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1 Introduction

The transition form factors (TFFs) of axial-vector mesons are crucial for estimating the
hadronic light-by-light (HLbL) contribution to the anomalous magnetic moment of the muon
aµ, in particular, for intermediate photon virtualities and the transition to short-distance
constraints (SDCs). At present, the axial-vector contribution included in the Standard-
Model prediction for aµ [1–28] is responsible for a large fraction of the final uncertainty,
aHLbL

µ “ 92p19q ˆ 10´11 [1, 14, 18–26, 29–34], especially, when taking into account the
interplay with SDCs. In view of the expected experimental improvements beyond the
current world average [35–39], the uncertainty in the HLbL contribution should be reduced
by another factor of 2 to ensure that it does not play a role in the interpretation of the
experiment [40, 41]. Such improvements are ongoing, both in lattice QCD [42–46] and
with data-driven methods, including the derivation of higher-order SDCs [47–49], their
implementation [50–56], and dispersion relations [57–60]. In particular, to evaluate the
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axial-vector contributions, one needs robust input for their TFFs. To this end, constraints
on the asymptotic behavior have been derived from the light-cone expansion (LCE) [61] and
available data evaluated in a vector-meson-dominance (VMD) inspired parameterization [62],
but, due to scarcity of data, no sufficiently complete and reliable solutions have been obtained
so far, with ambiguities mostly affecting the determination of the two antisymmetric TFFs.

This is in large part because the interaction of an axial-vector resonance A with two
electromagnetic currents is suppressed by the Landau–Yang theorem [63, 64] — stating
that a spin-1 particle cannot decay into two on-shell photons — so that all observables
require at least one non-zero virtuality. Some data are available for the space-like process
e`e´ Ñ e`e´A, for A “ f1 ” f1p1285q and A “ f 11 ” f1p1420q [65–70], allowing one to
extract the equivalent two-photon decay widths rΓγγ and, thereby, the mixing angle between
the two f1 states. Accordingly, if Up3q symmetry is assumed, it suffices to determine the
TFFs for the f1p1285q to be able to estimate the effect of the entire triplet including the
a1p1260q. Focusing, therefore, on the f1 resonance, for which most data are available, we
compiled the constraints that follow from the radiative decays f1 Ñ ργ and f1 Ñ ϕγ, as well
as f1 Ñ 4π and f1 Ñ e`e´ in ref. [62], improving on previous work [71, 72] by employing
parameterizations that ensure the absence of kinematic singularities, include SDCs, and
incorporate the spectral functions of the isovector resonances. We found that, unfortunately,
the decay f1 Ñ 4π does not provide any meaningful input for the TFFs, since dominated
by f1 Ñ a1π Ñ ρππ Ñ 4π, while f1 Ñ e`e´ would, in principle, be a very interesting
observable, yet not at the current level of precision [73].

Ultimately, the currently available data were not sufficient to identify a unique solution
for all three TFFs, especially the normalizations of the two antisymmetric TFFs and the
momentum dependence of all three TFFs were only poorly determined. In the future, these
limitations could be overcome by better data for e`e´ Ñ e`e´f1 and f1 Ñ e`e´; in this
paper, we instead propose to study existing data for e`e´ Ñ f1π

`π´ [74, 75].1 This process
is also sensitive to all three TFFs, for one photon virtuality centered at the ρ mass and the
other one determined by the center-of-mass energy of the e`e´ pair. Phenomenologically,
the reaction displays prominent resonance features from excited ρ resonances [88], primarily
the ρp2150q, but, when interpreted as a limit on the non-resonant contribution, entails
powerful constraints on the TFFs of the f1, both on the asymptotic behavior and the
respective normalizations.

The outline of the paper is as follows: we first review the basic formalism for the axial-
vector TFFs in section 2, and then define improved VMD parameterizations in section 3
that implement the asymptotic behavior observed in e`e´ Ñ f1π

`π´. In section 4, we
summarize the previous observables and present the formalism in which we will analyze

1The measurement of the e`e´ Ñ 2pπ`π´
qη [74] and e`e´ Ñ KSK˘π¯π`π´ [75] cross sections, in

which the f1 peak can be identified, is partly motivated by hadronic vacuum polarization (HVP). The
impact of such high-multiplicity channels on the HVP contribution to aµ, though, is much smaller than
the current tensions observed between data-driven evaluations [6–12, 76–80] and lattice QCD [81–85], e.g.,
aHVP

µ r2pπ`π´
qηs “ 0.8p1q ˆ 10´11 [11] is at the same level as potential uncertainties from Opα4

q hadronic
corrections [86]. The CMD-3 measurement of e`e´ Ñ 3pπ`π´

qπ0 [87] includes results for e`e´ Ñ 2pπ`π´
qη,

but no additional information on e`e´ Ñ f1π`π´.

– 2 –
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e`e´ Ñ f1π
`π´. The phenomenological analysis, including a review of the data base, a

global fit, and a summary of the resulting TFF parameterizations, will be presented in
section 5, before concluding in section 6. Finally, in appendix A, we collect constants and
parameters used throughout this work.

2 Axial-vector transition form factors

The helicity amplitudes for the decay of an axial-vector meson into two virtual photons,
ApP, λAq Ñ γ˚pq1, λ1qγ

˚pq2, λ2q, are given by [61, 62]

M
`

tA, λAu Ñ tγ˚, λ1utγ
˚, λ2u

˘

“ e2ϵλ1
µ

˚
pq1qϵ

λ2
ν

˚
pq2qϵ

λA
α pP qMµναpq1, q2q, (2.1)

where, following the Bardeen–Tung–Tarrach procedure [89, 90], the tensor matrix
element Mµναpq1, q2q can be decomposed into three independent Lorentz structures and
form factors Fipq

2
1, q

2
2q that are free of kinematic singularities according to

Mµναpq1, q2q “
i

m2
A

ÿ

i“a1,a2,s
Tµνα

i pq1, q2qFipq
2
1, q

2
2q. (2.2)

Here, mA is the mass of the respective axial-vector meson and the structures

Tµνα
a1 pq1, q2q “ ϵµνβγq1βq2γpq

α
1 ´ qα

2 q,

Tµνα
a2 pq1, q2q “

1
2q1βq2γ

´

ϵανβγqµ
1 ` ϵαµβγqν

2

¯

`
1
2ϵ

αµνβpq2βq
2
1 ` q1βq

2
2q,

Tµνα
s pq1, q2q “

1
2q1βq2γ

´

ϵανβγqµ
1 ´ ϵαµβγqν

2

¯

`
1
2ϵ

αµνβpq2βq
2
1 ´ q1βq

2
2q (2.3)

are completely antisymmetric (a) or symmetric (s) under photon crossing (µ Ø ν and
q1 Ø q2); similarly, the associated form factors obey the indicated symmetry properties
under the exchange of momenta, q2

1 Ø q2
2. Furthermore, the prefactor i{m2

A in eq. (2.2) is
chosen to obtain dimensionless TFFs with real-valued normalization and the Levi-Civita
tensor is used in the convention ϵ0123 “ `1. For the formulation of SDCs and the analysis
of the L3 data for e`e´ Ñ e`e´f1, see section 4.1, it is also useful to consider the basis
defined by

F1pq
2
1, q

2
2q “ Fa1pq

2
1, q

2
2q,

F2pq
2
1, q

2
2q “

1
2
“

Fa2pq
2
1, q

2
2q ` Fspq

2
1, q

2
2q
‰

,

F3pq
2
1, q

2
2q “

1
2
“

Fa2pq
2
1, q

2
2q ´ Fspq

2
1, q

2
2q
‰

. (2.4)

Since the Landau–Yang theorem [63, 64] forbids the decay into two on-shell photons,
one commonly defines the so-called equivalent two-photon decay width as [67]

rΓγγ “ lim
q2

1Ñ0

1
2
m2

A

q2
1
ΓpAÑ γ˚LγTq, (2.5)

