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Abstract
Wepropose a statistical framework for quantifying the importance of single events that do not
provide intermediate rewards but offer implicit incentives through scheduling and the reward
structure at the end of a multi-event contest. Applying the framework to primary elections in
the US, where earlier elections have greater importance and influence, we show that schedule
variations can mitigate the problem of front-loading elections. When applied to European
football, we demonstrate the utility and meaningfulness of quantified event importance in
relation to the in-match performance of contestants to improve outcome prediction and to
provide an early indication of public interest.

Keywords Data science · Applied probability · Scheduling · Simulation · Event importance

1 Introduction

Incentives are an important tool for motivating people to exert effort. In many environ-
ments, from the workplace to sporting contests, incentives are put in place to ensure that
invested efforts are optimized to achieve predefined goals (Lazear, 2000; Laffont & Mar-
timort, 2002). Changing incentives directly translates into altered performance or success
probability (Rosen, 1985; Prendergast, 1999). In contests where the reward depends solely
on the outcome of a single event, incentives are provided directly through the potential
rewards. In multi-event contests, the translation of contest rewards into incentives for single
events is not directly observable. Moreover, single events may be unequally important for
obtaining the final rewards, e.g. performance in an interview is rated higher than the previous
assessment center test, or the results of previous events lead to momentum for subsequent
events.
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As this transmission of multi-event contest rewards into incentives reflects the (personal)
expected rewards, incentives vary not only between events but also between participants.
Understanding these disparate and possibly asymmetric incentives in multi-event contests is
essential as it could lead participants to strategically allocate their efforts (Preston & Szy-
manski, 2003). Asymmetric individual incentives may have spillover effects on the outcome
probabilities of all other participants, which in turn could lead to potentially unbalanced
or unfair contests. Operations Research is concerned with fairness in multi-event contests
(Rasmussen & Trick, 2008; Kendall et al., 2010; Van Bulck & Goossens, 2020), and already
considered differences in the relevance of single events (Scarf et al., 2009; Goossens et al.,
2012; Buraimo et al., 2022).

In this work, we propose a general statistical framework to quantify the importance,
or implicit incentive, of single events in complex multi-event contests for each participant
individually – the event importance (EI). The EI measures the capability of an event to
change a participant’s (expected) reward for a contest. Our approach is based on two steps.
First, we calculate the discrete probability distribution for each contestant to reach certain
end-of-contest rewards based on an outcome model determining the outcome probabilities
for every single event. Second, the importance of a single event is determined through the
changes in the end-of-contest reward probabilities with respect to the possible outcomes of
this particular event. If the probabilities to reach the final rewards are changed substantially,
the importance of this event for the participant is high, and our methodology returns a high
event importance measure.

The proposed framework generalizes previous approaches (Schilling, 1994; Scarf & Shi,
2008; Buraimo et al., 2022) in that it is suitable for any contest design and any number of
participants and is not specific to any particular contest environment. Moreover, it allows
for participant-specific reward structures, and both the reward structure and the schedule
can change dynamically during the contest. Crucial for practical usage is that the proposed
statistical procedure can also be used in situations in which the importance of the single event
potentially plays a role in the determination of the event’s outcome – this can be accounted
for by calculating the specific event importance in an iterative procedure.

Our statistical framework can be applied in a variety of practical use cases, like competing
pharmaceutical companies developing a drug for the same medical indication, presidential
elections, which are held in a series of local elections, a job or promotion contest among
applicants or workers, or sports tournaments.

To showcase our methodology, we use our framework in two applications. In the first,
we apply the framework to the US presidential primaries to examine the problem of front-
loading:Earlier elections are known to have a greater impact on the outcomeof the nomination
process, which is why several states are pushing for earlier election dates. We analyze the
Democrats’ electoral schedule for the 2020 primaries and compare it with two alternative
hypothetical schedules, one sorted by the number of delegates and one randomized. In this
analysis, we find that the positioning of a state’s election in the schedule substantially affects
its impact on the outcome of the nomination – indicated by higher event importancemeasures.
A comparison of the different schedules shows that the problem of front-loading can be
mitigated by arranging the schedule according to the number of delegates in the states and
completely be eliminated by a random scheduling.

In a second application of our framework to the double round-robin tournament structure
in football leagues, we provide explicit measures of the EI that express implicit incentives for
teams. In this setting, the relevance of a particular match with respect to the team’s expected
rewards varies substantially, even though every match is actually awarded the same number
of points. Hence, the importance of a match varies over the season and between teams. This
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leads to pairings between teams with potentially very different incentives that change the
presumed probabilities of winning.

We demonstrate the meaningfulness of the derived values by analyzing their relationship
to various observable characteristics of the matches. The integration of the EI information
into a prediction model improves the accuracy of match outcome forecasts. We show that
bookmakers do not fully take into account the team-specific importance of events in their
prediction model. Furthermore, a positive interrelation can be drawn between the estimated
importance of the match and the public’s interest in certain matches in the form of larger
stadium attendance and social media engagement for more important matches. For the in-
match activity of the players and the outcomes of the match, we observe a comprehensive
pattern suggesting that teams approach more important matches with a more aggressive,
direct, and successful playing style.

Both the event importance values and replication code for the applications are publicly
available on Harvard Dataverse (Goller & Heiniger, 2022). The rest of the paper is structured
as follows. Section2 discusses related literature. Section3 explains the proposed statisti-
cal method. Section4 applies the framework to the front-loading in US primaries and the
application to double round-robin tournaments appears in Sect. 5. Section6 concludes.

