3-manifold. We accept that the gauge symmetry is broken and may be reinstated if
required by some renormalisation.
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The way in which one obtains the actual Ray-Singer Torsion from the massive Ray-Singer
torsion is to take a limit

τM (ω) ≡ lim
µ→0

µ−3 dim H0
ω+dim H1

ω τM (ω, µ) (2.21)

In this way the BF partition function will then take the form

ZBF [M,G, µ] =
∑∫

µ3 dim H0
ω−dim H1

ω (τM (ω) + . . . ) (2.22)

and we will need to specify which terms we are interested in. The ellipses in this formula
refer to terms higher order in µ than the zero-th order Torsion (essentially constants and
derivatives of the Ray-Singer Torsion).

At a formal level this is, perhaps, as far as one may go. It must be said that this
situation is not very satisfying and has calculational drawbacks. The formula (2.20) is very
implicit and requires knowledge outside of the path integral in order to be used. The flat
connections need to be found, the cohomology groups about the flat connections must be
determined and a formula for the Massive Ray-Singer Torsion must be given.

It is therefore of considerable interest to consider 3-manifolds for which the BF partition
function can also be calculated directly and explicitly, and where the result can be compared
with the formal expectations for the partition function outlined above. One such class of
manifolds is Seifert manifolds.

2.4 Expectations for the partition function on Seifert manifolds

The Ray-Singer torsion for Seifert 3-manifolds is known (through its equivalence to Reide-
meister Torsion [29]). About an acyclic flat connection, i.e. with trivial twisted cohomology,
it is

τM (ω) = τS1(φ)2−N
N∏
i=1

τS1(φ/ai) (2.23)

where φ is the component of the connection in the direction of the fibre of the Seifert
3-manifold and N (the number of orbifold points) and ai (the order of the isotropy group at
the i’th orbifold point) are integers that are part of the defining data of a Seifert 3-manifold
(see section 3.1). We should also specify the representation of the group G for which we are
evaluating the Torsion; however, as throughout we fix on the adjoint representation, we do
not need to indicate it in the notation.

Including the contributions from the non-acyclic connections, one expects the partition
function to take the form (2.18)

ZBF [M,G] '
∑

acyclic
τS1(φ)2−N

N∏
i=1

τS1(φ/ai) + . . . (2.24)

and, as in the general situation above, one way to keep track of the ellipses in the above
formula is to use the massive Ray-Singer torsion. In the case of Seifert manifolds all we
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need is the massive Ray-Singer torsion on the circle, which is well understood [1]. Thus a
suitably regularised version of (2.24) is

ZBF [M,G;µ] =
∑

τS1(φ, µ)2−N
N∏
i=1

τS1(φ/ai, µ) + . . . (2.25)

One can now use a mass expansion to identify the individual contributions to the regularised
partition function.

The analysis that we have presented thus far, in the covariant gauges, is an extension
of that of Witten to those flat connections which are not necessarily flat and isolated. One
shortcoming with this approach, as we have already explained, is that with a background
field approach one must, by independent means, find the flat connections and determine
the cohomology groups about them. One would prefer an approach that evaluates the path
integral directly and does not require the split between the classical and quantum fields.
The rest of the paper is devoted to producing just such an approach.

In particular, we will show in section 3 that the procedure developed in [13–18] to
reduce the partition function of Chern-Simons theory for a compact gauge group G to a
finite-dimensional integral (over the Cartan subalgebra t of g) can be extended to the case
at hand, namely BF theory, or Chern-Simons theory with gauge group TG.

The finite dimensional integrals have poles on the contour of integration and so it then
remains to define and give a meaning to them. As we will see in section 4, a direct calculation
of this finite-dimensional integral reproduces the expected form of the partition function
only partially. In particular it captures the contributions of reducible flat connections as
expected but surprisingly does not give the expected results for the isolated and irreducible
flat connections.

This prompts us to investigate two other possible definitions in section 5 which do lead
to the expected form of the partition function discussed in this section.

3 BF -theory on a Seifert fibred 3-manifold

In this section we specialise to Seifert fibred 3-manifolds. The extra structure afforded by
the S1 principal bundle structure (over an orbifold base) allows for convenient choices of
gauge as well as for regularising the Ray-Singer Torsion with the introduction of a mass
term [1]. We are very brief with the background material on Seifert manifolds as it has
appeared before. We spend some time on the gauge fixing as this is quite new for the TG
theories, while the evaluation of the determinants is so close to that of the determinants
evaluated in [17] that we borrow liberally from there.

3.1 Seifert 3-manifolds briefly

From now on M denotes a Seifert 3-manifold. Then M is a 3-manifold which is a circle
V -bundle over the 2 dimensional orbifold ΣV of genus g with N orbifold points. A general
Seifert manifold is written as M [degLM , g, (a1, b1), . . . , (aN , bN )] where the ai are the
isotropies of the orbifold points, the bi are the weights of the line V -bundle at the orbifold
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points and degLM is the degree of that line bundle. As the Seifert 3-manifold is the circle
V-bundle of the line V-bundle LM it is also designated by S(LM ).

Let L0 be a topological line bundle at some smooth point on ΣV with degree 1 and Li
be the line V-bundles at the i-th orbifold points with degree 1/ai then

LM = Lb00 ⊗ L
b1
1 ⊗ · · · ⊗ L

bN
N (3.1)

and M is the circle bundle of LM [30] (we use normalised Seifert data so that 1 ≤ bi < ai).
The Seifert 3-manifold is smooth iff gcd(ai, bi) = 1 for each i. It is a Z Homology

Sphere (H1(M, Z) = 0) iff the line bundle LM that defines it satisfies

g = 0, c1(LM ) = b0 +
N∑
i=1

bi
ai

= ± 1
a1 . . . aN

≡ ± 1
P

(3.2)

(here we have introduced the notation P = a1 . . . aN ). One consequence of these conditions is
that gcd(ai, aj) = 1 for i 6= j. If one takes a tensor power of this line V-bundle, LMd

= L⊗dM ,
then the Seifert manifold Md = M/Zd is a Q Homology Sphere (H1(Md, Q) = 0) with

g = 0, c1(LMd
) = c1(L⊗dM ) = ± d

a1 . . . aN
= ± d

P
(3.3)

and
|d| = |H1(Md, Z)| (3.4)

These are the 3-manifolds that we will exclusively concentrate on. The reason for this
choice of M is two fold.

Firstly, if M is neither a Z nor a Q homology sphere, then it will necessarily have a
non-zero dimensional moduli space of Abelian flat connections which in turn means that
there will be Abelian B zero modes and hence non-compact directions to deal with.1 We
do not want to have to worry about such a situation here, as it is somewhat tangential to
the other issues that we wish to address.

Far from all Z or Q homology spheres are Seifert. The reason for choosing M to be
more specifically a Seifert Z or Q homology sphere is a more pragmatic one. Having M a
Seifert manifold means that we have Fourier mode decomposition of all the fields, so their
components can be ultimately viewed as living on ΣV , and, as shown in [13–18], there are
specific gauge choices available that allow one to significantly simplify the evaluation of the
partition function.

3.2 BF action and gauge transformations on a Seifert manifold

As the Seifert fibred 3-manifold M is a principal U(1) bundle, it also comes equipped with
the fundamental vector field ξ which generates the U(1) action. We also equip M with a
(nowhere vanishing) connection 1-form κ, i.e.

ιξκ = 1 , Lξκ = ιξdκ = 0 , (3.5)
1Even if M is a Z or Q homology sphere, there may be non-zero dimensional components of the moduli

space of flat connections, but there are many M for which the moduli space of flat connections is made up
of a finite number of points.
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and ∫
M
κ ∧ dκ = c1 (LM ) . (3.6)

Note that, acting on a form of any degree, one has

ιξκ+ κιξ = 1 (3.7)

so that ιξκ and κιξ are projection operators onto the space of horizontal and vertical forms
of fixed degree respectively.

Given a trivial G-bundle on a Seifert 3-manifold M , we correspondingly decompose the
connection A and 1-form B of BF theory as

A = AΣ + κφ, B = BΣ + κλ (3.8)

where
AΣ = ιξκA, φ = ιξA, BΣ = ιξκB, λ = ιξB (3.9)

We may also decompose the exterior derivative as

d = ιξκd+ κιξd = dΣ + κιξd (3.10)

with twisted versions
dA = ιξκdA + κιξdA (3.11)

which acts on 0-forms as
dAβ = dΣ

Aβ + κDφβ (3.12)

In terms of this decomposition, the gauge transformations (2.2) take the form, with t a
local fibre coordinate

AΣ → g−1dΣ
Ag, φ→ g−1(∂t + φ)g

BΣ → g−1(BΣ + dΣ
AΛ)g, λ→ g−1 (λ+DφΛ) g (3.13)

and the action (2.1) becomes

IBF =
∫
M

Tr
(
BΣ ∧ κDφAΣ + κΣB ∧ dΣφ+ λκ ∧ FAΣ + κ ∧ dκφλ

)
(3.14)

with horizontal curvature
FAΣ = dΣAΣ +A2

Σ (3.15)

3.3 Gauge fixing 1: temporal gauge for A and B

One of the great benefits of considering a Seifert manifold is that there are very useful
non-covariant gauges available. In particular, on a Seifert manifold we can always choose
the “temporal gauge” that the fibre-component φ of A is constant along the fibre,

ιξdφ = 0 . (3.16)
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It turns out that (for generic φ) one can also impose the analogouus condition on λ,

ιξdλ = 0 . (3.17)

In local coordinates with t a fibre coordinate, these conditions simply read

∂

∂t
φ = 0, and ∂

∂t
λ = 0 (3.18)

The first of these can be achieved by having φ gauge equivalent to some ‘time’ independent
field φ0; i.e. we have to solve

g(t)−1(∂t + φ)g(t) = φ0 ⇔ ∂tg(t) = g(t)φ0 − φ(t)g(t) (3.19)