– 3 –
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with one longitudinal quasi-real photon γ˚L, the spin-averaged — longitudinal-transversal
(LT) — width

ΓpAÑ γ˚LγTq “
1
3

ÿ

λA“t0,˘u

λ2“˘

ż

dΓ0λ2|λA

AÑγ˚γ˚

∣∣∣
q2

2“0
, (2.6)

and the differential decay width for fixed polarization

dΓλ1λ2|λA

AÑγ˚γ˚ “
1

32π2m2
A

a

λpm2
A, q

2
1, q

2
2q

2mA
|MptA, λAu Ñ tγ˚, λ1utγ

˚, λ2uq|2dΩ, (2.7)

where Ω is the center-of-mass solid angle and λpa, b, cq “ a2 ` b2 ` c2 ´ 2ab´ 2ac´ 2bc is
the Källén function. In terms of the above form factors, one finds

rΓγγ “
πα2

48 mA|Fsp0, 0q|2, (2.8)

where α “ e2{p4πq is the fine-structure constant.
The asymptotic behavior of the axial-vector TFFs can be analyzed by means of the

LCE, leading to [61]

Fa1pq
2
1, q

2
2q “ Op1{Q6q,

Fa2pq
2
1, q

2
2q “

F eff
f1
m3

f1

Q4 fa2pwq ` Op1{Q6q, fa2pwq “
3

4w3

ˆ

6` 3´ w2

w
log 1´ w

1` w

˙

,

Fspq
2
1, q

2
2q “

F eff
f1
m3

f1

Q4 fspwq ` Op1{Q6q, fspwq “ ´
3

2w3

ˆ

2w ` log 1´ w

1` w

˙

, (2.9)

where

Q2 “
q2

1 ` q2
2

2 P r0,8q, w “
q2

1 ´ q2
2

q2
1 ` q2

2
P r´1, 1s (2.10)

denote the average photon virtuality and asymmetry parameter, respectively. In the above,
we furthermore introduced the effective decay constant

F eff
A “ 4

ÿ

a

CaF
a
A, (2.11)

with the decay constants F a
A defined via

x0|q̄p0qγµγ5
λa

2 qp0q|ApP, λAqy “ F a
AmAϵµ. (2.12)

The Gell-Mann matrices λa and the conveniently normalized unit matrix λ0 “
a

2{31
determine the flavor decomposition, with the flavor weights Ca in the effective decay constant
given by C0 “ 2{p3

?
6q, C3 “ 1{6, and C8 “ 1{p6

?
3q. In the symmetric doubly-virtual

direction, the Op1{q4q limits become (λ « 1) [62]

Fa2pq
2, λq2q “ ´

6F eff
f1
m3

f1

q4 kpλq ` Op1{q6q, Fspq
2, q2q “

F eff
f1
m3

f1

q4 ` Op1{q6q,

kpλq “
3λ2 ´ pλ2 ` 4λ` 1q log λ´ 3

pλ´ 1q4 “ Opλ´ 1q, (2.13)

– 4 –
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but all singly-virtual limits of Fa2{spq
2
1, q

2
2q diverge in the symmetrized basis. However,

physical helicity amplitudes depend on linear combinations of the TFFs in such a way that
only well-defined limits contribute to observables [61, 62], which implies that F2pq

2, 0q and
F3p0, q2q have finite limits, while the opposite cases diverge.

3 Vector-meson dominance

The parameterization of the TFFs inspired by VMD is based on their decomposition into
isovector and isoscalar components. Using Up3q symmetry, one can deduce the ratio [62]

RS/V “

?
2´ tan θA

3
`?

2` tan θA

˘ “ ´4.7p3.4q% (3.1)

of isoscalar to isovector contributions for the f1γ
˚γ˚ coupling, where we inserted the L3

mixing angle θA “ 62p5q˝ [69, 70],2 derived from

rΓf1
γγ

rΓf 1
1

γγ

“
mf1

mf 1
1

cot2pθA ´ θ0q, θ0 “ arcsin 1
3 , (3.2)

for the corresponding JP C “ 1`` axial-vector nonet with the mixing pattern
˜

f1
f 11

¸

“

˜

cos θA sin θA

´ sin θA cos θA

¸˜

f0

f8

¸

. (3.3)

Hence, it is the isovector channel that dominates the process, with small isoscalar corrections
at the level of 5%.

The minimal particle content necessary for a VMD construction of TFFs that individu-
ally obey the asymptotic constraints summarized in section 2 requires the inclusion of three
multiplets. More specifically, we will use ρ ” ρp770q, ρ1 ” ρp1450q, and ρ2 ” ρp1700q for the
isovector contributions and ω ” ωp782q, ω1 ” ωp1420q, ω2 ” ωp1650q as well as ϕ ” ϕp1020q,
ϕ1 ” ϕp1680q, ϕ2 ” ϕp2170q for the isoscalar contributions. The introduction of a third
multiplet, as required to obtain the correct asymptotic behavior for the antisymmetric
TFFs, goes beyond the parameterizations of ref. [62], ultimately, because the data on
e`e´ Ñ f1π

`π´ demand such a steep decrease, including in kinematic configurations in
which one virtuality is kept fixed at a finite but non-zero value.

3.1 Isovector contributions

In the space-like region, q2
i ă 0, we propose to extend the isovector parameterizations from

ref. [62] as follows:

FI“1
a1{2

pq2
1, q

2
2q “ Ca1{2

«

p1´ ϵ
p1q
a1{2 ´ ϵ

p2q
a1{2qM

2
ρM

2
ρ1

pq2
1 ´M2

ρ qpq
2
2 ´M2

ρ1q
`

ϵ
p1q
a1{2M

2
ρM

2
ρ2

pq2
1 ´M2

ρ qpq
2
2 ´M2

ρ2q

`
ϵ
p2q
a1{2M

2
ρ1M2

ρ2

pq2
1 ´M2

ρ1qpq2
2 ´M2

ρ2q

ff

´ pq1 Ø q2q,

2This determination of θA assumes Bpf 1
1 Ñ KK̄πq “ 1, supported by Γpf 1

1 Ñ ηππq{Γpf 1
1 Ñ KK̄πq ă

0.1 [91] and Γpf 1
1 Ñ a0p980qπq{Γpf 1

1 Ñ KK̄πq “ 0.040p14q [92].

– 5 –
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FI“1
s pq2

1, q
2
2q “ Cs

«

p1´ ϵ
p1q
s ´ ϵ

p2q
s qM4

ρ

pq2
1 ´M2

ρ qpq
2
2 ´M2

ρ q
`

pϵ
p1q
s {2qM2

ρM
2
ρ1

pq2
1 ´M2

ρ qpq
2
2 ´M2

ρ1q

`
pϵ

p1q
s {2qM2

ρ1M2
ρ

pq2
1 ´M2

ρ1qpq2
2 ´M2

ρ q
`

ϵ
p2q
s M4

ρ1

pq2
1 ´M2

ρ1qpq2
2 ´M2

ρ1q

ff

, (3.4)

first given in this form to emphasize that, upon a partial-fraction decomposition, each term
corresponds to adding vector-meson propagators with fixed coefficients. To implement the
correct singly-virtual asymptotic behavior, we choose

ϵp1qa1{2
“ ´

M2
ρ1

M2
ρ2 ´M2

ρ1 `M2
ρ

, ϵp2qa1{2
“

M2
ρ

M2
ρ2 ´M2

ρ1 `M2
ρ

,

ϵp1qs “ ´
2M2

ρM
2
ρ1

pM2
ρ1 ´M2

ρ q
2 , ϵp2qs “

M4
ρ

pM2
ρ1 ´M2

ρ q
2 , (3.5)

leading to

FI“1
a1{2

pq2
1, q

2
2q “

Ca1{2ζρM
4
ρM

4
ρ1M4

ρ2pq2
1 ´ q2

2q

pq2
1 ´M2

ρ qpq
2
2 ´M2

ρ qpq
2
1 ´M2

ρ1qpq2
2 ´M2

ρ1qpq2
1 ´M2

ρ2qpq2
2 ´M2

ρ2q
,

FI“1
s pq2

1, q
2
2q “

CsM
4
ρM

4
ρ1

pq2
1 ´M2

ρ qpq
2
2 ´M2

ρ qpq
2
1 ´M2

ρ1qpq2
2 ´M2

ρ1q
, (3.6)

with
ζV “

pM2
V 2 ´M2

V 1qpM2
V 2 ´M2

V qpM
2
V 1 ´M2

V q

M2
V 2M2

V 1M2
V pM

2
V 2 ´M2

V 1 `M2
V q

. (3.7)