2 Related literature

This work mainly refers to two types of literature, (a) the importance of specific events and
attempts to quantify them and (b) the literature on incentives in contests. The literature inves-
tigating the role of (explicit) incentives on performance generally finds that higher incentives
increase performance (Ehrenberg & Bognanno, 1990; Prendergast, 1999; Lazear, 2000).
However, it is important to distinguish between effort- and skill-based tasks; in the latter,
strong incentives can lead to performance decrements, a phenomenon known as choking-
under-pressure (Ariely et al., 2009; Harb-Wu & Krumer, 2019; Goller, 2023).

Several studies are concerned with fair and balanced schedules for multi-event contests.
Rasmussen&Trick (2008) andKendall et al. (2010) survey previousOR studies investigating
different fairness constraints or concerns in scheduling. The major issues are a balanced
distribution of (dis-)advantages among contestants (Della Croce & Oliveri, 2006; Durán
et al., 2019), availability constraints (Van Bulck &Goossens, 2020) or rescheduling of single
events (Yi et al., 2020). Directly using a measure for the relevance of the single events
Goossens et al. (2012) simulate the attractiveness of different multi-event contest designs to
analyze which design to implement in practice.

The importance of specific events in multi-event contests can be found in many fields of
literature. The order of action literature finds that the outcome of the contest is influenced
by the order of the events which has been shown theoretically (Krumer et al., 2017, 2020,
2023) and empirically, e.g., in musical contests (Ginsburgh & van Ours, 2003), song contests
(de Bruin, 2005), or judicial decisions (Danziger et al., 2011). More specifically, several
works focus on potential advantages in the first event in (usually sequential) contests, like
in R&D (Harris & Vickers, 1987), sports (Apesteguia & Palacios-Huerta, 2010; Krumer and
Lechner, 2017), or elections (Klumpp & Polborn, 2006).

Research documents the differential importance of sequential elections in US presidential
primaries. Surprising wins in early states led to momentum effects in the 2004 primaries
(Knight and Schiff, 2010). In their work, they find an unbalanced influence on the final
result for voters in early and late elections. Klumpp & Polborn (2006) model this first-winner
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advantage for primaries – known as the NewHampshire effect – giving an explanation for the
more intense campaigning in early elections. With more influence in the nomination process
in the early events front-loading, i.e. states moving their elections to earlier dates, is well
documented (Mayer & Busch, 2003). Ridout and Rottinghaus (2008) find more attention of
the candidates to the states the earlier their elections are. Moreover, they find that scheduling
is more important than the delegates’ count.

The first approaches to determining an event’s importance use rather simplistic mea-
sures (Jennett, 1984) and basic contest structures (Schilling, 1994). Even nowadays, trivial
(binary) measures are used in studies, e.g. for the relevance of games in basketball (Di Mattia
& Krumer, 2023) or jumps in diving (Goller & Späth, 2023). Most influential was Schilling
(1994)’s general idea of defining and calculating event importance in terms of how the prob-
ability to reach a final goal varies for different event outcomes. Recently, more sophisticated
approaches have emerged, for instance, Scarf & Shi (2008) simulating probabilities of final
contest rewards conditional on two different event outcomes. Lahvička (2015) and Buraimo
et al. (2022) build on the ideas of Jennett (1984) and Schilling (1994) but simulate final
standings in the ranking in a Monte Carlo simulation to estimate the importance of single
events.1 A different objective is followed in Geenens (2014): The importance of a match with
regard to its influence on the final contest outcome is investigated. This has an interesting
use case to investigate contests from the neutral spectator’s perspective but is conceptually
very different from the importance of a match for the specific contestant.

The drawback of all the discussed approaches is that they are specific to a certain type
of contest that is prevalent in sports, i.e. a fixed number of event outcomes and one specific
reward (e.g.,winner-takes-it-all contests). This does not encompassmore complexor dynamic
contest designs and reward structures,which are common in society. The approachwepropose
in the following section provides the flexibility to handle a variety of practical applications
with a variety of contest and reward structures.

3 The event importance

3.1 Introduction to the general framework

The event importancemeasures the difference between the discrete contest reward probability
distributions induced by the possible outcomes of a single event. If the probabilities for the
final rewards vary substantially with the differential outcomes of the examined event, its
impact on the tournament reward is large, and a high event importance measure is attributed.

To quantify the importance of a particular event, we hence require the probability distri-
bution of the contest rewards conditional on each possible outcome of the investigated event.
To determine the probability distributions, our framework sets the outcome of the examined
event accordingly and solves the remainder of the contest by successive evaluation of the
outcome model. Subsequent to the examined event, whose outcome is set by the framework,
all entities (outcomes, covariates, schedule) are subject to the probabilistic outcome model.
The successive application of the outcome model until the end of the contest generates the
probability distribution for the contest reward conditional on the initial outcome.

1 The most recent approach (Buraimo et al., 2022) is well-tailored to football competitions but can be viewed
as a special case of our general framework. Unlike their approach, however, our framework allows for multiple
possible event outcomes (i.e., more than just winning or losing) and multiple different contest rewards within
a single approach.
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Table 1 Notation

t ∈ T Time t in contest schedule T

Tt− = ⋃
t ′≤t t

′; Tt+ = ⋃
t ′>t t

′ Sub-schedule up to (−) or after (+) time t

et = ⋃
et,i Set of all single events et,i held at time t

k ∈ Ke ⊆ K Contestant k participates in event e

xe = ⋃
k∈Ke

xe,k Information on all contestants k in event e

Ye Set of all possible outcomes for event e

ye ∈ Ye Realised outcome of event e

oute(xe) = ⋃
Ye

P[Ye = ye|Xe = xe] Probabilistic outcome model
{
Tt+ , xt+

} = gen
(
Tt− , xt− , yt−

)
Outcome-dependent schedule and covariates

rk,ye = rewk
(⋃

T ye
)