This equation has the solution

g(t) = P exp
(∫ 0

t
φ(s)ds

)
e tφ0 (3.20)

(where we have without loss of generality chosen g(0) = 1). Periodicity g(1) = g(0) of the
gauge parameter now determines φ0 to be the average value of φ in the sense that

eφ0 = P exp
(∫ 1

0
φ(s)ds

)
(3.21)

The second gauge condition, ∂tλ = 0, is perhaps not familiar and as there is a hidden
subtlety we will deal with it in some detail. Suppose we have already implemented the
first gauge choice (thus in the following φ = φ0 is taken to satisfy ∂tφ = 0). To arrive at λ
constant along the fibre we need to solve

λ+DφΛ = λ0 (3.22)

for some λ0 constant in t to be determined. Writing

∂t
(
e tφΛe−tφ

)
= e tφ(DφΛ)e−tφ (3.23)

one sees that this equation has the solution.

h(t)Λ(t)h−1(t) =
∫ t

0
esφ (λ0 − λ(s)) e−sφ ds+ Λ(0) (3.24)

where
h(t) = e tφ, h = eφ (3.25)

Periodicity in the gauge parameter Λ(1) = Λ(0) gives us the equation

(Ad(h)− 1)Λ(0) =
∫ 1

0
esφ (λ0 − λ(s)) e−sφ ds (3.26)

Before going on we note that a shift of Λ by a constant (in t) Λ0 simply amounts to a shift
in λ0,

Λ→ Λ + Λ0 ⇒ λ0 → λ0 + [φ,Λ0] (3.27)
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Without loss of generality we can therefore assume that Λ(0) = 0, so that the periodicity
condition (3.26) implies ∫ 1

0
esφ (λ0 − λ(s)) e−sφ ds = 0 . (3.28)

The integral involving λ0 can be done explicitly, with the result

ead(φ) − 1
ad(φ) λ0 =

∫ 1

0
es ad(φ) λ(s)ds . (3.29)

For generic values of φ, the operator on the left-hand side can be inverted to give

λ0 = ad(φ)(ead(φ) − 1)−1
∫ 1

0
es ad(φ) λ(s)ds (3.30)

which tells us in which sense λ0 can be regarded as a φ-weighted average of λ over the fibre.
However, we see that this solution fails when φ is not suitably generic, so that the

operator exp ad(φ)−1 has zero-modes. This should not come as a suprise, as this is precisely
the condition that the operator Dφ = ∂t + ad(φ) has zero-modes, so that the gauge fixing
condition (3.22) cannot be solved for all λ(t). Indeed, for a zero mode ψ of Dφ one has (see
also the discussion in section 2.3.4 of [1])

Dφψ = 0 ⇒ ψ(t) = e tad(φ)ψ(0) , (3.31)

and periodicity ψ(1) = ψ(0) implies

ψ(1) = ψ(0) ⇒
(
ead(φ) − 1

)
ψ(0) = 0 . (3.32)

For φ taking values in the Cartan subalgebra t of g, this is simply the condition that φ has
a component that is an element of the integral lattice I(G) of G.

Normally this kind of constraint arising only for highly non-generic field configurations
would not be an issue as one is integrating over φ and the points where φ is integral have
measure zero. Unfortunately, in BF theory we get delta function support onto particular
values of φ. In particular we will see when we are considering Z Homology Spheres that
these integral points are the ones that are selected (cf. (4.6)).

3.4 Gauge fixing 2: Abelianisation and emergence of non-trivial line bundles

After having chosen the gauges (3.18), we still have gauge transformations available that
are constant along the fibre. For a compact gauge group, one can locally use this residual
gauge feedom to conjugate the field φ into the Cartan subalgebra t of g, i.e. one can impose
the gauge condition

φk = 0 ⇔ φ = φt , (3.33)

where k is the orthogonal complement of the Cartan subalgebra t of g,

g = t⊕ k . (3.34)

We will come back to the global issues involved in this choice of gauge below.
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However, first of all we need to address the question if we can do something analogous
in the case at hand, with gauge group TG. Since TG is neither compact nor semi-simple,
this is not a priori obvious. However, we show in appendix A.2 that one can use the adjoint
action of TG on its Lie algebra to conjugate any element into an element of t⊕ t, which
plays the role of the Cartan subalgebra of the Lie algebra of TG. From one perspective,
the reason we are able to do this is that TG arises as the Inönü-Wigner contraction of a
group where this is certainly possible, namely G×G.

Explicitly, this means that we can use the gauge transformation

(φ, λ) 7→ (g,Λ)−1.(φ, λ).(g,Λ) = (g−1φg, g−1(λ+ [φ,Λ])g) (3.35)

to (locally) impose simultaneously the Abelianising gauge conditions

φk = 0 , λk = 0 ⇔ φ = φt , λ = λt (3.36)

Now let us turn to the global issues regarding this gauge choice, which implies that we
will be dealing with an Abelian gauge theory on ΣV . As has been described in detail
in [14, 31], there are topological obstructions to imposing the gauge choice on φ globally; in
particular, conjugating φ to the Cartan subalgebra t on ΣV is not possible with smooth
gauge transformations. However, if we insist on doing so anyway, the price to be paid is
that we must sum over all available line bundles on ΣV . The reason for the emergence of
this sum has been explained a number of times [13–16, 18, 31].

Since TG is contractible to G (and there are no topological issues involved in the shift
transformation λ → λ + [φ,Λ] beyond those involving φ itself), there are no additional
topological obstructions arising from diagonalisation in TG.

In practice there are two ways to introduce the non-trivial line bundles and the sum
over them. They both have merits and in any case are equivalent. The first makes contact
with flat connections rather straightforwardly while the other is computationally easier.

We begin by describing the method using background fields described in more detail
in [18]. The available line V-bundles on ΣV are

L = L⊗n0
0 ⊗ L⊗n1

1 ⊗ · · · ⊗ L⊗nNN (3.37)

and the basic idea is to allow for a non-trivial background connection on patches about each
divisor, with the divisors being the singular points and with one divisor being a regular
point of ΣV . It was shown in [18] that in the tubular neighbourhood V(ai,bi) of the i-th
singular point one could introduce a connection 1-form κi which would glue to a global one
form κ on M . In terms of these local forms and the local surgery data

aisi − biri = −1, with (ai, bi) = 1 (3.38)

the local orbifold data, the background connection takes the simple form2

AB = 2πi
(

n0κ0 +
N∑
i=1

niriκi

)
(3.39)

2A word on notation. Throughout we write connections in a basis of simple roots αi. For semi-simple
simply laced Lie algebras we have that the natural inner product 〈αi, αj〉 = 2δij . The bold facing of integers
indicates that we mean m = miαi and for each i we have mi ∈ Z. We will write that m ∈ I(G) where I(G)
is the integral lattice of G. As G is simply connected we have identified the root lattice with I(G).
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where the n are Hermitian and lie in t. With an abuse of notation, we may write the
background as

κφB = 2πi
(

n0κ0 +
N∑
i=1

niriκi

)
(3.40)

Each of the local forms κi extends outside of the tubular neighbourhood to dθ on the fibre.
One also has that ∫

V(ai,bi)

κidκi = bi
ai

(3.41)

with the regular point having weight a0 = 1. Glued together the κi form a global, smooth
1-form κ = κ0 ∪ κ1 ∪ · · · ∪ κN that defines a principal bundle structure on M with

c1(LM ) =
∫
M
κ ∧ dκ = b0 +

N∑
i=1

bi
ai

(3.42)

With the background field in place, one makes the substitution

κφ→ κφ+ κφB (3.43)

everywhere in the path integral, with the second term on the right given by (3.40).
Alternatively [13–16] one sets all the ni i 6= 0 to zero and κ0 → κ (and this is the

natural procedure from the point of view of obstruction theory outlined in [31] and extended
here to the manifolds that we are considering). Otherwise one keeps the substitution (3.43)
in the path integral. In appendix B we show that there is enough symmetry in the theory
to pass between these different formulations.

3.5 Reduction of the partition function to a finite-dimensional integral

With all the preliminaries in place we can now outline how to perform the path integral for
the partition function.

Firstly the action (3.14), taking into account the non-trivial bundles that arise on
Abelianisation, goes over to

IBF =
∫
M

Tr
(
BΣ ∧ κDφ+φBAΣ + κBΣ ∧ dΣφ+ λκ ∧ FAΣ + κ ∧ dκ(φ+ φB)λ

)
(3.44)

with κφB and κdκφB suitably understood. Indeed we note that the part of BΣ that is
constant along the fibre and takes values in the Cartan subalgebra t only appears through
the term ∫

M
Tr
(
κBΣ ∧ dΣφ

)
. (3.45)

Thus integrating out these modes of BΣ imposes the condition that dΣφ = 0. Given the
gauge conditions ∂tφ = 0, this implies that φ is constant on M . Likewise the component of
AΣ constant along the fibre and in the Cartan subalgebra only appears in∫

M
Tr
(
κAΣ ∧ dΣλ

)
(3.46)
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so integrating over that mode of AΣ fixes dΣλ = 0 which, together with ∂tλ = 0, tells us
that λ is also constant on M . The other components of At

Σ and Bt
Σ are paired with each

other and lead to an overall constant when integrated over.
We should also take care of any possible harmonic modes of the components of A and

B that we have integrated over. If there any such harmonic modes of B, they would be
non-compact directions and would lead to divergences. In order to avoid this we fix on
the genus of ΣV to be zero, as in (3.2) and (3.3) thus ensuring that there are no Bt

Σ zero
modes to contend with. The stronger choice that we have made of having M be a Z or Q
homology sphere is to ensure that there are no moduli of Abelian connections on M as then
we would necessarily have Abelian B zero modes.