The resulting asymptotic behavior of the TFFs becomes

FI“1
a1{2

pq2
1, q

2
2q 9

1
q4

2
, FI“1

a1{2
pq2, λq2q 9

1´ λ

λ3
1
q10 ,

FI“1
s pq2

1, q
2
2q 9

1
q4

2
, FI“1

s pq2, λq2q 9
1
q8 , (3.8)

with q2
1 fixed to a finite value distinct from q2

2 (left) and in the doubly-virtual direction
(right). Crucially, the singly-virtual asymptotics now match the LCE result from section 2
for arbitrary fixed q2

1, which, for q2
1 “ M2

ρ , is mandatory for a realistic description of
the e`e´ Ñ f1π

`π´ data (the opposite case with fixed q2
2 follows from symmetry).3 For

time-like applications, the replacements M2 Ñ M2 ´ iMΓ apply in the denominators of
eq. (3.6), i.e., after imposing the asymptotic behavior of the TFFs; due to the large widths
of the ρ-like mesons, a narrow-width approximation, M2 ÑM2 ´ iϵ in the denominators, in

3For FI“1
a1 pq2

1 , q2
2q, the LCE predicts an even faster decrease in the singly-virtual direction, but we do

not consider yet another multiplet for the following reasons: (i) information from the LCE on this TFF is
limited, i.e., no non-vanishing contribution survives at Op1{Q4

q, in such a way that, in contrast to the other
TFFs, we cannot add an LCE term to repair the behavior in the doubly-virtual direction and thus need to
choose a compromise; (ii) the fit to e`e´ Ñ f1π`π´ produces a small coupling Ca1 , in line with the LCE
suppression; (iii) another multiplet would have a mass already in the energy range in which the data are to
be described, so that no meaningful suppression could be generated even when introducing another state.

– 6 –
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general becomes insufficient here. A consequence of the faster decrease in the singly-virtual
directions concerns an even faster decrease in the doubly-virtual case, much below the LCE
expectation. Accordingly, in the final representation for the TFFs, we add the asymptotic
contribution [62]

Fasym
a2 pq2

1, q
2
2q “ 3F eff

f1 m
3
f1

`

q2
1 ´ q2

2
˘

ż 8

sm

dx q
2
1q

2
2 ´ x2 ` xpq2

1 ` q2
2q

px´ q2
1q

3px´ q2
2q

3 ,

Fasym
s pq2

1, q
2
2q “ 3F eff

f1 m
3
f1

ż 8

sm

dx pq2
1 ` q2

2qpx
2 ´ q2

1q
2
2q ´ xpq2

1 ´ q2
2q

2

px´ q2
1q

3px´ q2
2q

3 , (3.9)

where sm is a parameter that determines the scale of the transition. The implementation
of these asymptotic contributions, or their variant including mass effects [62], becomes
relevant for the axial-vector contributions in the HLbL loop integral. Here, we focus on the
determination of the low-energy couplings in the VMD component of the parameterization,
as can be obtained from e`e´ Ñ f1π

`π´.

3.2 Isoscalar contributions

In complete analogy to the above, the isoscalar parts of the form factors are parameterized
according to4

FI“0
a1{2

pq2
1, q

2
2q “

ÿ

V “ω,ϕ

CV
a1{2

ζV M
4
V M

4
V 1M4

V 2pq2
1 ´ q2

2q

pq2
1 ´M2

V qpq
2
2 ´M2

V qpq
2
1 ´M2

V 1qpq2
2 ´M2

V 1qpq2
1 ´M2

V 2qpq2
2 ´M2

V 2q
,

FI“0
s pq2

1, q
2
2q “

ÿ

V “ω,ϕ

CV
s M

4
V M

4
V 1

pq2
1 ´M2

V qpq
2
2 ´M2

V qpq
2
1 ´M2

V 1qpq2
2 ´M2

V 1q
, (3.10)

with the same asymptotic properties as in eq. (3.8). Again, time-like applications imply
the replacements M2 Ñ M2 ´ iMΓ in the denominators, since the large widths of the
excited isoscalar resonances do not allow for a narrow-width approximation. Finally, under
the assumption of Up3q symmetry, the isoscalar coupling constants can be related to the
isovector analogs, leading to the approximations [62]

Rω “
Cω

a1{2

Ca1{2

“
Cω

s
Cs

“
1
9 ,

Rϕ “
Cϕ

a1{2

Ca1{2

“
Cϕ

s
Cs

“
2
?
2

9 cotpθA ` θ1q “ ´0.158p34q, (3.11)

with θ1 “ arctan
?
2 “ pπ ` 2θ0q{4.

4 Observables

4.1 e`e´ Ñ e`e´f1

The equivalent two-photon decay width rΓf1
γγ “ 3.5p6qp5q keV, as measured by the L3

collaboration [69], determines the normalization of the symmetric TFF, see eq. (2.8). Taking
4We assume ideal mixing for the vector mesons, which prevents crossed terms involving ω and ϕ states.

– 7 –
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into account the isoscalar contributions, |FI“1
s p0, 0q ` FI“0

s p0, 0q| “ p1`Rω `Rϕq|Cs| “
0.953p34q|Cs|, we have

Cs “ 0.93p11q, (4.1)

where we followed the sign convention of ref. [62].
The singly-virtual VMD limits can be further constrained by matching the L3 parame-

terization onto the full description of the e`e´ Ñ e`e´f1 cross section [61],∣∣∣∣
ˆ

1´ q2

m2
f1

˙

F1pq
2, 0q ´ q2

m2
f1

F2pq
2, 0q

∣∣∣∣2 ´ 2q2

m2
f1

∣∣F2pq
2, 0q

∣∣2 “
´q2

m2
f1

ˆ

2´ q2

m2
f1

˙

|FDpq
2, 0q|2,

(4.2)
where

FDpq
2, 0q “ FDp0, 0q

p1´ q2{Λ2
Dq

2 (4.3)

is the dipole ansatz assumed in ref. [69] and the form factors are given in the basis of
eq. (2.4). While the normalization agrees by construction, matching the slopes at q2 “ 0
leads to

2
Λ2

D
“

1
Nωϕ

«

1
M2

ρ

`
1
M2

ρ1

`Rω

ˆ

1
M2

ω

`
1
M2

ω1

˙

`Rϕ

ˆ

1
M2

ϕ

`
1
M2

ϕ1

˙

(4.4)

` pζρ ` ζωR
ω ` ζϕR

ϕq
Ca1 ` Ca2

Cs
´
m2

f1
pζρ ` ζωR

ω ` ζϕR
ϕq2

Nωϕ

ˆ

Ca1

Cs

˙2
ff

,

where the factor Nωϕ “ 1`Rω `Rϕ accounts for the isoscalar terms in the normalization.