Reward for contestant k after contest T

EIe,k = dist
(⋃

Ye
rk,ye , out(xe)

)
Event importance for contestant k in event e

For better readability, we omit the subscripts of et,i if a notation is not tied to a particular event but holds for
any arbitrary event e

There are six valuable attributes of our approach: First, by evaluating the reward probability
from the perspective of every contestant individually, the event importancemeasure is specific
to every participant and not the event itself. Second, we do not impose narrow restrictions
on the contest setup. Since the contest reward probability distribution is conditional on each
possible event outcome, we only need to assume a finite number of contestants, a finite
number of possible outcomes for an event, and a finite schedule for the contest. Moreover,
the tournament rewards have to be measurable based on the outcomes of all single events.

Third, the reward structure can be any function of all single event outcomes or a final
contest ranking if such exists, e.g. close-by ranks can be grouped together if valued equally.
Fourth, the framework is not restricted to a specific schedule. As the probability distributions
are calculated through a successive evaluation of all events in the contest, the reward proba-
bilities encompass all the essential features of the schedule as well, e.g. early elimination of
participants in the contest or differences in information sets induced by events held in parallel
or sequentially. Fifth, the framework is not tied to a specific distance metric to calculate the
difference in the reward probability distributions. Sixth, if the outcome model is not known,
it can be estimated on training data using any well-suited statistical method.

In the following, the details of how the described framework can be implemented to
determine the event importance values in a general case are outlined.

3.2 Technical implementation

3.2.1 Notation

This section defines the notation used to describe the general framework. Table 1 summarises
the notation as a quick reference. Upper case letters denote random variables, lower case
letters denote their realizations or other exogenous variables, and calligraphic letters are sets.
Multi-character names, such as EI or function names, are evident choices.

The contest is held along a finite schedule T. Because of the implicit chronological
ordering of T we can define the notation Tt− = ⋃

t ′≤t t
′ and Tt+ = ⋃

t ′>t t
′, denoting the

sub-schedule up to and after time t . Multiple events et,i can be held simultaneously at time t ,
where the subscript i identifies one particular event out of all events that take place at time t . In
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this case et = ⋃
i et,i . A finite set of contestantsK participate in the contest of which a subset

Ke ⊆ K participate in event e. For each event, information about the contestants, i.e. a set
of covariates xe = ⋃

k∈Ke
xe,k , and its outcome ye = ⋃

k∈Ke
ye,k is observed. The outcome

Ye of event e is a random variable that follows a conditional probabilistic outcome model
oute(xe) = ⋃

Ye
P[Ye = ye|Xe = xe] which, in case oute() is not known, is approximated

by ôute(). In the description of the general framework, we assume without loss of generality
that oute() is known and uniform, i.e. oute() = out(). The cases of an approximated outcome
model ̂oute() or event-specific outcome models oute() can both be handled in the general
framework.

The chronological feature of the events further allows us to define the sets of covariates
xt− = ⋃

e,t ′≤t xet ′ and xt+ = ⋃
e,t ′>t xet ′ which combine all information on events and

participants taking place either up to or after time t . In time t several events can take place
at the same time (using the same information set of previously held events). The analogous
operation on the outcomes defines yt− and yt+ . In settings where parts of the covariates
x and/or the schedule T depend on past outcomes, they are generated at run time based
on the previous outcomes by {Tt+ , xt+} = gen (Tt− , xt− , yt−). After the full contest T, the
probability distribution of the final rewards is determined according to the valuation function
rk,ye = rewk

(⋃
T ye

)
which can be individually specific for every contestant k. The event

importance EIe,k = dist
(⋃

Ye
rk,ye , out(xe)

)
for contestant k in event e is the difference

between the multiple probability distributions of the final rewards measured by any distance
measure dist(). The distance function can incorporate the outcome probabilities oute(xe) of
the starting event as weights.

3.2.2 Algorithm

Algorithm 1 describes the computation of the event importance value for a competitor k in
event et,i . Readers who are less familiar with the pseudo-code notation can consult the literal
translation of the algorithm in Appendix A.1.
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3.2.3 Approximation of the probability distributions

By the subsequent evaluation of the outcomemodel, the probability distribution of the rewards
at the end of the season can be determined, independent of the contest design. However, a
large amount of sequential events opens an extremely large number of possible outcome
paths, which causes numerical problems if their probability would be evaluated exactly. For
an outcomemodel that depends on past outcomes, the outcome paths can additionally become
very complex. For this reason, it is often appropriate to perform a Monte Carlo simulation to
approximate the probability distribution of the final rewards. Each run simulates one path for
the remaining contest according to the outcome model and the generated covariates/schedule
information at run time. With an adequate number of NMC Monte Carlo runs, the calculated
empirical probability distribution and hence the event importance values become sufficiently
close to the true values.

In a simulation that estimates the EI values for all events consecutively, a chronologically
backward iteration over the events allows for the reuse of already evolved paths as they
can be merged with the respective previous outcomes to longer paths and thus reduce the
computational complexity. In this case, NMC is an upper bound for the number of actually
performed runs in each step and, at the same time, a lower bound for the number of runs the
event importance estimate is premised on.

3.2.4 Iterative approximation of event importance

Inmany applications, the event importance is an integral part of the outcomemodel, e.g. when
the importance can be interpreted as an incentive for the contestants to provide effort that,
in turn, influences the outcome of the event. Independent of whether the outcome model is
known or not, it encompasses the event importance valueswhich are not available beforehand.