The form that we now have for the action is

IBF =
∫
M

Tr
(
Bk

Σ ∧ κDφ+φBA
k
Σ + κ ∧ λAk

ΣA
k
Σ

)
+ Trλ (c1(LM )φ+ 2πiq̂) (3.47)

where

q̂ =
N∑
i=0

1
ai

ni (3.48)

We are now ready to integrate out the fields Ak
Σ and Bk

Σ that appear in (3.47). There
are also ghost terms of the same type to take into account. The functional determinant
that we obtain and need to evaluate is

Det
(

adλ Dφ+φB
−Dφ+φB 0

)∣∣∣∣∣
−1/2

Ω1
H(M,k)⊕Ω1

H(M,k)
(3.49)

There is a similar determinant from the ghost terms. As usual we will expand in Fourier
modes along the S1 fibre and we will regulate with a ζ-function regularisation. What one
finds is, even upon regularisation, that the adλ part of the determinant does not contribute.
In this way what finally needs to be evaluated is

|Det (Dφ+φB )|2Ω0
H(M,k)	Ω1

H(M,k) (3.50)

For every Fourier mode 2Ω0
H(M, k)	 Ω1

H(M, k) is roughly the Euler characteristic of ΣV .
This, almost, cancellation of all the modes in the functional determinant can be used
to evaluate it. However, the field φB is not constant on ΣV unlike φ. This issue was
circumvented in [18] by using a density form of the index theorem originally found in [13].
The determinant in [18] is the square root of (3.50), so we may straightforwardly borrow
the result from there. In this way we see that the absolute value (3.50) is

τM (φ; ni) = τS1(φ+ 2πin0)2−2g−N .
N∏
i=1

τS1((φ+ 2πirini)/ai) (3.51)

where τM is the Ray-Singer torsion of M . The form of τM shows that it is given by circles
that is in terms of the Ray-Singer torsion of S1’s [29]. For completeness we note that

τS1(ϕ) = detk (I − Ad(expϕ)) (3.52)

so that n0 drops out of (3.51) since it has integral (lattice) entries.
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We regularise the Ray-Singer Torsion by introducing a mass [1]. In the present context
the mass is introduced into the determinants (3.49). This is not consistent with the TG
symmetry but does preserve the Abelian part of it. One exchanges (3.52) with

τS1(ϕ, µ) = detg
(
I − e−2πµAd(expϕ)

)
(3.53)

and it is understood that we use the massive form for the Ray-Singer Torsion of the torsion
on the circles on the right hand side of (3.51). For the details of how this comes about
see Example 2.5 in [1]. We should note we have introduced extra factors of µ (namely
by the factor (1− e−2πµ)dimT ) by passing to (3.53) and hence we have also changed the
normalisation of the path integral

Putting everthing together, we see that we have now managed to reduce the path
integral for the BF partition function to a finite dimensional integral over the (by now
constant) fields φ and λ,

ZBF [M,G] =
∑
n0

· · ·
∑
nN

∫
t⊕t

τM (φ; ni) . exp (iTrλ (c1(LM )φ+ 2πiq̂)) (3.54)

This is the integral that we will look at in detail in the following section.

4 Definition 1: direct evaluation of the BF (path) integral

As we saw in the last section we are able to perform the functional integral representing
the partition function ZBF to the point that we are left with finite dimensional integrals.
In this section we analyse the remaining integrals and notice that there are issues with
them. Indeed this prompts us to search for a definition for ZBF . This definition does not
agree with the perturbative result of Witten [11] in the case of isolated and irreducible
connections and we end the section by explaining where there could be possible issues with
one of the gauge conditions that we have chosen. The formulae obtained capture those
Abelian connections in Q Homology Spheres and in these cases reproduce the expected
result (2.25).

4.1 Symmetries and other properties of the finite dimensional integrals

At this point we have collected all the pieces and the BF partition function, for the
3-manifolds under consideration, is now a finite dimensional integral

ZBF [M,G] =
∑
n0

· · ·
∑
nN

∫
t⊕t

τM (φ; ni) . exp (iTrλ (dφ/P + 2πiq̂)) (4.1)

where the integral over t⊕ t is that over the constant Abelian “fields” φ and λ and we have
used the fact that c1(LM ) = d/P for the 3-manifolds we are considering as given in (3.2)
and (3.3) which in particular means that g = 0. There are no sums over the ni i 6= 0 if we
have set them to zero, in which case we also have that q̂ = n0. Note that as the gauge
group G is compact connected and simply connected the G bundles over M are trivial
and, on Abelianisation, the line V bundles at the smooth point are ‘honest’ line bundles so
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that n0 ∈ Zrk. Consequently, in this case, n0 only appears in the action in (4.1) (for either
formulation of background).

In order to understand and ultimately evaluate the integral (4.1), we note the following
properties of the integrand:

1. both the action and the Ray-Singer torsion are invariant under the discrete symmetry

φ→ φ+ 2πiPr, n0 → n0 − dr with r ∈ Zrk(G), P =
N∏
i=1

ai (4.2)

2. the Ray-Singer torsion with N ≥ 3 has poles at α(φ) = nπ with n 6= Pm (while for
N ≤ 2 there are no poles)

3. the Ray-Singer torsion has zeros at α(φ) = mπP

4. the Ray-Singer torsion is an even function of its arguments, in the sense that

τM (φ,ni) = τM (−φ, ai − ni) = τM (−φ,−ni) (4.3)

Using the symmetry (4.2), we may either ‘compactify’ the field φ or limit the range of n0.
Either the way, the integral over λ leads to a delta function constraint on φ, namely

φ = φC ≡ −
2πiP
d

q̂ (4.4)

and so it appears that only these values contribute to the path integral. These values
correspond to reducible connections as we have seen in the past [17] and so one might
conclude that the only flat connections that contribute to the BF partition function are
those that are Abelian. However, because of the presence of poles, this conclusion is a bit
quick, and we will take a closer look at this issue in section 4.4.

Before moving on, it is worthwhile reminding ourselves that there are restrictions on M
so the analysis we are performing holds. As a counter-example, presume that M is a product
Σ× S1, or more generally a Seifert mapping torus, i.e. with c1(LM ) = 0 (so definitely not
one of the manifolds that we are considering). Then there would be no symmetry such
as (4.2) for the action and the integral over λ would not lead to (4.4).

4.2 The φC contribution to Z homology spheres

Here we specialise to the φC contribution to the path integral for M either an Z or a
Q Homology Sphere. We will use the symmetries available not to limit the range of φ
but rather to set n0 ∈ I(G)/dI(G) and we will keep the ni and so take the classical field
contribution to be

φC = −2πiP
d

N∑
i=0

ni
ai

(4.5)

and any other choice leads to the same conclusions that we arrive at presently. As we only
want the φC contribution we must ensure that τM has no poles and this is achieved by
passing to the massive Ray-Singer torsion τM (φ, µ) which we do.
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If M is a Z homology sphere then d = 1 and the symmetry allows us to set n0 = 0 so
that

φC = −2πiP
N∑
i=1

ni
ai
∈ I(G) (4.6)

Note that these are precisely the (potentially problematic) integral values of φ discussed at
the end of section 3.3. We will (have to) come back to this below. A tiny bit of gymnastics3

shows that
φC + 2πinjrj = 0 mod 2πiajI(G) (4.7)

One immediately sees that the Ray-Singer Torsion (without a mass) on the circle
vanishes and the overall ratio in (3.51) is zero. The poles and the zeros of the finite
dimensional integral arise as the zeros of the (inverse) determinant of the Dφ operator. The
poles are there when Dφ acts on 1-forms and the zeros arise when acting on 0-forms at the
special values (4.4) of φ.

In order to understand the contributions we turn on the mass regulator, as in (3.53).
Then we find

τM (φ, µ) = detg
(
I − e−2πµ)2−N N∏

i=1
detg

(
I − e−2πµ/ai

)
(4.8)

The small mass limit gives us, as in (2.22),

τM (φ, µ) = (2πµ)2 dimG.(a1 . . . aN )− dimG + . . . (4.9)

The exponent of µ is understood as follows: the torsion of M has been pushed to that
on S1 and as on S1 the twisted cohomology groups satisfy H0

ω = H1
ω the combination

3 dim H0
ω − dim H1

ω = 2 dim H0
ω and dim H0

ω = dimG for the trivial connection which is the
maximally reducible connection.

This result is quite far from the known Reidemeister Torsion for regular elements of a
Brieskorn Sphere Σ(a1, a2, a3) [32],

(a1a2a3)−1
3∏
i=1

4 sin2
(
niriπ

ai

)
(4.10)

in the case of SU(2). The semi-classical analysis of Witten would have suggested

ZBF [Σ(a1, a2, a3) SU(2)] = (a1a2a3)−1
3∏
i=1

ai−1∑
ni=1

4 sin2
(
niriπ

ai

)
+ reducible terms (4.11)

rather than the result that we obtained.
From (4.9) we understand that the φC contributions that we are looking at come from

reducible connections, for these manifolds the trivial connection as G = SU(2), and so it
appears that we see only the non acyclic terms in (4.11). For example for S3 the only flat

3By (3.2) Pbj/aj = 1 − ajtj , tj ∈ Z and Pbjrj/aj = rj − rjajtj = (1 − ajsj)P/aj , tj ∈ Z whence
rj − P/aj = 0 mod ajZ. Consequently, φC + 2πinjrj = −2πiP

∑
i 6=j ni/ai + 2πinj .(rj − P/aj) = 0

mod 2πiajI(G).

– 21 –



J
H
E
P
0
4
(
2
0
2
3
)
1
4
6

connection is the trivial connection and, as it has maximal reducibility, one sees that a
formula of the type (4.9) correctly captures this fact. Indeed, for any (trivial) G bundle
over a Z Homology sphere the trivial connection is flat and isolated and would give a
contribution as above. What are missing are the contributions of non-reducible or, for
higher rank groups, less reducible connections.