4.2 f1 Ñ ργ and f1 Ñ ϕγ

From the procedure outlined in ref. [62], it is straightforward to obtain the branching ratio
of f1 Ñ V γ, V “ ρ, ω, ϕ, in the form

Bpf1 Ñ V γq “ pRV q2B
V
1
`

rCV
a1

˘2
`BV

2
`

rCV
a2 `

rCV
s
˘2

´BV
3
rCV

a1

`

rCV
a2 `

rCV
s
˘

Γf
, (4.5)

where we defined

BV
1 “

α|gV γ |2
`

m2
f1

´M2
V

˘5

24m9
f1

, BV
2 “

α|gV γ |2M2
V

`

m2
f1

´M2
V

˘3`
m2

f1
`M2

V

˘

96m9
f1

,

BV
3 “

α|gV γ |2M2
V

`

m2
f1

´M2
V

˘4

24m9
f1

, (4.6)

and the couplings

rCV
a1{2

“ JV
a Ca1{2 ,

rCV
s “ JV

s Cs (4.7)

are rescaled by

JV
a “

M2
V 2 ´M2

V 1

M2
V 2 ´M2

V 1 `M2
V

, JV
s “

M2
V 1

M2
V 1 ´M2

V

. (4.8)

The normalizations RV , V “ ω, ϕ, are given by eq. (3.11), and Rρ “ 1.
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Narrow-resonance limit Spectral function for ρ

DI“1
1 ˆ 103 0.23´ 1.68i 0.15´ 1.42i

DI“1
2 ˆ 103 ´1.70` 1.81i ´1.36` 1.64i

DI“1
3 ˆ 103 1.25` 4.38i 3.00` 4.10i

Dω
1 ˆ 103 0.30´ 1.65i

Dω
2 ˆ 103 ´1.89` 1.81i

Dω
3 ˆ 103 1.06` 4.61i

Dϕ
1 ˆ 103 ´0.98´ 1.09i

Dϕ
2 ˆ 103 0.19` 2.42i

Dϕ
3 ˆ 103 6.02` 5.97i

Dasym ˆ 103 0.125p12q 0.032p3q 0.017p2q 0.009p1q

Table 1. Numerical values for the coefficients DI
i in eq. (4.13) (obtained using the Cuba library [93]).

The total isoscalar one follows as DI“0
i “ RωDω

i ` RϕDϕ
i , and Dasym is given for the matching

points ?
sm P t1.0, 1.3, 1.5, 1.7uGeV. The left column gives the reference point for which the widths

of all vector mesons are neglected and the right column the more realistic case that includes the
spectral function of the ρ (used as input in table 3).

In addition, for V “ ρ, information on the helicity amplitudes is available. The spin-
averaged amplitude squared of the corresponding process f1 Ñ ργ Ñ π`π´γ, with the
subsequent decay of an on-shell ρ meson, is of the generic form∣∣Mpf1 Ñ ργ Ñ π`π´γq

∣∣2 “ MTT sin2 θπ`γ `MLL cos2 θπ`γ , (4.9)

where θπ`γ is the angle between the final-state π` and the photon. Similarly to the
branching ratio of f1 Ñ ργ, the ratio of helicity amplitudes for f1 Ñ ργ Ñ π`π´γ results
from a straightforward modification of the result presented in ref. [62],

rργ “
MLL
MTT

“
2m2

f1
M2

ρ
“

M2
ρ ´ 2

`

m2
f1

´M2
ρ

˘

rCa1{
`

rCa2 `
rCs
˘‰2 . (4.10)

4.3 f1 Ñ e`e´

We follow ref. [62] and write the decay rate for f1 Ñ e`e´ as

Γpf1 Ñ e`e´q “
64π3α4mf1

3 |A1|2, (4.11)

where the scalar amplitude A1 is implicitly defined by

Mpf1pP q Ñ e`pp2qe
´pp1qq “ e4ϵµpP qu

spp1qγ
µγ5A1v

rpp2q (4.12)

and further decomposes into terms proportional to the three VMD couplings (with isoscalar
and isovector coefficients DI

i ) and an asymptotic contribution Dasym,

A1 “
`

DI“1
1 `DI“0

1
˘

Ca1 `
`

DI“1
2 `DI“0

2
˘

Ca2 `
`

DI“1
3 `DI“0

3
˘

Cs `Dasym. (4.13)
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For the case of products of narrow-resonance propagators as in eq. (3.4), with squared
masses x and y, the integral representation

Di “
xy

16π2m4
f1

ż 1

0
dz fipx, y, z,mf1q (4.14)

applies, with analytic expressions for the functions fipx, y, z,mf1q given in ref. [62]. In
the same reference, we also provided evaluations of the asymptotic contribution Dasym
and studied in detail the sensitivity of the integrals to the spectral functions assumed for
ρ and ρ1 resonances when going beyond a narrow-resonance picture, to avoid unphysical
imaginary parts in the loop integrals [94–96]. In the decay region of the f1, by far the most
important correction arises from the width of the ρ. Here, we provide a simple evaluation
of Bpf1 Ñ e`e´q for the representations constructed in section 3 that captures this main
effect, to ensure that our final solutions do not conflict with the SND measurement [73]. To
this end, we replace

FI“1
a1{2

pq2
1, q

2
2q Ñ

Ca1{2

Na1{2

M2
ρ1M2

ρ2pM2
ρ2 ´M2

ρ1qpq2
1 ´ q2

2q

pq2
1 ´M2

ρ1qpq2
2 ´M2

ρ1qpq2
1 ´M2

ρ2qpq2
2 ´M2

ρ2q

ˆ
1
π

ż 8

4M2
π

dx
xpM2

ρ2 ´ xqpM2
ρ1 ´ xqρpxq

pM2
ρ2 ´M2

ρ1 ` xqpq2
1 ´ xqpq2

2 ´ xq
,

FI“1
s pq2

1, q
2
2q Ñ

Cs
N2

s

M4
ρ1

pq2
1 ´M2

ρ1qpq2
2 ´M2

ρ1q

1
π2

ż 8

4M2
π

dx
ż 8

4M2
π

dy xyρpxqρpyq

pq2
1 ´ xqpq2

2 ´ yq
(4.15)

in eq. (3.6), where the normalizations Na1{2 , Ns of the spectral function ρpxq (taken from
refs. [62, 97, 98]) are determined by demanding that the meaning of the couplings Ca1{2 , Cs
remain unaltered compared to the zero-width limit; numerical results for the coefficients Di

are collected in table 1.5 Once improved data on Bpf1 Ñ e`e´q become available, more
refined analyses can be performed along the lines of refs. [62, 107].

4.4 e`e´ Ñ f1ρ

The scattering process e`e´ Ñ f1π
`π´ probes the f1 TFFs in the time-like region via

e`e´ Ñ γ˚ Ñ f1ρ Ñ f1π
`π´, see figure 1. For our analysis, we thus define amputated

f1 Ñ ργ˚ form factors, which are related to γ˚ Ñ f1ρ via crossing symmetry, according to

sFI“1
a1{2

pq2
2q “ Ca1{2

„

p1´ ϵ
p1q
a1{2 ´ ϵ

p2q
a1{2qM

2
ρM

2
ρ1

q2
2 ´M2

ρ1

`
ϵ
p1q
a1{2M

2
ρM

2
ρ2

q2
2 ´M2

ρ2

ȷ

“ ´
Ca1{2

sζa

pq2
2 ´M2

ρ1qpq2
2 ´M2

ρ2q

Ñ ´
Ca1{2

sζa

pq2
2 ´M2

ρ1 ` iMρ1Γρ1qpq2
2 ´M2

ρ2 ` iMρ2Γρ2q
,

sFI“1
s pq2

2q “ Cs

„

p1´ ϵ
p1q
s ´ ϵ

p2q
s qM4

ρ

q2
2 ´M2

ρ

`
pϵ

p1q
s {2qM2

ρM
2
ρ1

q2
2 ´M2

ρ1

ȷ

“ ´
Cssζs

pq2
2 ´M2

ρ qpq
2
2 ´M2

ρ1q

Ñ ´
Cssζs

pq2
2 ´M2

ρ ` iMρΓρqpq2
2 ´M2

ρ1 ` iMρ1Γρ1q
, (4.16)

5Besides the analytic evaluation using the functions fipx, y, z, mf1 q, we performed cross checks by means
of a Passarino–Veltman decomposition, obtained with FeynCalc [99–101], and the subsequent calculation
of the loop integrals with Collier [102–106].
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e

e

f1

π+

π−

p1

p2

q2

P

q1

ρ p+

p−

Figure 1. Feynman diagram for e`e´ Ñ f1ρÑ f1π
`π´ consistent with Mpγ˚ Ñ f1ρ

0˚

q.