To determine the unknown event importance values, Algorithm 1 is at first executed with
an approximate outcome model that does not feature the event importance in the variable
set. This returns an initial approximation of the desired EI values. A subsequent iterative
application of Algorithm 1 with the full covariate set, including the preliminary EI variables,
updates the event importance estimates accounting for their own impact through the outcome
model. This iterative procedure can be continued until a predefined stopping criterion is
reached. The application in Sect. 5 is an example of an outcome model which includes the
event importance in the covariates. Algorithm 2 in Appendix A.2 illustrates how the iterative
procedure is implemented in the context of the application.

3.2.5 Distance functions

To measure the difference between the probability distributions of the contest rewards, an
appropriate distance function needs to be chosen. In simple applications with only binary
event outcomes and a binary reward scheme, the difference between the contest-winning
probabilities conditional on the event outcome is a straightforward choice as the distance
function.

As soon as a tournament features either multiple possible event outcomes or multiple
rewards, simply taking differences between the calculated probabilities is not possible any-
more. Such complex cases require a statistical distance function. For most settings, the
Jensen–Shannon divergence (JSD) is an appropriate distance function to cope with multiple
discrete probability distributions (Lin, 1991). It is a common distance measure (Nielsen,
2020) with desirable properties, as it can be applied to any number and size of probability
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distributions, and it also allows for a weighting scheme. Compared to the Kullback–Leibler
divergence, another common distance measure, the JSD is bounded and symmetrical. The
Bhattacharya distance is less widely used as the JSD but offers the same valuable properties.
For settings that require extreme flexibility in the distance measure, such as non-overlapping
distribution or differing probability spaces, the Wasserstein distance can be an appropriate
alternative. However, it is highly uncommon for typical tournaments to require such fea-
tures. The JSD measures the difference in the Shannon entropy between the probability
distributions, which implies that it does not have an intuitive linear interpretation. If such an
interpretation is of relevance, other candidates, such as the total variation distance, can be
applied.

4 Application: Front-loading in US primaries

4.1 Introduction

Presidential primary elections in the United States are held by the Democratic and the Repub-
lican party to determine the presidential election nominees. Both parties follow a similar
procedure where each state, every permanently inhabited US territory, and party members
living abroad are attributed a certain number of votes (pledged delegates). For ease of read-
ability, all entities are henceforth labeled as states. In addition to the pledged delegates,
selected party officials have additional votes (unpledged delegates) that are not tied to states’
election results. In order to be nominated for the presidential elections, the candidates in the
primaries must receive the majority of the delegate votes.

Each state holds its election or caucus on an individually chosen date, and the election
results determine how its delegates vote. Several states can vote on the same day, e.g. on
“Super Tuesday”, about one third of all delegate votes are determined. Due to the partially
sequential nature of the primaries, it may happen that later elections become irrelevant to
the outcome of the nomination if a candidate has already received more than half of the
total delegate votes. Moreover, the first elections are of greater importance as they reveal
voters’ preferences and influence later elections through their results. These two features of
the electoral process lead to a long-known and unresolved problem of front-loading (Mayer
& Busch, 2003; Ridout & Rottinghaus, 2008).

From a state’s perspective, an early election date can increase its influence in the primaries.
If all states are considering moving their elections to earlier dates, a solution must be found
to regulate the timing of state elections that takes into account the different importance of
the dates. Currently, additional delegates are granted for late election dates, but these do not
provide sufficient incentive for states to resolve front-loading. In the following analysis, we
compare the US Democrats’ 2020 election schedule with two proposed election schedules,
namely randomizing the election dates and arranging the states according to their delegate
count. The aim of the analysis is to find out whether this leads to a more balanced distribution
of the importance of elections for the individual states that is less driven by the timing of the
elections.

4.2 Setup

We utilize the actual schedule and reward structure of the 2020 democratic party presidential
primary elections. The ordering of the elections and the number of delegates rewarded by
the election are displayed in Table S1 in Supplemental Material Section S-A. For ease of
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exposition, we simplify the model of the election process by discarding unpledged delegates,
implementing onlywinner-takes-it-all elections, and engaging only two candidates i ∈ {0, 1}.

The reward function of the contest is given by winning the primaries, i.e. obtaining the
majority of the delegates’ votes.Wemodel the state’s election as a representative voter facing
a binary choice model with random utility. The utility ψi,s of candidate i for state s as char-
acterized by (1) is composed of four components: a) the fixed reputation {η0, η1} = {0.5, 0}
of the candidates, which yields a small constant advantage for one candidate.2 b) the match
between state preferences ρs ∼ N (0, 1) and the candidates’ positions {ρ0, ρ1} = {−1, 1}, c)
spillover effects ζi,s triggered by above/below average performance of candidate i in preced-
ing state elections d) a standard Type I extreme value error term εi,s . Under the assumption
that the representative voter always chooses the candidate with maximum utility, the setting
describes a conditional logit model (McFadden, 1974) with outcome probability πi,s that
candidate i wins the election in state s as described by Eq. (2). When winning the election in
state s, all the state delegates ys are attributed to the victorious candidate i by setting yi,s = ys
and y1−i,s = 0. Spillover effects from the results of early states on future elections as defined
in (3) occur if the share of obtained delegates’ votes in prior states, measured by the first term
in (3), differs from the expected share solely based on the candidates’ reputation, expressed
by the second term in (3). The spillover effects are an example of dynamic covariates in the
outcome model that have to be re-evaluated when new election results are determined.