4.3 The φC contribution to Q homology spheres

The zeros that were faced when M is an Z Homology Sphere are avoided to some extent
when the manifold is a Q Homology Sphere. The first advantage is that the points at which
we wish to evaluate the torsion are no longer necessarily at integer values but rather at

φC = −2πiP
d

N∑
i=0

ni
ai

(4.12)

Even if φC does at some points take integer values, the mass regularised torsion remains
well defined and that is what we will use. We will give an example of this later on. Recall
that here we fix the symmetry (4.2) by insisting that n0 ∈ I(G)/d.I(G).

The φC contribution to the partition function is, with the masses re-instated so that
we may follow the reducibility of the connections,

ZBF [M,G, µ]|φC

=
∑
n0

· · ·
∑
nN

τS1(−2πi(P/d)q̂ + 2πin0, µ)2−N .
N∏
i=1

τS1((−2πi(P/d)q̂ + 2πirini)/ai, µ/ai)

(4.13)

This result can be understood in terms of the homotopy representations for flat connections
on the Seifert Q Homology Sphere to which we turn shortly. Notice that the contribution
from these connections is precisely of the form that was anticipated in (2.20). However, for
present purposes the most useful form for us is where we have set the ni for i ≥ 1 to zero
and restrict n0 ∈ I(G)/d.I(G)

ZBF [M,G, µ]|φC =
∑

n0∈I(G)/d.I(G)
τS1(−2πi(P/d)n0, µ)2−N .

N∏
i=1

τS1(−2πi(P/d)n0/ai, µ/ai)

(4.14)
The classical examples of Q Homology Spheres are of course the Lens spaces L(p, q).

The simplest Seifert presentation of the Lens space L(p, q) is with N = 1, d = p and a = q∗

where qq∗ = 1 mod p, p = b0q
∗ + b1. Substituting these values into (4.14)

ZBF [L(p, q), G, µ] =
∑

n∈I(G)/p.I(G)
τS1(2πiq∗n/p+ µ).τS1(2πin/p+ µ/q∗) (4.15)

To specialise to G = SU(2) we note that the massive Ray-Singer Torsion (3.53) takes
the form

τS1(φ, µ) = (1− e−2πµ).(1 + e−4πµ − e−2πµ2 cos 2φ) (4.16)
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so that on specialising (4.15) to G = SU(2) one obtains

ZBF [L(p, q), SU(2), µ] =
(
µ2

q∗

)3

+ . . .

+
(
µ2

q∗

) p−1∑
n=1

sin2 (2πiq∗n/p). sin2 (2πin/p) + . . . (4.17)

We note that happily (4.15) and (4.17) have the form that we expected from the covariant
analysis in section 2 and in particular agree with the general form (2.22).

The first term in (4.17) corresponds to the trivial connection with reducibility of order
3 while the second term is the sum over the Abelian connections with reducibility of order 1
and the torsions agree with the formulae obtained by Ray [33] for Lens spaces. This should
also be compared with the Chern-Simons large k limit formula (5.7) in [34] and we see that
there is complete agreement with the expression for the Ray-Singer Torsion of the Lens
spaces for the Abelian connections (the only difference with Jeffrey’s formula is that we are
summing over the Ray-Singer Torsion not its square root).

We note that φC in this case is the complete contribution to the integral (4.1) for, as
noted in item 2 after (4.2), when N = 1 there are no poles in the integrand and the integral
is well defined as is.

Now consider quotients of the Poincare sphere Σ(2, 3, 5) = M [−1, g = 0, (2, 1),
(3, 1), (5, 1)]. The fundamental group of Σ(2, 3, 5) is π1(Σ(2, 3, 5)) = I∗ the binary icosahedral
group of order 120 while the quotient manifold Σ(2, 3, 5)d = S(L⊗dΣ(2,3,5)) has fundamental
group Zd× I∗ (Theorem 2 (v) page 112 in [35]). This means that Σ(2, 3, 5)d comes equipped
with the non-Abelian flat connections of Σ(2, 3, 5) through the I∗ factor of the fundamental
group and with Abelian connections through the Zd factor of π1. In this case we have

ZBF [Σ(2, 3, 5)d, G, µ]|φC '∑
0≤n≤d−1

τS1(60πin/d+ µ)−1.τS1(30πin/d+ µ/2).τS1(20πin/d+ µ/3).τS1(12πin/d+ µ/5)

(4.18)
Apart from having the standard form we note that we can expect, at least in the case of
SU(2) that this formula correctly captures the contributions of the reducible connections.

Indeed all the so called small Seifert manifolds with genus zero and orientable base
have finite fundamental groups with cyclic factors. Hence quite generally the space of flat
connections for these manifolds naturally splits into the non-Abelian and Abelian parts.
The cyclic group is generated by the fibre generator h. For large Seifert manifolds the
fibre generator also generates the cyclic group as a normal subgroup of the infinite order
fundamental group. Then Zd ⊂ π1(Md) and Zd = (π1/[π1, π1])(Md).

The interpretation of the formulae at φC that we arrived at above in terms of homotopy
representations has been given in [17]. At these reducible connections the Chern-Simons
invariant agrees with that given by Kirk and Klassen in [36], Auckly [37] and Nishi [38] and
is consistent with the identification of the connections being reducible and flat. Also the
known relationship between the Ray-Singer Torsion for flat connections and Reidemeister
torsion corroborates the identification of the contributions that we find.
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4.4 A residue formula for SU(2)

As we saw in section 4.3 that Abelian reducible connections are accounted for by φC we now
take another and closer look at the finite-dimensional integral to see where the contributions
from non-Abelian (ir)reducibles could come from.

The integrand of (4.1) has poles and zeros and so we must give meaning to the integral.
A similar situation arises in Chern-Simons theory [13] where one explicitly removes the poles
with the addition of a mass term. There is a good reason for this in Chern-Simons theory
as, say on Σ × S1, one is counting the finite number of states in the theory. Here, if we
use a mass regularisation then there is the same effect, namely the poles do not contribute.
However, this then excludes important contributions to the BF partition function. Also, it
should be said, that for BF theory one does not have a finite dimensional Hilbert space
of states and so there is no ‘directive’ to ensure that the poles should not be counted in
some way.

One could rotate the φ integral to say exp (−iε)× t which would ensure that one avoids
the poles altogether. However, one would need to simultaneously require a different path of
integration for λ to ensure convergence of the integrals. Passing to the massive Ray-Singer
Torsion is another way of avoiding the poles as the mass pushes the poles off the real t axis
and into the complex plane C× t.

Short of a guiding principle we use the first symmetry in the Properties of the Integrand
to restrict the range of each component of the φ field to lie in (−πP, πP ). In this way we
do not have to worry about convergence issues with respect to integration over φ. However,
there are still the poles to contend with and the integration over λ.

In order to be concrete and to fix ideas we now focus on G = SU(2). From the outset
we are tasked with having to make sense of

ZBF [M, SU(2)] ∼
∑
n∈Z

∫
R×R

τM (φ) . exp
(
iλ

(
φ
d

P
− 2πn

))
(4.19)

We firstly sum over n to exchange λ with the integers and exchange the integral with the
sum

ZBF [M, SU(2)] ∼
∫
R
τM (φ) .

∑
n∈Z

exp
(
inφ

d

P

)
(4.20)

As τM (φ) is even in φ we have

ZBF [M, SU(2)] ∼
∫ πP

−πP
τM (φ) .(1 + exp (idφ/P ))

(1− exp (idφ/P ))

∼
∫ πP

−πP
τM (φ) . f(φ)

(1− exp (idφ/P )) (4.21)

and we have used the symmetries available to limit the range of φ to lie in the range
(−πP, πP ). Here the function f is

f(φ) = (1 + exp (idφ/P )) (4.22)

There are now poles on the real axis coming both from the Ray-Singer Torsion as well
as from the result of the geometric sum. We push all of these, in the complex plane, to lie
above the real line (say by use of an iε prescription).
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The contour that we choose in the complex plane in order to evaluate the integral is as
follows: travel along the real axis from −πP to πP then straight up along the imaginary
axis to πP + iR followed by an arc to −πP + iR then straight down to −πP and finally
take the R → ∞ limit. For the integral over the arc to make sense one regularises the
integrand by multiplying by exp (iεφ2) with ε > 0. The integrals over the other parts of the
contour are convergent as we will see below. The fact that the prescription for the poles on
the interval (−πP, πP ) are now such that they all lie inside the contour (in the upper half
plane) means that the contour integral is just given by the residue of all of those poles.