where

sζa “
M2

ρM
2
ρ1M2

ρ2pM2
ρ2 ´M2

ρ1q

M2
ρ2 ´M2

ρ1 `M2
ρ

, sζs “
M4

ρM
4
ρ1

M2
ρ1 ´M2

ρ

, (4.17)

and a width has been inserted into the denominators for the time-like application.
As a first approximation, we consider the case in which the decay e`e´ Ñ f1π

`π´ is
described by e`e´ Ñ f1ρ, see figure 2, whose amplitude can be constructed from eq. (2.2)
and eq. (3.4) by amputating the ρ propagator,

Mpγ˚ Ñ f1ρ
0˚q “

e

rgργm2
f1

ϵ˚µpq1qϵνpq2qϵ
˚
αpP q (4.18)

ˆ

”

Tµνα
a1 p´q1, q2q sFa1pq

2
2q ` Tµνα

a2 p´q1, q2q sFa2pq
2
2q ` Tµνα

s p´q1, q2q sFspq
2
2q
ı

,

and the prefactor follows in analogy to the derivation of f1 Ñ V γ in ref. [62]. In particular,
we have taken over the definition

rgV γ “
M2

V

gV γ
, (4.19)

to establish the connection to gV γ , which, in a narrow-width approximation, is related to
the dilepton decay

ΓpV Ñ e`e´q “
4πα2

3|gV γ |2

ˆ

1` 2m2
e

M2
V

˙

b

M2
V ´ 4m2

e , (4.20)

or, more rigorously, to the residue at the pole [108]. In order to determine the amplitude
for e`e´ Ñ γ˚ Ñ f1ρ, we calculate the diagram shown in figure 2, leading to

Mpe`e´ Ñ f1ρq “
e2

rgργm2
f1

ϵ˚µpq1qϵ
˚
αpP q

vspp1qγνu
rpp2q

q2
2

(4.21)

ˆ

”

Tµνα
a1 p´q1, q2q sFa1pq

2
2q ` Tµνα

a2 p´q1, q2q sFa2pq
2
2q ` Tµνα

s p´q1, q2q sFspq
2
2q
ı∣∣∣

q2
1“M2

ρ

,

where we dropped an unobservable overall phase.
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e

e

f1

ρ

p1

p2

q2

P

q1

Figure 2. Feynman diagram for e`e´ Ñ f1ρ consistent with Mpγ˚ Ñ f1ρ
0˚

q.

Spin-averaging the squared amplitude and performing the angular integration, we find

σpe`e´ Ñ f1ρqpsq “
e4|gργ |2|pρ|ps` 2m2

eq

384πm6
f1
M4

ρ s
3|pe|

ˆ

”

Ta1,a1pq
2
1, sq

∣∣ sFa1psq
∣∣2 ` Ta2,a2pq

2
1, sq

∣∣ sFa2psq
∣∣2 ` Ts,spq

2
1, sq

∣∣ sFspsq
∣∣2

` 2Ta1,a2pq
2
1, sqRe

“

sFa1psq
sF˚

a2psq
‰

` 2Ta1,spq
2
1, sqRe

“

sFa1psq
sF˚

s psq
‰

` 2Ta2,spq
2
1, sqRe

“

sFa2psq
sF˚

s psq
‰

ı∣∣∣
q2

1“M2
ρ

(4.22)

for the total cross section, with s “ q2
2, initial- and final-state momenta

|pe| “
a

s´ 4m2
e

2 , |pρ| “

b

λps, q2
1,m

2
f1
q

2
?
s

, (4.23)

and the kinematic functions

Ta1,a1pq
2
1, sq “ 4

“

λps, q2
1,m

2
f1q

‰2
, (4.24)

Ta2,a2pq
2
1, sq “ m6

f1ps` q2
1q ´m4

f1ps
2 ` q4

1 ´ 6sq2
1q ´m2

f1ps´ q2
1q

2ps` q2
1q ` ps´ q2

1q
4,

Ts,spq
2
1, sq “ m2

f1ps` q2
1q
`

m4
f1 ´ s2 ´ q4

1 ` 18sq2
1
˘

´m4
f1ps

2 ` q4
1 ` 14sq2

1q ` ps2 ´ q4
1q

2,

Ta1,a2pq
2
1, sq “ 2λps, q2

1,m
2
f1q

“

ps´ q2
1q

2 ´m2
f1ps` q2

1q
‰

,

Ta1,spq
2
1, sq “ ´2λps, q2

1,m
2
f1qps´ q2

1qps` q2
1 ´m2

f1q,

Ta2,spq
2
1, sq “ ´ps´ q2

1q
”

m6
f1 ´m4

f1ps` q2
1q ´m2

f1ps
2 ` q4

1 ´ 6sq2
1q ` ps´ q2

1q
2ps` q2

1q
ı

.

In a compact way, the cross section can be expressed in terms of the amputated helicity
amplitudes [61]

sH``;0pq
2
1, sq “

λps, q2
1,m

2
f1
q

2m3
f1

sF1psq ´
q2

1pm
2
f1

´ q2
1 ` sq

2m3
f1

sF2psq ´
spm2

f1
` q2

1 ´ sq

2m3
f1

sF3psq,

sH`0;`pq
2
1, sq “

q2
1s

ξ2m2
f1

sF2psq `
spm2

f1
´ q2

1 ´ sq

2ξ2m2
f1

sF3psq,

sH0`;´pq
2
1, sq “ ´

q2
1pm

2
f1

´ q2
1 ´ sq

2ξ1m2
f1

sF2psq ´
q2

1s

ξ1m2
f1

sF3psq, (4.25)
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with polarization-vector normalizations ξ2
1 “ q2

1, ξ2
2 “ s, leading to

σpe`e´ Ñ f1ρqpsq “
e4|gργ |2|pρ|ps` 2m2

eq

24πM4
ρ s

3|pe|
ÿ

λ

∣∣ sHλpM
2
ρ , sq

∣∣2, (4.26)

and the sum extends over the three amplitudes in eq. (4.25).

4.5 e`e´ Ñ f1π`π´

To obtain a reasonable threshold behavior, it is mandatory to go beyond the approximation
of a narrow ρ and instead consider the full amplitude e`e´ Ñ f1π

`π´. To this end, we use

MpρÑ π`π´q “ gρππϵµppρqpp´ ´ p`q
µ (4.27)

to calculate the diagram shown in figure 1, leading to

Mpe`e´ Ñ f1π
`π´q “

e2gρππ

rgργm2
f1

ϵ˚αpP q
pp´ ´ p`qµ

q2
1 ´M2

ρ ` iMρΓρ

vspp1qγνu
rpp2q

q2
2

(4.28)

ˆ

”

Tµνα
a1 p´q1, q2q sFa1pq

2
2q ` Tµνα

a2 p´q1, q2q sFa2pq
2
2q ` Tµνα

s p´q1, q2q sFspq
2
2q
ı

,

where we again dropped an unobservable phase. From the spin-averaged squared matrix
element and after carrying out the angular integrations, we obtain the differential cross
section

dσpe`e´ Ñ f1π
`π´q

dq2
1

psq “
e4|gρππ|2|gργ |2|pρ|ps` 2m2

eqpq
2
1 ´ 4M2

πq
3{2

18432π3m6
f1
M4

ρ s
3
a

q2
1|pe|

“

pq2
1 ´M2

ρ q
2 `M2

ρΓ2
ρ

‰

ˆ

”