ψi,s = ηi − |ρi − ρs |2
2

+ ζi,s + εi,s (1)

πi,s = exp
(
ψi,s

)

exp
(
ψi,s

) + exp
(
ψ1−i,s

) (2)

ζi,s =
∑

s′<s yi,s′∑
s′<s

(
yi,s′ + y1−i,s′

) − exp (ηi )

exp (ηi ) + exp (η1−i )
(3)

Based on the model for the election process given by Eqs. (1)–(3), the probability for each
candidate to win the primaries conditional on the outcome of a single state’s result is deter-
mined. Because the number of states and territories is too large to allow an exact numerical
calculation, the winning probabilities are approximated by a Monte Carlo simulation using
5000 simulation runs. As suggested in Sect. 3.2.5, we choose the difference in the winning
probabilities as the distance function for this contest with binary reward structure, i.e. to
be nominated as a presidential candidate or not. This distance function leads to symmetric
EI estimates for both candidates. To eliminate the dependency on a particular set of states’
preferences, we simulate 1000 random draws of state preferences.

The three schedules we evaluate are defined as follows: The regular schedule is according
to the actual election dates and the allocated number of delegates by state. In the random
schedule, we randomly permute the ordering of the states keeping the framework of the
schedule fixed. The rank increase scheme ranks the states increasing by their number of
delegate votes and applies the ordering to the actual schedule framework.

4.3 Results

Figure 1 shows the average EI estimates over all samples for the three schedule types.
The regular schedule of the 2020 democratic party primaries (1a) displays the increased

2 The fixed reputation values {η0, η1} = {0.5, 0} generate winning probabilities of {ψ0,s , ψ1,s } ≈
{0.62, 0.38} for zero state preferences, spillovers, and random error.
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Fig. 1 Average event importance estimates over 1000 states’ (preferences) samples with linear fit

importance of the early elections, as the respective states have a higher average EI estimate
than the number of delegates allocated to them would suggest. The randomized schedule
(1b) reveals a linear relationship between the ability of a state to change the outcome of
the primaries and its number of delegates. Since all states will eventually benefit from an
early position in the schedule, the positive spillover effects are spread across all states and
territories and balance each other out.

Ordering the states by increasing number of delegates (1c) cannot entirely eliminate the
first-winner effect but substantially alleviates it. The increased importance of states due to the
early election date can be compensated by a smaller number of delegates, which is an option
already considered in the allocation of delegates. Because ex-ante randomization requires
many repetitions to balance the positional effects, the ordered schedule seems to be a good
compromise between practicability and fairness.

To illustrate the importance of both the first-winner effect and the state’s size, we show in
Fig. 2 the estimated EI values for two states, Iowa (41 delegates) and California (415 dele-
gates), at different hypothetical positions in the election schedule. For the very early positions
(1 and4), both states are of considerable importance for thefinal nominationof the presidential
candidates. From position 5, the “Super Tuesday” on which numerous states hold their elec-
tions, the capability of the elections to influence the final nomination decreases considerably.

The importance of elections in small states thrives on the fact that there are spillover effects
through the first-winner effect. Because of the substantial amount of delegates, California
remains considerably important for the nomination result in late stages of the schedule,
while the low number of Iowa’s delegates become irrelevant in many realizations. For Iowa
in particular, if the election would be held in themiddle (20) or at the end (50) of the schedule,
the importance of the election would be determined only by the possibility that the state’s
delegates could act as tiebreakers in the nomination if the election race is close.
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Fig. 2 Estimated event importance values for Iowa and California at different hypothetical positions in the
election schedule for 400 random samples of states’ preferences

5 Application: European football leagues

5.1 Introduction

As with many analyses of contests, sports data provide a suitable and well-structured frame-
work for applications because it features accurate observational data (Kahn, 2000; Bar-Eli
et al., 2020). We apply the EI framework to the seven major European football leagues.
Those contests have a non-trivial schedule of multiple events, held sequentially or in parallel,
between pairings of the participants, and a non-linear reward structure that can vary indi-
vidually or change throughout the season – all of which can be handled naturally with the
proposed framework. With, for example, postponed games leading to changes in the sched-
ule, or supplementary rewards achieved by national cup tournaments changing the reward
structure individually, this application is a good showcase to demonstrate the flexibility of
the framework.

Quantifying EI in this context is interesting for several reasons. Contest designers should
avoid match-ups that pit contestants with unequal incentive levels against each other. Such
matches are potentially more susceptible to bribery, and a lower engagement of certain
participants could give an unfair (dis)advantage to participants not even involved in the event
itself (Duggan&Levitt, 2002; Elaad et al., 2018).Other valuable use cases of theEI in football
tournaments include (a) selecting intense or interesting matches for prime-time broadcast,
(b) improving the prediction of winning probabilities, and (c) detecting or avoiding unfair
match schedules.

5.2 Setup

5.2.1 Data

We analyze data from the 2006/07 through 2018/19 seasons of sevenmajor European football
leagues, namely the German ‘1.Bundesliga’, the Dutch ‘Eredivisie’, the Spanish ‘La Liga’,
the French ‘Ligue 1’, the English ‘Premier League’, the Portuguese ‘Primeira Liga’, and
the Italian ‘Serie A’. These leagues were the major leagues in Europe in terms of sporting
and financial success throughout the studied period. All leagues are designed as double
round-robin tournaments, which means that each team plays each other twice - once at each
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home venue. The rewards are distributed after the season. With the seven analyzed leagues,
we cover a variety of different reward structures. A detailed description of the tournament
design, league format, and reward structure of the considered European football leagues can
be found in Supplemental Material Section S-B.1.