Denote the contribution of each segment of the integral by the start and end points as
I(x, y) so that we have, with R→∞

I(−πP, πP ) + I(πP, πP + iR)− I(−πP,−πP + iR) = 2πiRes
(
τM (φ) .(1 + exp (idφ/P ))

(1− exp (idφ/P ))

)
(4.23)

as the integral over the arc is zero. Had we preserved the symmetry φ→ φ+ 2πP with our
regulator then we would have been able to declare that I(πP, πP +iR) = I(−πP,−πP +iR).
However as φ becomes large the integrand of I(±πP,±πP + iR) goes as

exp
(
iε(iφ± πP )2 − 2φ

(
N − 2−

N∑
i=1

1/ai
))

+ . . . (4.24)

and for N ≥ 3 (but not for Σ(2, 3, 5) the Poincare sphere) there is convergence without the
need for the Gaussian oscillatory behaviour so that one may take the ε→ 0 limit and the
integrals over the two vertical parts of the contour cancel each other in the limit. In short,
we have that with this prescription for handling the poles that

ZBF [M, SU(2)] = 2πiRes
(
τM (φ) .(1 + exp (idφ/P ))

(1− exp (idφ/P ))

)
(4.25)

One would also like to understand a little better what the residue formula implies. To
that end let

τM (φ) =
∏
α>0

(sin (α(φ)))4−2N .
∏
α>0

N∏
i=1

(sin (α(φ)/ai))2

=
∏
α>0

(sin (α(φ)))4−2N . τ̃M (φ) (4.26)

The residue formula in the case of SU(2) takes the simple form

ZBF [M,SU(2)] =ZBF [M,SU(2)]|φC

+
2N−5∑
r=0

(
2N−5−r

r

)
P−1∑

m=1−P

(
f(mπ). 1

1−eimπd/P

)(2N−5−r)

τ̃M (mπ)(r)

(4.27)

where the sum overm indicates the poles of (sin (α(φ)))4−2N . One sees that this is essentially
a sum over derivatives of the Reidemeister torsion τ̃M (up to normalisation).
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4.5 SU(2) BF theory on Brieskorn spheres Σ(a1, a2, a3)

We now look concretely at SU(2) BF Theory on Brieskorn Spheres Σ(a1, a2, a3), in order
to see if the suggested contour reproduces the expectations from perturbation theory as
derived by Witten [11]. Even though the result for the path integral is not exactly that
predicted by Witten, we will see that this choice does have contributions from irreducible
flat connections which is quite pleasing in its own right though, as we explain below, not
completely unexpected.

With N = 3 and d = 1 the path integral becomes, apart from the φC contributions of
the previous sections

ZBF [Σ(a1, a2, a3), SU(2)]

'
P−1∑
m=1

(
1
P

csc2 (mπ/2P )− 4 cot (mπ/P )
3∑
i=1

1
ai

cot (mπ/ai)
)
τ̃Σ(a1,a2,a3)(mπ)

' 1
a1a2a3

P−1∑
m=1

h(m)τ̃Σ(a1,a2,a3)(mπ) (4.28)

To compare with (4.11) we note that the integer m can be written in various ways in
particular

m = a1α1 + n1r1 = a2α2 + n2r2 = a3α3 + n3r3, αi, ni ∈ Z (4.29)

to arrive at

ZBF [Σ(a1, a2, a3), SU(2)] ' 1
a1a2a3

∑
ni

g(ni)
3∏
i=1

4 sin2
(
πniri
ai

)
(4.30)

which would agree with (4.11) if the function g is ni independent.
As our first example (even though as we noted the derivation provided fails) consider

the Poincaré homology sphere Σ(2, 3, 5). The Ray-Singer-Torsion is the same for the values
of (n1, n2, n3) corresponding to (1, 1, r), (1, 1, 5− r) and (1, 2, r). In this way we have, apart
from the trivial connection, the two possible non-Abelian connections (1, 1, 1) and (1, 1, 2).
By Proposition 2.8 of [39], this count is correct for the flat connections on Σ(2, 3, 5).

As our next example let us fix on Σ(2, 3, 7) for which there are 2 irreducible isolated flat
connections. The Ray-Singer-Torsion is the same for the values of (n1, n2, n3) corresponding
to (1, 1, r), (1, 1, 7− r) and (1, 2, r). If we identify those contributions as corresponding to
the same isolated and irreducible connection then we get 4 copies each of three different
connections, say of (1, 1, 1), (1, 1, 2) and (1, 1, 3). In that case the sum in (4.30) is over the
3 different connections each of which corresponds to 4 different values of m as tabulated
below (the values of g are approximate)

m (n1, n2, n3) g/P = ∑
m h(m)/P

1, 13, 29, 41 (1, 1, 1) −34.45
5, 19, 23, 37 (1, 1, 2) 6.96
11, 17, 25, 31 (1, 1, 3) 3.35

(4.31)

Hence the partition function does not just give the sum of these connections with equal weight.
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The situation is somewhat less clear than just indicated and rather more puzzling as
the third contribution m = 11, 17, 25, 31 does not correspond to a flat SU(2) connection on
Σ(2, 3, 7). Rather this connection is one identified in [27] as a flat SL(2,C) connection that
is conjugate to SL(2,R) and not to SU(2) (cf. also [40]).

The holonomies of the isolated irreducible flat connections are elements of the group
and the holonomies can, independently, be conjugated into a preferred maximal torus
(even though they are not reducible). The contribution to the Reidemeister Torsion of
these holonomies is then determined by the integers n as described in [32] equation 2.8
for Brieskorn spheres. To apply this to an actual flat connection there are conditions on
the integers arising from the presentation of the fundamental group. What we have in
our situation is that all such integers arise as the poles of the Ray-Singer Torsion and,
unfortunately, our residue formula (4.25) does not restrict only to the ones that correspond
to honest flat SU(2) connections.

4.6 A residue formula for higher rank and outlook

Here we would like to briefly give a formula in terms of residues for the partition function (4.1)
to use as a definition for general G.

A possible definition, is

ZBF [M,G] ' 2πiRes

f(φ)τM (φ) .
dim t∏
j=1

1
1− e iφjd/P

 (4.32)

where φ = φjα
j and the function f is such that f(2πnP/d) = 1 for all n ∈ I(G),

f(φ) =
∑
n∈Λ

e in
jφjd/P fn (4.33)

The poles of ∏j(1− exp (iφjd/P ))−1 are at φC , (4.4), so summing over its residues at these
poles is equivalent to performing the λ integral. The properties of f(φ) are so that at those
poles f is unity (whence the contribution is exactly the same as performing the λ integral).
The function f is obtained, as in the SU(2) case, by first performing the sum over n to
restrict the form of λ and symmetry properties within the integral

∑
n

∫
t
dλ exp (iTrλ (dφ/P + 2πin))→

dim t∏
j=1

f(φ)
1− e iφjd/P

(4.34)

It must also be remembered that the range of φ is constrained.
The poles of τM may also contribute to the residue. If one takes the attitude that one

should use the massive Ray-Singer Torsion directly then there are no extra poles and (4.32)
agrees with the naive evaluation of the path integral. Alternatively, (4.32) allows one to
take the poles of τM into account after which one may reinstate the mass.

We have not shown that there is a contour that leads to (4.32) but one may reasonably
hope that a generalisation of that used in the SU(2) case will be available.

Before ending this section we would like to suggest a possible apriori reason for why
the definition adopted here has shortcomings. We start by observing that it is somewhat
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surprising that the possible isolated irreducible flat connections are determined by poles in
the Ray-Singer Torsion. This is certainly counterintuitive as the poles of the Ray-Singer
Torsion are understood to arise when one has moduli, i.e. 1-form zero modes. A possible
reason for this is a shortcoming in the gauge-fixing choice that has been made. As already
noted in order to gauge fix λ to be constant on the fibre we require that φ be generic
‘enough’. To see that this may be the cause of concern, imagine that one wishes, as we did
in section 2, to expand around an isolated irreducible flat connection. We do this but we
still insist on gauge fixing the quantum fields as we did in section 3 so that λ is constant
along the fibre. Then we would need to solve the equivalent of (3.22)

λ+Dφf+φΛ = λ0 (4.35)

where φf is the fibre component of the background flat connection and φ is the fibre
component of the quantum field. If one thinks of the quantum field as having a ~ in front
of it then to lowest order the equation to be solved is

λ+DφfΛ ' λ0 (4.36)

and the field φf is certainly not generic. The discussion in section 3 tells us that precisely
for these φf , as explained around (3.31)–(3.32), the operator Dφf is not invertible and the
gauge ∂tλ = 0 cannot be achieved.

Given this question about the gauge choice and the appearance of a complex flat
connection in the SU(2) theory one may wonder if resurgence is an approach that may
demystify the situation. The BF theory, as we have approached it here, arises as one
possible limit of GC Chern-Simons theory (see the next section). In the SU(2) case the
reducible connections are Abelian and one may hope that the resurgence programme will
yield the correct non-Abelian connections as they do in [27] with the correct contribution
to the partition function.

5 Large k asymptotics of G×G and GC Chern-Simons theory

Our aim in this section is to see if embedding BF theory in a ‘bigger’ theory may act to
give a suitable definition which can be used in case M is an Z Homology Sphere. To that
end we consider some naive large k limits of Chern-Simons theory with the compact gauge
group G × G (with levels k and −k for the two factors) and the complexified group GC.
The ‘fattened’ groups G−k ×Gk and GC, as has already been explained (see appendix A),
have been chosen as in the limits to be discussed they both contract to TG.

The advantage of such an approach is that we avoid the possible issues we had with
the generic nature (or not) of φ as the values of φ signalled out prior to taking the large k
limit allow for the gauge where λ is constant along the fibre.

In the case of G−k × Gk we find that the theory does not appear to ‘decompactify’
enough in the large k limit to capture all the features of the TG theory. However, in
examples, we show that it does actually pick up those flat connections which are both
isolated and irreducible correctly. The GC Chern-Simons theory, on the otherhand, has all
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the features of the TG theory from the outset. We show that the partition function has the
formal properties that would allow an application of the large k analysis that have worked
in the case of the compact groups.

5.1 Definition 2: BF and the large k limit of Gk× G−k Chern-Simons theory

Here we consider the Chern-Simons action for two connections on two copies of the same
bundle for the product gauge group G×G and for the following gymnastics we require that
the bundle in question is trivial. The action under consideration is

CS(A+, A−) = 1
4π

∫
M

[
Tr
(
A+ ∧ dA+ + 2

3A+ ∧A+ ∧A+

)
−Tr

(
A− ∧ dA− + 2

3A− ∧A− ∧A−
)]

(5.1)

The relative sign means that the two gauge theories have opposite levels and we denote
such a theory, with action k CS(A+, A−) as a Gk ×G−k Chern-Simons theory. If we denote
the level k Chern-Simons theory partition function for group G by ZCS [M,Gk] then the
partition function for the Gk× G−k theory is

ZCS [M,Gk ×G−k] = ZCS [M,Gk].ZCS [M,G−k] (5.2)

Now to show how this is related to BF theory make the substitutions

A± = A± π

k
B, A = 1

2(A+ +A−), B = k

2π (A+ −A−) (5.3)

to arrive at
CS(A+, A−) =

∫
M

Tr
(
B ∧ FA + π2

k2B ∧B ∧B
)

(5.4)

There may be a Jacobian J , depending on k in passing to the new variables in the path
integral, so the relationship that we expect is finally

ZBF [M,G] = lim
k→∞

J(k)ZCS [M,Gk ×G−k] (5.5)

where the limit as k →∞ formally ensures that the cubic term in B may be neglected. We
allow J to also soak up any other factors of k that may be present due to zero modes and
so on.