Ta1,a1pq
2
1, sq

∣∣ sFa1psq
∣∣2 ` Ta2,a2pq

2
1, sq

∣∣ sFa2psq
∣∣2 ` Ts,spq

2
1, sq

∣∣ sFspsq
∣∣2

` 2Ta1,a2pq
2
1, sqRe

“

sFa1psq
sF˚

a2psq
‰

` 2Ta1,spq
2
1, sqRe

“

sFa1psq
sF˚

s psq
‰

` 2Ta2,spq
2
1, sqRe

“

sFa2psq
sF˚

s psq
‰

ı

, (4.29)

with the kinematic functions Ti,jpq
2
1, sq as in eq. (4.24). In terms of the amputated helicity

amplitudes, we obtain

dσpe`e´ Ñ f1π
`π´q

dq2
1

psq “
e4|gρππ|2|gργ |2|pρ|ps` 2m2

eqpq
2
1 ´ 4M2

πq
3{2

1152π3M4
ρ s

3
a

q2
1|pe|

“

pq2
1 ´M2

ρ q
2 `M2

ρΓ2
ρ

‰

ÿ

λ

∣∣ sHλpq
2
1, sq

∣∣2.
(4.30)

In general, the remaining integration over q2
1 needs to be performed numerically, but it is

instructive to consider the limit of a narrow resonance [109]
1

pq2
1 ´M2

ρ q
2 `M2

ρΓ2
ρ

Ñ
π

MρΓρ
δ
`

q2
1 ´M2

ρ

˘

. (4.31)

In this approximation, together with

Γρ “
|gρππ|2pM2

ρ ´ 4M2
πq

3{2

48πM2
ρ

, (4.32)

the q2
1 integration of eq. (4.30) indeed reproduces eq. (4.26). For the phenomenological

analysis of the e`e´ Ñ f1π
`π´ data, we will use the full expression given in eq. (4.29).
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Quantity Value Reference
rΓf1

γγ rkeVs 3.5p6qp5q [69]
Λf1 rGeVs 1.04p6qp5q [69]
Bpf1 Ñ ργq 4.2p1.0q% [62]
rργ 3.9p1.3q [110]
Bpf1 Ñ ϕγq 0.74p26q ˆ 10´3 [111, 112]

Table 2. Data for e`e´ Ñ e`e´f1 and f1 Ñ V γ used in our analysis.

5 Phenomenological analysis

5.1 Data input for e`e´ Ñ e`e´f1 and f1 Ñ V γ

The experimental data we will use for the space-like reaction e`e´ Ñ e`e´f1 and the
radiative decays f1 Ñ V γ are summarized in table 2. For the former, this concerns
normalization and slope from the L3 experiment [69], with isoscalar corrections evalu-
ated using the mixing angle that follows from a combined analysis with the analogous
quantities for the f1p1420q [70], see section 3. For Bpf1 Ñ ργq, we use the results
of the global fit from ref. [62], including data on Γpf1 Ñ KK̄πq{Γpf1 Ñ 4πq [113–
115], Γpf1 Ñ 4πq{Γpf1 Ñ ηππq [116, 117], Γpf1 Ñ ργq{Γpf1 Ñ 4πq [118], Γpf1 Ñ

a0p980qπ rexcluding KK̄πsq{Γpf1 Ñ ηππq [116, 119, 120], Γpf1 Ñ KK̄πq{Γpf1 Ñ ηππq [92,
116, 119–122], and Γpf1 Ñ ργq{Γpf1 Ñ ηππq [92, 110, 120, 123]. As detailed in ref. [62], our
fit differs from the PDG average, Bpf1 Ñ ργq “ 6.1p1.0q% [112], for two main reasons: we
include the result from ref. [110], which reduces the average, and we set the fit up in terms of
Γpf1 Ñ ργq{Γpf1 Ñ ηππq instead of Γpf1 Ñ ηππq{Γpf1 Ñ ργq as in ref. [112], since the lat-
ter introduces a bias towards larger branching fractions Bpf1 Ñ ργq. For Bpf1 Ñ ϕγq, there
is a single measurement from ref. [111], and we will consider fit variants with and without this
additional input, given both the tenuous data situation and the required Up3q assumptions.6

Finally, two event candidates for f1 Ñ e`e´ have been observed in ref. [73], which, when
interpreted as a signal, translates to Bpf1 Ñ e`e´q “ 5.1`3.7

´2.7 ˆ 10´9, while being quoted as
Bpf1 Ñ e`e´q ă 9.4ˆ10´9 (90% C.L.) in ref. [112]. In ref. [62] we performed a detailed anal-
ysis of the constraints that can be obtained from the dilepton decay, but in view of its unclear
status and large uncertainties, we no longer include this channel in our global fit here and
instead focus on e`e´ Ñ f1π

`π´. Further input parameters are collected in appendix A.

5.2 Data input for e`e´ Ñ f1π`π´

The process e`e´ Ñ f1π
`π´ has been measured in two different decay channels, f1 Ñ

ηππ [74] and f1 Ñ KK̄π [75]. The data for the cross section from both reconstruction
methods are well compatible, indicating that systematic errors are smaller than the statistical
uncertainties of the measurements. In the following, we will therefore assume that the data
are indeed dominated by statistics.

6The limit Bpf1 Ñ ϕγq ă 0.45 ˆ 10´3 [92, 112] (95% C.L.) supports a rather small branching fraction to
ϕγ, indicating a value at the lower end of the range from ref. [111]. Both measurements are also consistent
with Bpf1 Ñ ϕγq ă 0.9 ˆ 10´3 [110] (95% C.L.).
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f1 Ñ ϕγ

No Yes

χ2{dof 5.6{3 “ 1.86 18.1{4 “ 4.52
p-value 0.13 1.2ˆ 10´3

Cs 0.95p13q 0.76p16q
Ca1 ´0.16p18q ´0.07p18q
Ca2 0.47p25q 0.09p32q
ρsa1 0.34 0.31
ρsa2 ´0.11 ´0.34
ρa1a2 ´0.52 ´0.35

Bpf1 Ñ ϕγq ˆ 103 3.4p1.7q 1.6p1.0q
Bpf1 Ñ ωγq ˆ 103 5.5p1.6q 2.5p1.1q
Bpf1 Ñ e`e´q ˆ 109 2.2p6q 1.2p5q
Bpf 11 Ñ ϕγq ˆ 103 11.0p3.0q 5.2p2.2q
Bpf 11 Ñ ργq ˆ 103 4.8p2.6q 2.2p1.4q

Table 3. Best-fit results for the three VMD couplings Cs, Ca1 , and Ca2 . The fit includes the
constraints from the normalization and slope measured by L3 in e`e´ Ñ e`e´f1, from Bpf1 Ñ ργq,
rργ , and σpe`e´ Ñ f1π

`π´q, as well as, in the right column, from Bpf1 Ñ ϕγq. All uncertainties
are inflated by the scale factor S “

a

χ2{dof. The table also shows the correlations ρij among
the three couplings and the values of Bpf1 Ñ V γq, V “ ω, ϕ, and Bpf1 Ñ e`e´q implied by the
fit result (the latter for ?

sm “ 1.3GeV). The uncertainties for Bpf1 Ñ V γq include the fit errors
and ∆Rϕ, but no additional estimate of Up3q uncertainties. The predictions for Bpf 11 Ñ ϕγq and
Bpf 11 Ñ ργq use the Up3q relations from eq. (5.5).

Next, around
?
s » 2GeV, the cross section displays resonance structures [88], most

prominently the ρp2150q, and, potentially, further excited ρ states. This implies that
we cannot expect our theoretical description based on eq. (4.29) to provide an adequate
fit to the data, because ρ excitations beyond the ρp1700q are not included. However,
the data still provide a valuable upper bound for the background contributions that our
TFF parameterizations do describe; in fact, this constraint proves extremely stringent,
immediately ruling out, by at least an order of magnitude, parameterizations that do not
implement the doubly-virtual asymptotic behavior of eq. (3.8). Even more, writing the cross
section in terms of the couplings Ca1{2 , Cs, one observes that moderate cancellations among
the different terms are required to obey the upper limit implied by the e`e´ Ñ f1π

`π´

data. With Cs reasonably well determined from the L3 equivalent two-photon decay width,
this thus implies a valuable constraint on the antisymmetric TFFs.