For each individual match, we record a long list of characteristics: describing the match
setting, such as the time or day of the week, characterizing the participating teams, as their
success in recent matches, whether they play in international competitions, and metrics of
the squad players, e.g. age, height, estimated market value, and preferred foot. The full set
of all 133 covariates is listed in Supplemental Material Section S-B.2.

5.2.2 Specific application framework

In this section, we describe how we implement the general framework from Sect. 3 and
elaborate on all generic functions outlined in Algorithm 1. Algorithm 2 in Appendix A.2
presents the pseudo-code of the specific framework tailored to this application. At the end of
a football season, rewards are allocated to the teams based on their final rank. The areas in
the ranking which denote the championship title, qualification for international competitions,
and relegation are stated by strict thresholds. We use those boundaries to group all the ranks
between two thresholds as a single reward.More detailed information on the reward structures
per league and season appear in Supplemental Material Section S-B.3.1.. Individual updating
patterns of the reward scheme, e.g. because the UEFA Europa League place allocated to the
national cup winner is transferred and included in the league’s season rewards, are explained
in Supplemental Material Section S-B.3.2.

In Sect. 3, we have outlined how the general framework can be employed for applications
with unknown outcome functions and those incorporating the EI itself. Outcomes of football
matches do not follow a deterministic rule and can only approximately be described by a
probabilistic model. We follow the approach of Goller et al. (2021), using an ordered choice
model with three outcome probabilities estimated by the Ordered Forest (Lechner & Okasa,
2019), hereafter abbreviated as ORF. To restrict the number of covariates in the ORF model,
we perform a LASSO-based model selection step. Starting from the second iteration, this set
of covariates is extended with the previously estimated EI values (as outlined in Sect. 3.2.4).
In addition, we also simulate the exact score of the match, drawn from two independent
Poisson distributions, as the goal difference often serves as a tie-breaker in determining the
final ranking (find more details on the outcome model in Supplemental Material Section S-
B.3.3). The general framework is not restricted to this specific method, such as the ORF,
and the choice of the underlying outcome model is of second-order (consult Supplemental
Material Section S-B.4.4 for detailed results).

The choice of the Jensen–Shannon divergence as the distance function, specified in equa-
tion (4), follows the argumentation in Sect. 3.2.5 for settings with multiple event outcomes
and rewards. The JSD calculates the difference between the Shannon entropy H() of the
weighted average of the probability distributions and the sum of the Shannon entropy of
the individual probability distributions PH , PD, PA, where the subscript H stands for home
win, D for draw, and A for away win. The Shannon entropy H() of the discrete probability
distribution on the rewards is the negative sum over all rewards j ∈{1, ...,m} of the respective
probability mass p j and its natural logarithm. We use a scaling factor of ln(3)−1 to constrain
the EI to the [0,1] interval and weight the probability distributions Pi by the match outcome
probabilities {πH , πD, πA} to account for the likelihood of the three outcome scenarios.
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Fig. 3 Home and away team’s event importance estimates grouped by matc h day enumerated in relation to
the last match day, all seasons, and all leagues. Square-root transformation to y-axis applied

JSDπH ,πD ,πA (PH , PD, PA)) = 1

ln(3)

⎛

⎝H

⎛
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5.3 Results

5.3.1 Distribution of the estimated values

Figure 3 shows the distribution of estimated EI values by match days. For the majority of
the season, the estimated EI values are concentrated around a value of about 0.01. In other
words, most matches are similarly (un)important for the first parts of the season. Deviations
can be observed in pairings between teams that are expected to be close in the final end-
of-season standings, as in these matches a positive result implies a negative result for the
opponent. This behavior changes towards the end of the season, with non-relevant matches
and frequent outliers of particularly important matches. The uncertainty about the outcome
of the rest of the season is reduced with fewer unknown future results, and the results of
individual matches can become more decisive for the end-of-season rewards. This results in
more pronounced values of the EI towards the end of the season. As an illustrative example,
we show the estimated EI values for the last match day in the 2017/18German ‘1.Bundesliga’
season in Supplemental Material Section S-B.4.1.

5.3.2 Predicting match outcomes

To shed light on whether the quantified EI has an impact on outcome prediction, we compare
the estimates of a ‘baseline’ ordered forest model that does not use the EI information with
a ‘richer’ ORF model that includes the estimated EI of both, the home and away team, as
additional input.
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Fig. 4 The difference in expected points (ExpP) between the model including EI variables (Rich) and the
baseline model (Base) by the difference in event importance (EI) between the team and its opponent. Values
are rounded to the nearest grid point. Frequency indicates the number of points on a grid point. The red line
denotes a GAMwith a 95% confidence interval. Expected points are averaged over 100 estimates with different
sample splits. Square-root transformation to x-axis applied

We fit both ORF models on half of the data and predict the outcome probabilities with the
two models on the other half. Based on the outcome probabilities, we construct the expected
points (ExpP) measure by awarding points to the outcomes according to modern football
rules – 3 points for a win, 1 for a draw, and 0 for a loss. This procedure is repeated with
swapped training and prediction samples.

Figure 4 displays the difference in expected points between the rich and the baseline
model by the difference in the EI values between the two competing teams. The generalized
additive model (GAM) fit on the data confirms that teams with a higher absolute difference
in EI are attributed a higher absolute prediction of ExpP with the richer model verifying that
the inclusion of the EI variable is relevant for outcome prediction. The variable importance
measures of the EI variables in the rich model are shown in Supplemental Material Section S-
B.4.3 and provide evidence for the notable contribution of the EI in the outcome model.

5.3.3 Prediction power improvement

In Sect. 5.3.2, we have shown that the estimated EI values are picked up by an enriched
outcome model. This raises the question of whether using EI values in an outcome model
improves predictive performance.