This formal result says that the k →∞ limit of a Gk× G−k Chern-Simons theory is
equivalent to a pure BF theory. However, this statement certainly requires some elaboration
as adding and subtracting connections at will as in (5.3) is not usually an operation that
makes sense in the theory of bundles. This is mirrored in the gauge transformations that one
obtains for A and B which are also not what one might call ‘standard’. To emphasise that
the limit in question is by no means obvious consider the 3-manifold Σ× S1. Chern-Simons
theory on such a manifold is perfectly sensible and the large k limit is well understood,
the partition function having leading term kn/2Vol(M[Σ, G]) the symplectic volume of the
moduli space of G connections on Σ where n = dim (M[Σ, G]) [42]. The large k limit of
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the Gk× G−k partition function is then proportional to knVol(M[Σ, G])2 and not what one
would expect from BF theory, say knVol(TM[Σ, G]) (even though this is ill defined).

So we need to better understand when the limit will indeed correspond to BF theory.
At large k, the stationary phase approximation tells us that the functional integral [12]
localises around the critical points of the action CS(A), which in this case are precisely the
flat connections. We then have, for isolated flat connections, as k→ ∞,

Zk[M ] ∼
∑
α

e2πikCS(α) e−
iπ
2 I(α)

√
τM (α) (5.6)

where α, τM (α) and I(α) are the flat connections, the Ray-Singer torsion at the flat
connection and the spectral flow to the flat connection respectively.

The Gk × G−k theory then has the asymptotic form

Zk[M ]Z−k[M ] ∼
∑
α,β

e ik (CS(α)− CS(β))fαβ
√
τM (α)

√
τM (β) (5.7)

where
fαβ = exp

(
− iπ2 [I(Aα)− I(Aβ)]

)
(5.8)

One would expect therefore, that in the limit as k →∞, that providing that flat connections
α and β having the same Chern-Simons invariant implies they are the same flat connection,

CS(α) = CS(β) mod 2πZ =⇒ α = β (5.9)

then the oscillations in (5.7) would ensure that we would indeed only need to sum over
α = β. In such a situation then one could reasonably expect that (5.5) holds. If this
condition does not hold then there may be ‘non-diagonal’ contributions to the sum (5.7)
and so the relationship with BF theory becomes more tenuous.

Indeed for any connected component of non-isolated flat connections all the flat connec-
tions in that component have the same Chern-Simons invariant and fail our test (5.9). The
flat connections on Σ× S1 that we discussed previously are of this type and this, to some
extent, explains why they do not match the expectations for BF theory. The lesson here
is that we must concentrate on isolated flat connections. Fortunately for us Fintushil and
Stern [39] have shown that the Brieskorn spheres (the Seifert Z homology spheres with 3
exceptional fibres) have moduli spaces of flat SU(2) connections made up of a finite number
of discrete points.

We shall now illustrate when (5.9) holds with a few examples in the literature. Consider
firstly the Poincaré Homology Sphere, M = Σ(2, 3, 5). The Poincaré Z homology sphere
has three flat SU(2) connections, one of which is the reducible trivial connection and two
which are non-Abelian. Freed and Gompf [19] determine the large k behaviour for the
Chern-Simons partition function and find

Zk[Σ(2, 3, 5)] ∼
√

2
5e
−3πi/4

[
sin
(
π

5

)
e−πi(k+2)/60 + sin

(2π
5

)
e−49πi(k+2)/60

]
(5.10)

– 30 –



J
H
E
P
0
4
(
2
0
2
3
)
1
4
6

Taking the modulus square, and presuming the limit of the norm agrees with the norm of
the limit, one gets

lim
k→∞

Zk[Σ(2, 3, 5)]Z−k[Σ(2, 3, 5)] ∼ 2
5

[
sin2

(
π

5

)
+ sin2

(2π
5

)]
(5.11)

this corresponds to the sum of the Ray-Singer torsions of the irreducible connections for
Σ(2, 3, 5) up to a finite normalisation. Similarly [19] provides us with the example of
Σ(2, 3, 17) and, with the same caveat on exchanging limits and norms, we find that the
norm square of the Chern-Simons partition function is the sum of the Ray-Singer Torsion
over the 6 irreducible flat SU(2) connections.

There are manifolds, however, where you find two or more isolated flat connections
giving the same Chern-Simons invariant so that (5.9) does not hold. Lens spaces yield
examples of this phenomena. As we have seen for Lens spaces L(p, q) the Ray-Singer Torsion
is given by

τL(p,q) = 16
p

sin2
(2πn

p

)
sin2

(2πq∗n
p

)
(5.12)

Here one integer is enough to describe the flat (Abelian) connections.
A typical example where two different connections have the same Chern-Simons invariant

is afforded by the Lens space L(12, 5). For L(12, 5) we have q∗ = 5 and one can see for
example that n = 1 and n = 5 give the same Chern-Simons invariant (mod 2π), namely

CS(n) = q∗n2/p = 5
12 (5.13)

so we are not free to use the norm of the Chern-Simons theory in this case as a way to
define the BF theory.

The discussion of this section shows that this definition of BF theory as a limit of
the G−k ×Gk Chern-Simons theory needs to be handled with care and we might have to
know more about the moduli space itself than we would care to. However, for the part of
the moduli space where the connections are isolated and irreducible this appears to be an
appropriate definition.

5.2 Definition 3: BF and the large k or s limit of GC Chern-Simons theory

The final definition that we give involves the gauge group GC. Note that the classical groups
TG and GC are diffeomorphic (as spaces). The Inönü-Wigner contraction that establishes
the Lie algebra relationship is given in appendix A. Furthermore, the GC connection is

AC = A+ iB (5.14)

and as GC contracts to the compact group G the connection A may be considered a
G connection while B is then a Lie algebra g valued one-form. This is a much clearer
decomposition than the mixing of objects that appeared in the G−k × Gk theory of the
previous section.
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The GC Chern-Simons action is

I(k, s) = k

4π

∫
M

Tr
(
A ∧ dA+ 2

3A ∧A ∧A−B ∧ dAB
)

− s

2π

∫
M

Tr
(
B ∧ FA −

1
3B ∧B ∧B

)
(5.15)

with k ∈ Z and we take s ∈ R [20]. One can see that the complex Chern-Simons action has a
number of limits which formally lead to the BF action. The first, and most straightforward
way, to arrive at the BF theory is to set k = 0 and consider the s→∞ limit where one
sends B → B/s to formally arrive at

I(k, s)→ − 1
2π

∫
M

Tr (B ∧ FA) (5.16)

Alternatively one can consider the large k limit, for finite s, and this time by scaling
B → B/

√
k. One does not get the BF action directly, but rather

I(k, s)→ k

4π

∫
M

Tr
(
A ∧ dA+ 2

3A ∧A ∧A
)
− 1

4π

∫
M

Tr (B ∧ dAB) (5.17)

About an isolated flat connection this would be the same as the large k limit of Chern-Simons
theory except that the integral over the field B has, formally the effect of replacing the
square root of the Ray-Singer torsion of the flat connection with the Ray-Singer torsion
itself and so would, in the limit, reproduce the partition function of BF theory with a
Chern-Simons action contribution of the flat connection. Both limits (and indeed any other
limits of k and s) need to be carefully taken as in principle one would most likely land on
the moduli space of flat GC connections and not just the flat G connections.

For finite k and with s = 0 Gukov and Pei [23] have evaluated the partition function on
M = Σ× S1. Even though the Hilbert space is also infinite dimensional in this case, they
‘filter’ it by giving the B field a mass and so are able to extract meaningful results. Unlike
the situation with the G−k ×Gk, where one gets essentially the square of the compact case,
here one sees that the results come from a non-compact group and formally diverges as
k →∞ as we would expect for the BF theory.

Returning to the case at hand note that the corresponding finite dimensional integral
to be performed in the case of complex Chern-Simons after Abelianisation [17] has as its
action

I(k, s) = − k

4π Tr(φ2 − λ2)c1 (LM ) + k
N∑
i=1

1
ai

Tr(−iφni + riπn2
i ) + kTr(−iφn0)

+ s

2π Tr
(
λ

(
φc1 (LM ) + 2πi

N∑
i=1

1
ai

ni + 2πin0

))
(5.18)

while the Ray-Singer Torsion goes over to the complex Ray-Singer Torsion

τM (φ)→
√
τM (φ+ iλ)τM (φ− iλ) (5.19)
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Formally the complex Ray-Singer Torsion under either scaling goes back to the ‘real’ Ray-
Singer Torsion. The k = 0 and s→∞ limit lands us on the finite dimensional action that
we have been using for BF theory. Here we would like to investigate the other limit.

The limit of interest then is large k and for λ→ λ/
√
k. As λ now only appears in the

action quadratically one may integrate it out. In this limit the finite action goes over to

I(k, s)→ − k

4π Tr(φ2)c1 (LM ) + k
N∑
i=1

1
ai

Tr(−iφni + riπn2
i ) + kTr(−iφn0) (5.20)

which is just the standard Chern-Simons action for compact group G. The partition function,
however, includes an extra factor of the square root of the Ray-Singer Torsion (arising from
the integral over the field B in (5.17)) in the integral over t so this is not the partition
function of compact Chern-Simons theory.