To quantify this constraint, we proceed as follows: we first define the χ2 function

χ2
BaBarpCs,Ca1 ,Ca2q“

nBaBar
ÿ

i“1

pσpsi,Cs,Ca1 ,Ca2q´σ
exp
i q2

p∆σexp
i q2 θ

“

σpsi,Cs,Ca1 ,Ca2q´σ
exp
i

‰

, (5.1)

where nBaBar “ 52 is the combined number of data points from refs. [74, 75], σexp
i and

∆σexp
i are central value and error at center-of-mass energy ?

si, respectively, and the
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Figure 3. Left: constraints in the Ca1–Ca2 plane for the respective best-fit value of Cs (see table 3),
from L3 normalization and slope, Bpf1 Ñ ργq, rργ , and σpe`e´ Ñ f1π

`π´q. The gray ellipse
represents the result of the global fit. Right: same figure for the global fit including, in addition,
Bpf1 Ñ ϕγq.

Heaviside function demands that contributions to χ2
BaBar only arise when the theoretical

model exceeds the central value of the data, thus not penalizing a potential excess of the
latter due to excited ρ resonances. Interpreting this χ2 function in the usual statistical
sense, however, puts an undue emphasis on the e`e´ Ñ f1π

`π´ data, especially in view of
the uncertainties from the contamination of resonant contributions. For this reason, we
instead study contours in the Ca1–Ca2 plane for which χ2

BaBar{dof “ 1 at a given value
of Cs, which should provide a reasonable measure of the consistency of the encompassed
values of Ca1{2 with the experimental constraints. We repeat this procedure for the relevant
range of Cs and formulate the resulting constraint on Ca1{2 in terms of an ellipse whose
parameters are interpolated as a function of Cs. The final constraint is then written as

χ2
BaBar, effpCs, Ca1 , Ca2q “ ∆y⊺

aC
´1
a ∆ya, (5.2)

where

∆ya “

˜

Ca1 ´ C
p0q
a1

Ca2 ´ C
p0q
a2

¸

, (5.3)

with central values Cp0q
a1{2 and covariance matrix Ca, determined via the χ2

BaBar{dof “ 1
contour ellipse, implicitly depending on Cs. This effective χ2 function defined in eq. (5.2) is
then used as input in the global fit, counted as two data points in the number of degrees of
freedom. This procedure is further motivated by the fact that the constraints imposed by
the cross-section measurements at different energies will be highly correlated, since, if the
upper limit is fulfilled at some point si for a set of couplings Ca1 , Ca2 , Cs, the smoothness
of the cross section makes it likely that the same holds true at neighboring points as well.

5.3 Global fit

The results of the global fit are summarized in table 3, figure 3, and figure 4, for variants
with and without the Up3q constraint from Bpf1 Ñ ϕγq. Without this input, we observe
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BaBar 2007 BaBar 2021 Global fit

Figure 4. Comparison of our global fit results to the BaBar data [74, 75] for σpe`e´ Ñ f1π
`π´q,

without (left) and including (right) the constraint from Bpf1 Ñ ϕγq. The red line denotes the
central result and the band reflects the uncertainties propagated from Cs, Ca1 , and Ca2 .

reasonable consistency among the various constraints, with a final value for Cs close to the
L3 value in eq. (4.1). The coupling Ca1 comes out consistent with zero, while a non-zero
value of Ca2 is obtained at 2σ significance. Crucially, owing to the inclusion of the BaBar
data on e`e´ Ñ f1π

`π´ [74, 75], we are now able to provide an unambiguous solution for
all three TFFs, including the two antisymmetric ones encoded in Ca1{2 . The best-fit point
lies within the ellipse from σpe`e´ Ñ f1π

`π´q and, accordingly, the central line in figure 4
respects the bound for almost all data points, leaving a deficit that could be well explained
by a ρp2150q-resonance signal. Moreover, the resulting prediction for Bpf1 Ñ e`e´q is
consistent with SND [73], suggesting a potential signal at the lower end of their range.
In contrast, the prediction for Bpf1 Ñ ϕγq comes out slightly too large in comparison to
ref. [111], in tension at the level of 1.5σ.

The same tension is visible in the global fit including Bpf1 Ñ ϕγq, as the χ2{dof
deteriorates appreciably. Including the resulting scale factor S “ 2.1 in the error estimates,
all three couplings are consistent with the global fit without Bpf1 Ñ ϕγq, but Cs decreases
compared to L3 and the central value of Ca2 moves much closer to zero. Within the
sizable uncertainties, the cross section for e`e´ Ñ f1π

`π´ is still consistent, but the
central line exceeds the data above the ρp2150q, in accordance with the best-fit point in
figure 3 lying slightly outside the σpe`e´ Ñ f1π

`π´q ellipse. The resulting prediction for
Bpf1 Ñ e`e´q is still consistent with SND, and Bpf1 Ñ ϕγq now agrees by construction.
Table 3 also includes the predictions for Bpf1 Ñ ωγq, Bpf 11 Ñ ϕγq, and Bpf 11 Ñ ργq, the
latter two being related to the already determined couplings via the Up3q arguments in
section 5.4.
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5.4 Final representations

To summarize, we propose that the low-energy contributions to the TFFs of the f1 be
described by the parameterizations

Ff1,I“1
a1{2

pq2
1, q

2
2q “

RρCa1{2ζρM
4
ρM

4
ρ1M4

ρ2pq2
1 ´ q2

2q

pq2
1 ´M2

ρ qpq
2
2 ´M2

ρ qpq
2
1 ´M2

ρ1qpq2
2 ´M2

ρ1qpq2
1 ´M2

ρ2qpq2
2 ´M2

ρ2q
,

Ff1,I“1
s pq2

1, q
2
2q “

RρCsM
4
ρM

4
ρ1

pq2
1 ´M2

ρ qpq
2
2 ´M2

ρ qpq
2
1 ´M2

ρ1qpq2
2 ´M2

ρ1q
,

Ff1,I“0
a1{2

pq2
1, q

2
2q “

ÿ

V “ω,ϕ

RV Ca1{2ζV M
4
V M

4
V 1M4

V 2pq2
1 ´ q2

2q

pq2
1 ´M2

V qpq
2
2 ´M2

V qpq
2
1 ´M2

V 1qpq2
2 ´M2

V 1qpq2
1 ´M2

V 2qpq2
2 ´M2

V 2q
,

Ff1,I“0
s pq2

1, q
2
2q “

ÿ

V “ω,ϕ

RV CsM
4
V M

4
V 1

pq2
1 ´M2

V qpq
2
2 ´M2

V qpq
2
1 ´M2

V 1qpq2
2 ´M2

V 1q
, (5.4)

see eq. (3.6), eq. (3.7), eq. (3.10), and eq. (3.11), with couplings Cs, Ca1 , and Ca2 as
determined in table 3 (and Rρ “ 1). These low-energy contributions are then to be
supplemented by the asymptotic contributions from the LCE, see section 2, to arrive at a
complete description.

In order to estimate the impact of f 11 and a1, we also quote the corresponding expressions
that follow from Up3q symmetry. For the f 11, the analogous results are obtained by replacing

Rρ Ñ Rρ
f 1

1
“ cotpθA ` θ1q “ ´0.50p11q,

Rω Ñ Rω
f 1

1
“

1
9 cotpθA ` θ1q “ ´0.06p1q,

Rϕ Ñ Rϕ
f 1

1
“ ´

2
?
2

9 “ ´0.31, (5.5)

where the errors only refer to the uncertainties propagated in θA, cf. eq. (3.2) and eq. (3.11).
The coefficients in eq. (5.5) show that isoscalar contributions will become much more
important for the f 11 than for the f1, especially the ϕ. This observation is reflected by some
evidence for a signal in the decay to the ϕγ final state, Bpf 11 Ñ ϕγq “ 3p2q ˆ 10´3 [92],
which, within uncertainties, agrees with the predictions from table 3 for the fit including
Bpf1 Ñ ϕγq, while the fit without Bpf1 Ñ ϕγq predicts a larger branching fraction. The
same reference also gives a limit Bpf 11 Ñ ργq ă 0.02 (95% C.L.), in agreement with both
fits from table 3.