We compare seven different prediction models to margin-free betting odds of the online
betting platform B365, collected from the website www.football-data.co.uk. To ensure com-
parability with the model predictions, we linearly scale the odds to remove the bookmaker’s
margin. The baseline ORF model as described in Sect. 5.3.2 (ORF), the richer model includ-
ing the EI values (ORF+EI), and additionally including the difference of EI estimates
(ORF+EI+diff ), an ORF model with a binary importance measure (ORF+naive), an ORF
model (ORF+add3) that adds three covariates, an ordered logit model with the baseline vari-
ables (Logit), and an ordered logit including the EI estimates (Logit+EI). The ORF+add3
model includes travel distance, days since the last match of the home team, and days to the
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Fig. 5 Out-of-sample prediction accuracy of different models over 1000 repetitions. Values are quantified in
log-Likelihood and indexed in each repetition by the performance of betting odds

next match of the away team to investigate if a potential improvement is just induced by a
larger set of covariates.

To evaluate the out-of-sample prediction accuracy we randomly split the data into two
samples. To not give the proposed models an unfair advantage over the betting odds, this split
is performed on the full-season level. On one-half of the seasons, the models are fitted; on
the other half, the prediction accuracy of the models is measured by the log-likelihood and
the Brier score (results for the Brier score can be found in Supplemental Material Section S-
B.4.6). In each repetition, we index the accuracy measures by the results of the benchmark
betting-odds model to balance any particular characteristics of the chosen sample.

Figure 5 shows the out-of-sample prediction accuracy. For the logit model, the addition
of the EI results in only a slight improvement, which is probably due to the linearity con-
straint. Including EI values in the ORF model substantially increases the predictive power,
as the additional information contained in the EI variables can be fully utilized, resulting in
better performance than the margin-free betting odds. Recording the event importance in a
binary variable does not improve the accuracy of the prediction. The model with three added
covariates indicates that the increase in prediction power is not just induced by the larger set
of covariates.

To break down the improvement by the EI information on the betting odds, we present
in Fig. 6 the difference between the achieved points and the expected points according to
the betting odds in relation to the difference in the EI values between the teams and their
opponents. AGAMfit on all data points indicates that, in particular, acrossmatches where the
differences are small, the EI can partly explain the mismatch in the betting odds. For larger
EI differences, the EI does not provide additional information to the bookmaker’s model. We
deduce that the betting odds already cover the unequal incentives when they are particularly
pronounced but do not fully account for more subtle disparities in the importance of a match
to the competing teams. This is generally in line with and extends the results of Feddersen
et al. (2023), which show that bookmakers are aware of the impact of different incentives
on the outcome of matches on the final match days. We provide additional evidence on the
complimentary informational content of the EI measure to the betting odds in Supplemental
Material Section S-B.4.5.
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Fig. 6 The difference in realized and expected points according to betting odds by the difference in event
importance between the team and its opponent. Values are rounded to the nearest grid point. Frequency
indicates the number of points on a grid point. The red line denotes GAM with a 95% confidence interval.
Square-root transformation to x-axis applied

5.3.4 Team performance

Besides the usefulness of theEImeasure in predictions,we investigatewhether the differences
in incentives for teams are reflected in-match statistics that record a team’s on-field behavior
and performance. For this, we investigate in-match statistics (provided by Opta) for the
2010/11 through 2018/19 German ‘1.Bundesliga’ seasons with regards to our EI estimates.
The team performance data is collected individually for both teams and pooled for the home
and away teams. Outcome variables are totals per match, except for ‘Duel win’ and ‘Tackles
win’, which are shares. For ease of interpretation, the EI estimates for the home and away
teams are each divided into three groups - ‘zero’ (EI = 0), ‘low’, and ‘high’ EI. The threshold
for the ‘high’ group is chosen such that its size approximately matches the ‘zero’ group that
accounts for 5% of the data.

The analysis follows a two-step procedure: First, we run a fixed effect regression for
every outcome individually using the combinations ‘Team × home/away × season’ and
‘Opponent × home/away × season ‘fixed effects’. The resulting residuals are then centered
and standardized by ‘Team × home/away × season’. On those scaled residuals, we run
a regression using again the grid on the EI categories ‘zero’, ‘low’, and ‘high’ for both
competing teams. Figure7 shows the results for four outcomes: duels per game, number of
completed passes, number of goals scored, and number of goals conceded. Complementary
results using other outcomes are shown in Supplemental Material Section S-B.4.7.

The results can be summarised as follows: Teams for which a match is particularly impor-
tant (i) play more aggressively, entering more duels on the pitch, (ii) play more directly
towards the goal with fewer passes, fewer touches, and more entries into the final third and
penalty area, (iii) score more goals. In contrast, teams with zero importance exhibit a more
passive style of play and concede more goals.
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Fig. 7 Linear regression estimates of the centered and standardized residuals of different outcomes on the
Event importance categories. 95% confidence intervals are in parentheses. The baseline is low by low category

5.3.5 Public perception

Sport is entertainment and thrives on public perception. If the calculated EI can represent the
(later realized) public interest in a specific match, it could be useful for several purposes –
marketing, ticket pricing, or prime-time broadcasting selection. With this in mind, we relate
the EI to the stadium attendance turnout, as well as social media attention. While attendances
are officially reported by clubs, social media attention is captured through Twitter account
mentions (e.g. @LFC - the official Twitter account of the English team Liverpool FC) and
match hashtags (e.g. #BVBS04 relates to the match of the teams Borussia Dortmund against
Schalke 04) within the 24h before kickoff on Twitter. Due to the inconsistency and lack of
use of the aforementioned proxies in the early years and across the leagues, we can only
perform this analysis beginning with the 2014/15 season and must exclude the Spanish and
Portuguese leagues.