As the action agrees with that of G Chern-Simons theory then all the properties of the
integrand (see appendix B for the symmetry properties) and hence the considerations that
appear in [24] and [25] apply here too. This includes the choice of contour to take the large
k limit, the only difference being that of considering a slightly different function that takes
into account that we have the Ray-Singer Torsion not its square root in the integrand. The
resulting large k asymptotics are, for Chern-Simons theory, just as predicted by Witten
in [12], contributions around flat connections. Consequently, in the limit that we are
considering in the GC theory, this means that the asymptotic form will have contributions
from flat connections in BF theory as anticipated in section 2.

Specifically in the case of SU(2) the large k limit is that of the flat connection contri-
butions on page 302 of [24] but with F (y) there replaced with F (y)2 in order to pass to
the BF theory (and one should not include the framing as it ought not to arise in complex
Chern-Simons theory) while for a general compact group one can refer to (4.17) in [25] from
which one can deduce the large k behaviour. At this point this particular definition of BF
theory is the most complete that we have.

If one would like to obtain more explicit formulae for the BF theory one could follow
the explanation of [24] on how to arrive at Rozansky’s formula for the large k expansion of
SU(2) Chern-Simons theory [41] which reproduces Witten’s expansion. Of course this also
encodes some of the large k structure of the GC theory itself so that by following different
parts of the asymptotic expansion we would be able to obtain parts of the perturabation
theory. In particular we also have in mind the contributions about the trivial connection.
We leave these issues, and the question of how and whether complex connections contribute
to the BF limit for the future.
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A The tangent bundle group TG and its Lie algebra tg

A.1 Basic properties of TG and tg

let G be a compact Lie group and (to not unnecessarily complicate things) assume that G
is connected, simply-connected and semi-simple. Via a right-invariant trivialisation of the
tangent bundle, the group TG can be identified with the semi-direct product of G with its
Lie algebra g,

TG ' Gn g ≡ G×Ad g , (A.1)

with multiplication
(g, v)(h,w) = (gh, v + Adgw)} , (A.2)

where the adjoint action of g ∈ G on w ∈ g is Adgw = gwg−1. Correspondingly, its Lie
algebra has the form

Lie(TG) ≡ tg ' g⊕ad gAb (A.3)

where gAb is the Abelian Lie algebra based on the underlying vector space g, i.e. the
commutator is

[(x, v), (y, w)] = ([x, y], [x,w] + [v, y]) = ([x, y], adxw − adyv) (A.4)

and the (inverse) adjoint action of TG on its Lie algebra is

(g, v)−1(y, w)(g, v) = (Adg−1y,Adg−1(w + [y, v])) (A.5)

Let `a be a (real) basis of the (real) Lie algebra g, with

[`a, `b] = f cab`c . (A.6)

Then
ja = (`a, 0) , pa = (0, `a) (A.7)

are a basis of tg, and the Lie algebra commutation relations take the form

[ja, jb] = f cabjc , [ja, pb] = [pa, jb] = f cabpc , [pa, pb] = 0 . (A.8)

Here are two useful properties of tg:

1. The Lie algebra tg of TG can be obtained as a contraction of the Lie algebra of the
group G×G

• Consider the G×G Lie algebra

g+ ⊕ g− = g⊕ g (A.9)

with generators
[j±a , j±b ] = f cabj

±
c , [j+

a , j
−
b ] = 0 . (A.10)

• Perform the redefinition

j±a = 1
2(ja ± pa/ε) ⇔ ja = j+

a + j−a , pa = ε(j+
a − j−a ) (A.11)
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• Then the algebra g⊕ g takes the form

[ja, jb] = f cabjc , [ja, pb] = [pa, jb] = f cabpc , [pa, pb] = ε2f cabjc . (A.12)

• In the limit ε→ 0, this reduces to (A.8), the Lie algebra of TG.

• If one sets ε = iδ, the same reasoning shows that tg can be obtained as the
contraction of the complexification gC = g⊕ ig of g.

2. Existence of Invariant Scalar Products on tg

Let us consider the case where the Lie algebra g is simple. In that case, g has
a preferred (and up to a choice of scale unique) non-degenerate and ad-invariant
metric scalar product, namely the Killing-Cartan form Tr adxady (the trace in the
adjoint representation). With respect to the basis `a of generators, this metric has
the components

gab ≡< `a, `b >= Tr ad`aad`b = fdacf
c
bd (A.13)

Turning to the Lie algebra
tg ' g⊕ad gAb , (A.14)

as it is not semi-simple, its Killing-Cartan form will be tg-invariant (by construction,
i.e. by the Jacobi identity) but degenerate. Indeed, in terms of the generators (ja, pa)
one has

Tr adjaadjb = 2gab = 2fdacf cbd (A.15)

(from the adjoint action of adjaadjb on jc and on pc), and

Tr adjaadpb = Tr adpaadpb = 0 (A.16)

(because both adjaadpb and adpaadpb only act non-trivially on a jc and take it to a
linear combination of the pc). This scalar product can therefore also be written as

< ja, jb >= 2gab , < ja, pb >=< pa, pb >= 0 . (A.17)

In addition to the (degenerate) Killing-Cartan form, tg exceptionally also possesses a
non-degenerate ad-invariant scalar product given by

� ja, jb �=� pa, pb �= 0 , � ja, pb �= gab . (A.18)

It is easily verified that this is indeed both invariant and non-degenerate.

The existence of this second invariant scalar product, or of the overall two-parameter
family of invariant scalar products, can be understood in terms of the contraction of
the Lie algebra g⊕ g to tg mentioned above. Indeed, starting with the non-degenerate
Killing-Cartan metric on the Lie algebra g⊕ g (A.10) of G×G, with coefficients c±,

< j±a , j
±
b >= c±gab , < j+

a , j
−
b >= 0 , (A.19)
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and performing the redefinition (A.11), one finds

< ja, jb >= (c+ + c−)gab , < ja, pb >= ε(c+− c−)gab , < pa, pb >= ε2(c+ + c−)gab
(A.20)

Taking the contraction ε → 0 with c+ = c− = 1, one finds (A.17), while taking
c+ = −c− = 1/2ε one finds (A.18),

c+ = c− = 1 ⇒ < ., . >

c+ = −c− = 1/2ε ⇒ � ., .�
(A.21)

A.2 Diagonalisation / Abelianisation in TG and tg

Let G be compact, TG be a maximal torus, tG its Lie algebra, a Cartan subalgebra. Then
the following assertions are true:

1. For any h ∈ G one can find a g ∈ G such that

h ∈ G ⇒ ∃g ∈ G : Adgh = ghg−1 ∈ TG . (A.22)

2. For any y ∈ g one can find a g ∈ G such that

y ∈ g ⇒ ∃g ∈ G : Adgy = gyg−1 ∈ tG . (A.23)

As TG is not compact and not semi-simple, a priori the corresponding statements do not
necessarily hold (and would usually be far from true for a generic such group). Nevertheless,
it turns out that the above statements carry over literally to the case of the group TG,
provided that we replace the maximal torus TG of G and the Cartan subalgebra tG of g by

TTG = T (TG) ' TG ×Ad tG = TG × tG (A.24)
tTG = Lie(TG × tG) = tG ⊕ tG (A.25)

(since tG is already an Abelian Lie algebra, here it is not necessary to write (tG)Ab in the
second factor / summand). Indeed, we can now prove the following two statements:

1. Diagonalisation / Abelianisation in TG

∀(h,w) ∈ TG ' G×Ad g ∃(g, v) ∈ TG : (g, v)−1(h,w)(g, v) = (t, τ2) ∈ TG × tG
(A.26)

2. Diagonalisation / Abelianisation in tg

∀(y, w) ∈ tg ' g⊕ad g ∃(g, v) ∈ TG : (g, v)−1(y, w)(g, v) = (τ1, τ2) ∈ tG ⊕ tG
(A.27)
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Here are the proofs of these assertions:

1. Diagonalisation / Abelianisation in TG

• The (inverse) Ad-action of TG on itself is

(g, v)−1(h,w)(g, v) = (Adg−1h,Adg−1(w + Adhv − v)) (A.28)

In particular, for the action of (g, 0) one finds

(g, 0) : h 7→ Adg−1h , w 7→ Adg−1w (A.29)

and for that of (e, v) one has

(e, v) : h 7→ h , w 7→ w + Adhv − v . (A.30)

• First of all, we can and will choose g ∈ G such that

h 7→ g−1hg = t ∈ TG . (A.31)

• Next we define S to be the stabiliser of t under the adjoint action of G,

S := StabG(t) = {g ∈ G : g−1tg = t} . (A.32)

One has
S ⊇ TG , (A.33)

with equality if t is generic (regular). In the non-generic case, S will be a product
of simple factors and U(1)s. We use the convention that TS = TG, and likewise
at the Lie algebra level,

TS = TG , tS = tG . (A.34)

At the Lie algebra level one has the (reductive, because g is compact) decompo-
sition

g = s⊕m with [s,m] ⊂ m . (A.35)

• Now let us turn to the second entry in (A.28),

w 7→ Adg−1(w + Adhv − v) . (A.36)

With h = t ∈ TG and thus g = s ∈ S, this becomes

w 7→ Ads−1(w + Adtv − v) . (A.37)

Decomposing v = vs + vm into its components in g = s⊕m, we see that only the
m-component of v contributes, since Adtvs = vs,

Adtv − v = (Adt − 1)vm ∈ m , (A.38)

and vm can be chosen to cancel the m-component wm of w (because by definition
of m the operator (Adt − 1) is invertible on m).
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• We are then left with
w 7→ Ads−1ws , (A.39)

and we can now choose s ∈ S such that

w 7→ Ads−1ws = τ2 ∈ tS = tG . (A.40)

• Altogether, we have thus managed to conjugate

(h,w) 7→ (t, τ2) ∈ TG × tG , (A.41)

as announced.