The TFFs of the a1 display a different isospin structure, with one isoscalar and one
isovector photon each. Moreover, for ideal mixing, there is no contribution from the ϕ and
its excitations, so that only contributions of the ρ–ω type survive. Accordingly, the overall
scaling compared to the couplings in the f1 TFFs is measured relative to the sum of all
isovector and isoscalar contributions, leading to

Ra1 “
1`Rω `Rϕ

?
3 cospθA ´ θ0q

“
2

3 sinpθA ` θ1q
“ 0.75p3q. (5.6)
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Choosing a symmetric decomposition of ζV onto the ρ and ω contributions, we obtain

Fa1
a1{2

pq2
1, q

2
2q “

Ra1Ca1{2

a

ζρζωM
2
ρM

2
ρ1M2

ρ2M2
ωM

2
ω1M2

ω2pq2
1 ´ q2

2q

2pq2
1 ´M2

ρ qpq
2
2 ´M2

ωqpq
2
1 ´M2

ρ1qpq2
2 ´M2

ω1qpq2
1 ´M2

ρ2qpq2
2 ´M2

ω2q

` pρØ ωq,

Fa1
s pq2

1, q
2
2q “

Ra1CsM
2
ρM

2
ρ1M2

ωM
2
ω1

2pq2
1 ´M2

ρ qpq
2
2 ´M2

ωqpq
2
1 ´M2

ρ1qpq2
2 ´M2

ω1q
` pρØ ωq. (5.7)

6 Conclusions

The transition form factors (TFFs) of axial-vector mesons are key input quantities for a data-
driven evaluation of hadronic light-by-light (HLbL) scattering in the anomalous magnetic
moment of the muon, yet they are notoriously poorly determined from experiment. Here,
we performed a global analysis of all experimental constraints available for the f1p1285q
and outlined how the f1p1420q and a1p1260q contributions can be estimated from Up3q
symmetry. A crucial role is played by data for the cross section of e`e´ Ñ f1π

`π´, which
provide valuable input on the asymptotic behavior and allowed us to find an unambiguous
solution also for the antisymmetric TFFs.

The process e`e´ Ñ f1π
`π´ probes all three TFFs at one photon virtuality determined

by the center-of-mass energy and the other one by the π`π´ invariant mass, which in turn
is dominated by the ρp770q. Accordingly, the data extending from threshold up to about
4.5GeV are sensitive to the asymptotic behavior for one virtuality fixed at the ρ mass. The
corresponding constraint demonstrates that the asymptotic behavior predicted by the light-
cone expansion needs to set in early, for otherwise, the cross section exceeds data by an order
of magnitude. We implemented this conclusion using a vector-meson-dominance ansatz,
leading to the parameterizations summarized in section 5.4. To account for contributions
from even higher excited ρ resonances, such as the ρp2150q, we formulated the quantitative
analysis as an upper limit, which still entails valuable constraints especially on the otherwise
poorly determined couplings characterizing the antisymmetric TFFs. The global fit, see
section 5.3, shows good consistency with data for e`e´ Ñ e`e´f1 and f1 Ñ ργ, predicting
a branching fraction for f1 Ñ e`e´ at the lower end of the signal strength reported by
SND. Some tension is observed with f1 Ñ ϕγ, which might point towards limitations of
Up3q symmetry and/or the data base.

The final parameterizations describe the TFFs at low and intermediate virtualities,
to be supplemented by an additional term from the light-cone expansion [61, 62] that
ensures the correct asymptotic behavior also in the doubly-virtual direction. Using this
combined input, work is ongoing to evaluate the axial-vector contributions both in the HLbL
basis of ref. [55] and in the formalism of ref. [60]. In combination with the short-distance
constraints from refs. [47–49], the results presented here will thus be instrumental to arrive
at a complete data-driven evaluation of HLbL scattering and to reduce the uncertainties to
the level required by the final precision expected from the Fermilab experiment.
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A Constants and parameters

In table 4, we collect the masses and decay widths used in this work, in large part taken from
ref. [112]. For most quantities, possible effects from isospin breaking can be safely neglected,
but some ambiguity arises for the mass and width of the ρp770q. For the e`e´ Ñ f1π

`π´

process as the focus of this work, it would be natural to identify the ρ parameters with the ρ0,
whose width is quoted at an appreciably lower value than for the charged channel. However,
here we follow the arguments from ref. [62], observing that determinations sensitive also to
the excited ρ states both in the neutral [124] and charged mode [125] tend to support the
charged-channel values from ref. [112] and, therefore, use the latter ones throughout. In
particular, via eq. (4.32), this determines |gρππ| “ 5.98, in good agreement with dispersive
determinations [108, 126]. Similarly, the photon couplings are calculated from eq. (4.20)
with the branching fractions from ref. [112], leading to

|gργ | “ 4.96, |gωγ | “ 16.51, |gϕγ | “ 13.40. (A.1)

Finally, we quote the values for masses and decay widths of the axial-vector resonances
from ref. [112]. For the a1, the (reaction-dependent) Breit–Wigner parameters can
also be compared to attempts to extract the pole position from τ Ñ 3πντ data, ?sa1 “

ma1 ´ iΓa1{2 “
“

1209p4qp`12
´9 q ´ i288p6qp`45

´10q
‰

MeV [127]. In addition, ref. [112] quotes
the average Γa1 “ 420p35qMeV [128, 129], in line with the center of the estimated range
quoted in table 4. Based on the same two references, one would conclude the mass average
ma1 “ 1250p20qMeV.
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Quantity Variable Value Reference

Mass pion Mπ 139.57MeV

[112]

Mass f1p1285q mf1 1281.9p5qMeV
Mass f1p1420q mf 1

1
1426.3p9qMeV

Mass a1p1260q ma1 1230p40qMeV
Mass ωp782q Mω 782.66p13qMeV
Mass ωp1420q Mω1 1410p60qMeV
Mass ωp1650q Mω2 1670p30qMeV
Mass ϕp1020q Mϕ 1019.461p16qMeV
Mass ϕp1680q Mϕ1 1680p20qMeV
Mass ϕp2170q Mϕ2 2163p7qMeV
Mass ρp770q (charged) Mρ 775.11p34qMeV
Mass ρp1450q Mρ1 1465p25qMeV
Mass ρp1700q Mρ2 1720p20qMeV
Total width f1p1285q Γf1 22.7p1.1qMeV
Total width f1p1420q Γf 1

1
54.5p2.6qMeV

Total width a1p1260q Γa1 p250 . . . 600qMeV
Total width ρp770q (charged) Γρ 149.1p8qMeV
Total width ρp1450q Γρ1 400p60qMeV
Total width ρp1700q Γρ2 250p100qMeV

Mass ρp770q (charged) Mρ 774.9p6qMeV

[124]

Mass ρp1450q (charged) Mρ1 1428p30qMeV
Mass ρp1700q (charged) Mρ2 1694p98qMeV
Total width ρp770q (charged) Γρ 148.6p1.8qMeV
Total width ρp1450q (charged) Γρ1 413p58qMeV
Total width ρp1700q (charged) Γρ2 135p62qMeV

Mass ρp770q (neutral) Mρ 775.02p35qMeV

[125]

Mass ρp1450q (neutral) Mρ1 1493p15qMeV
Mass ρp1700q (neutral) Mρ2 1861p17qMeV
Total width ρp770q (neutral) Γρ 149.59p67qMeV
Total width ρp1450q (neutral) Γρ1 427p31qMeV
Total width ρp1700q (neutral) Γρ2 316p26qMeV

Table 4. Masses and decay widths from ref. [112] as used in this work (first panel), in comparison
to the ρp770q, ρp1450q, and ρp1700q parameters from refs. [124, 125].
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