The procedure is analog to the residual analysis in Sect. 5.3.4. As different clubs have
put different emphases on social media, and this has changed over time, we control for the
team and season-specific usage of social media. Figure8 presents the point estimates and
95 % confidence intervals of the linear regressions using the Twitter and attendance data
(both in logs) as outcomes. Stadium attendance is modestly associated with the home team’s
importance in the match. Here, restrictions on stadium capacity and (pre-sold) season tickets
could mitigate the effect. Thus, social media attention might give a more clear picture of
realized interest. We find team account mentions are strongly associated with the respective
team’s EI measure. Similarly, the match-tag mentions increase with both teams’ EI. This is
consistent with and complementary to Dobson and Goddard (1992) and Lei & Humphreys
(2013) reporting higher stadium attendance for more important sporting events and recent
findings by Buraimo et al. (2022) that Premier League television audiences are larger for
more important matches.

123



Annals of Operations Research

Fig. 8 Linear regression estimates of the centered and standardized residuals of different outcomes on the
event importance (EI) categories. 95% confidence intervals are in parentheses. The baseline is low by low
category

6 Conclusion

Public perception and academic research analyze incentives in simple situations where there
is a direct link between performance and reward. More complex situations with indirect
rewards and therefore unclear implicit incentive structures have received little attention.

In this article, we propose a statistical method to quantify the importance of single events
in multi-event contests with end-of-contest reward structures. Thanks to its flexibility and
generality the procedure covers a multitude of potential applications and can be valuable for
various fields, including sales and marketing, human resources, or operations management.

Our event importance framework can be adapted to different contest structures seen in
society andopens a variety of potential research topics, such as behavioral responses involving
implicit incentives or operational concerns associated with the scheduling of a contest. These
include, for example, different valuations due to the order of actions or asymmetric incentives
that lead to distorted probabilities of winning in a contest.

In an application to European football leagues, we show the association of the quan-
tified importance of a match to in-match behavior and the performance of the teams. As
discrepancies in the EI can lead to altered outcome probabilities, the quantification of the
event importance can help to ensure fair tournaments. The event importance measure also
addresses other stakeholders in the football industry. As we show that the EI measure is
consistent with the public interest in terms of social media and stadium attendance, it can
be useful for dynamic ticket pricing or TV stations that want to broadcast the most attrac-
tive match. Lastly, we illustrate the value of the EI measure for predicting match outcomes
and point out under which circumstances the bookmakers do not yet account for the event’s
importance.
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For the application to the US presidential primaries, we quantify the higher relevance of
early election dates induced by the first-winner effect. For small states with a low number
of delegates, this can substantially boost their influence on the nomination outcome, as
otherwise, their votes become irrelevant in many of the primaries. We show that the two
investigated hypothetical schedules lead to more equitable distribution in the ratio of event
importance values to the number of delegates rewarded by the election.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10479-023-05540-x.

Funding Open access funding provided by University of Bern

Availability of data andmaterial Event importance values and replication code for the applications are publicly
available on Harvard Dataverse: https://doi.org/10.7910/DVN/F3QA9N. Other data used for the Application:
European football leagues are available from the corresponding author upon request.

Declarations

Conflict of interest The author declared that they have no conflict of interest.

Informed consent/consent to publish Not applicable, as the study does not use data from (identifiable)
individuals.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Appendix

A.1 Details to Algorithm 1

The Algorithm 1 works as follows: Line 2 loops over all possible outcomes Yet,i for the
particular event et,i . This loop calculates the reward distribution at the end of the contest once
for each possible outcome. Note that all variables in this loop are depending on the value of
the loop iterator yet,i . To improve readability, we denote this by the superscript * instead of
the more intuitive subscript yet,i , which prevents an additional subscript level. All variables
are subject to a probability distribution which is formed by the continuous evaluations of the
outcome model out(). At the beginning of each iteration of the loop, the outcome for event
e∗
t,i is set to the iterator outcome yet,i . In case there are other simultaneous events et, j besides
the targeted event et,i at time t , the loop in line 4 evaluates their outcome probabilities
according to the outcome model out(xet, j ). Next, the outcome-dependent elements of the
future schedule and covariates are generated according to the outcome probabilities of y∗

t− ,
as well as Tt− and xt− . Line 7 loops over the future times t ′ until the end of the contest
Tt+

∗. Note that this set can be adapted or extended at run time by the gen() steps in case of
an outcome-dependent schedule. In each iteration step, first, the outcome probabilities y∗

et ′
for all events at this particular time t ′ are determined according to the outcome model, and
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then the contest schedule and the covariates are generated, in case they depend on the past
outcomes. When the end of the contest T∗ has been reached, line 10 determines the reward
distribution rk,yet,i for contestant k based on the outcomes of all single events in the contest.
The final step, after the outer loop over all possible outcomes has finished, calculates the
distance between the reward distributions, which quantifies the event importance EIet,i ,k .

A.2 Application-specific algorithm
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Algorithm 2 describes the determination of all the event importance values in the specific
framework of the presented application.

We estimate the EI in an iterative approach as described in Sect. 3.2.4 as the EI values
are an important feature in the outcome model. The comparison of estimated EI values after
different numbers of iterations in Appendix S-B.4.2 indicates that three iteration steps are
already enough to obtain a sufficient convergence of the EI estimation. The approximation
of the final ranking distribution with a Monte Carlo simulation as described in Sect. 3.2.3 is
performed with NMC = 7500 runs.
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