2. Diagonalisation / Abelianisation in tg

• The inverse adjoint action of TG on its Lie algebra is

(g, v)−1(y, w)(g, v) = (Adg−1y,Adg−1(w + [y, v])) (A.42)

In particular, for the action of (g, 0) one finds

(g, 0) : y 7→ Adg−1y , w 7→ Adg−1w (A.43)

and for that of (e, v) one has

(e, v) : y 7→ y , w 7→ w + [y, v] . (A.44)

• First of all, we can and will choose g ∈ G such that

y 7→ g−1yg = τ1 ∈ tG . (A.45)

• Next we define S to be the stabiliser of τ1 under the adjoint action of G,

S := StabG(τ1) = {g ∈ G : g−1τ1g = τ1} . (A.46)

One has
S ⊇ TG , (A.47)

with equality if τ1 is generic (regular). As above, we set TS = TG and tS = tG,
with g = s⊕m and [s,m] ⊂ m.

• Now let us turn to the second entry in (A.42),

w 7→ Adg−1(w + [y, v]) (A.48)

With y = τ1 ∈ tG, and thus g = s ∈ S, this becomes

w 7→ Ads−1(w + [τ1, v]) (A.49)

Decomposing v = vs + vm, only vm contributes to the commutator,

[τ1, v] = [τ1, v
m] ∈ m , (A.50)

and vm can be chosen to cancel wm (because by definition of m the operator adτ1
is invertible on m).
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• We are then left with
w 7→ Ads−1ws , (A.51)

and as in the proof above we can now choose s ∈ S such that

w 7→ Ads−1ws = τ2 ∈ tS = tG . (A.52)

• Altogether, we have thus managed to conjugate

(y, w) 7→ (τ1, τ2) ∈ tG ⊕ tG , (A.53)

as announced.

Remarks:

1. We see that for any (h,w) ∈ TG or (y, w) ∈ tg

• one needs g ∈ G/S (meaning g ∈ G modulo elements in S) to conjugate h or y
into TG

• one needs vm ∈ m ⊂ g to map w 7→ ws ∈ s

• one then needs s ∈ S/TG to conjugate ws 7→ τ2 ∈ tG

Thus in total, for any g or y (regardless of regular or not) the parameters (g, v)
lying in TTG ' TG × tG ⊂ TG are not needed to accomplish the Abelianisation /
diagonalisation.

2. In particular, in the generic regular case (g or y regular), one has S = TG and s = tG.
Thus the last step in the proof (consisting of conjugating ws into tS = tG) is empty.
The entire ambiguity in the construction then lies in the first step, the conjugation of
h into TG (or y into tG). The possible choices of t or τ1 are related by the action of
the Weyl Group W ,

W = NG(TG)/TG , (A.54)

where NG(TG) is the normaliser of TG in G.

3. In the opposite extreme case of g = e or y = 0, say, evidently the first step of the
argument is empty, the stabiliser of g = e or y = 0 is of course all of G, S = G, and
then in the last step there is then a W -fold degeneracy in the choice τ2 ∈ tG.

B A symmetry of complex Chern-Simons theory on Seifert 3-manifolds

Here we establish that the symmetry that we need in section 3.4 to pass from having a
background field and summing over integers at each orbifold point to having a background
field with just one integer summation to perform exists at the level of Complex Chern-Simons
theory. BF theory is then just a special limit.4 One, possibly surprising, outcome is that
the two approaches do not agree at the level of holomorphic factorisation.

4It is straightforward to show that the symmetry is available directly in BF theory but we wanted to
establish the more general result here.
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We should also point out that these symmetries are a variation of those found by
Lawrence and Rozansky [24] and by Mariño [25]. However, here the symmetries have a
clear geometric meaning which we explain.

B.1 Discrete symmetries

The exponent in the finite dimensional integral that one arrives at in the case of complex
Chern-Simons theory is

I(k, s) = − k

4π Tr(φ2 − λ2)c1 (LM ) + k
N∑
1

1
ai

Tr(−iφni + riπn2
i ) + kTr(−iφn0)

+ s

2π Tr
(
λ

(
φc1 (LM ) + 2πi

N∑
i=1

1
ai

ni + 2πin0

))
(B.1)

(just use this instead of the exponent in (4.1)).
The exponential of this action as well as the complex Ray-Singer torsion enjoy a

number of symmetries. We will present them here, but before doing that we note that the
transformations below do not depend on the coupling constants k and s and so those parts
of the action are independently invariant. Also one can see that the k-dependent part of
the action (B.1), apart from the λ2 term, is just what one gets from Chern-Simons theory
on M with compact gauge group G. Furthermore, the field λ does not transform, so that
the k-dependent part has the same invariance as for the G Chern-Simons theory.

First, we have the symmetry

ni → ni + aimi, n0 → n0 −
N∑
i=1

mi (B.2)

It is clear that (B.1) is not changed by these transformations (and it is consistent with our
limit on the range of summation over the ni).

Remark. Note that geometrically this symmetry is the statement that, as the appropriate
powers of the V-line bundle Li of degree 1/ai at the i’th orbifold point is an honest line
bundle

L⊗miaii ' L⊗mi0 (B.3)

any orbifold line bundle L satisfies

L = L⊗n0
0 ⊗ L⊗n1

1 ⊗ · · · ⊗ L⊗nNN

' L⊗(n0−
∑

i
mi)

0 ⊗ L⊗(n1+a1m1)
1 ⊗ · · · ⊗ L⊗(nN+aNmN )

N (B.4)

so one has not changed the bundle but just expressed it in a different way.
Second, we also have the transformations

ni → ni + biv, φ→ φ− 2πiv, n0 → n0 + b0v (B.5)

which form a symmetry of the exponential of the action.
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Remark. Geometrically this says that the pair (L, φ) of an orbifold bundle L with
curvature φdκ satisfy

(L, φ) ' (L ⊗ L⊗vM , φ− 2πiv) (B.6)
The first Chern class of L⊗vM is

c1(L⊗vM ) = v.c1(LM ) (B.7)

while
i

2π .
∫

ΣV
−2πiv dκ = v.

∫
ΣV

dκ = −v.c1(LM ) (B.8)

It is now possible to combine the symmetries and consider

ni → ni + aiu + biv, φ→ φ− 2πiv, n0 → n0 + b0v−Nu (B.9)

One then has a constructive proof that this symmetry allows one to set all the ni for
i 6= 0 to zero. Recall that if the gcd(a, b) = 1 then any integer n can be expressed as

n = au+ bv (B.10)

for some integers u. Furthermore, if gcd (a, b) = 1 and gcd (a, c) = 1 then gcd (a, bc) =
gcd (a, b). gcd (a, c) = 1.

As a first step let (u, v) = (u1, v1) so that

n1 + a1u1 + b1v1 = 0 (B.11)

which is guaranteed to have a solution by (B.10). All the other ni are changed by this
but are brought back into their appropriate ranges by the use of (B.2). Now we want to
use (B.9) again to set n2 = 0 while keeping n1 = 0. If the transformation v is proportional
to a1

n1 → 0 + a1u2 + b1a1v2

n2 → n2 + a2u2 + b2a1v2

n3 → n3 + a3u2 + b3a1v2

. . . . . . . . . . . .

nN → nN + aNu2 + bNa1v2 (B.12)

then the change in n1 is proportional to a1 and by (B.2) is zero. We note that gcd(a2, b2a1) =
1 so by (B.10) we can choose (u2, v2) so the n2 maps to zero. Now we would like to set
n3 = 0 without changing n1 and n2. To not change n1 the vector v must be proportional
to a1, as we saw before, and not to change n2 it must also be proportional to a2 so we
perform a transformation

n1 → 0 + a1u3 + b1a1a2v3 ' 0
n2 → 0 + a2u3 + b2a1a2v3 ' 0
n3 → n3 + a3u3 + b3a1a2v3

. . . . . . . . . . . . . . .

nN → nN + aNu2 + bNa1a2v2 (B.13)

Now gcd(a3, b3a1a2) = 1 so we can set n3 = 0 by a suitable choice of (u3, v3).
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Clearly the procedure can be repeated till we have set all the ni to zero and the
parameters we use are

u =
N∑
i=1

ui, v = v1 + a1v2 + · · ·+ a1 . . . aN−1vN (B.14)

B.2 Holomorphic factorisation

The finite dimensional action for complex Chern-Simons theory (B.1) can be expressed in
terms of complex fields φ+ iλ and a complex coupling constant t = k + is as

I(t, t̄) = − t

8πc1(LM ) Tr Φ2 − i t2 Tr(Φq̂) + tπ

2

N∑
i=1

Tr(n2
i ) (B.15)

− t̄

8πc1(LM ) Tr Φ̄2 + i
t̄

2 Tr(Φ̄q̂) + t̄π

2

N∑
i=1

Tr(n2
i )

Now we note that the holomorphic part of the action

I(t) = − t

8πc1(LM ) Tr Φ2 − i t2 Tr(Φq̂) + tπ

2

N∑
i=1

Tr(n2
i ) (B.16)

is not invariant under the first symmetry namely under

ni → ni + aimi, n0 → n0 −
N∑
i=1

mi (B.17)

even though both Φ and q̂ are invariant. The quadratic term n2
i is not invariant. Fur-

thermore, the exponential exp (iI(t)) is also not invariant, unless s = 0, as the coupling
constant is complex and so one does not just get a phase.

This implies that we can have two inequivalent holomorphic factorizations. The first is
to take the partition function with all the ni switched on and then factorise with holomorphic
action (B.16) while the second is to set all the ni = 0 for i 6= 0 and then get the factorisation
in [17].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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