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1 Introduction

Violation of charge conjugation and parity (CP) is one of the most intriguing phenomena
in particle physics. Experimentally to date it has only been observed in transitions among
different quark flavours. In the past 60 years since its discovery [1], many venues to observe
CP violation (CPV) have been established in b-, c-flavoured hadron and kaon decays as
well as in neutral meson oscillations. Theoretically, within the Standard Model (SM) such
CPV originates from the CKM matrix, or more generally, from the quark Yukawa sector.
Currently, all most precise experimental measurements of CPV from flavour factories are
consistent with SM predictions controlled by a unique CP-odd phase of the CKM, see
e.g. ref. [2].
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A second possible source of CP violation in the SM arises from QCD dynamics. This
so-called strong CP violation is flavour universal and conventionally parameterized via the
QCD θ̄ term. Current experimental limits on the neutron electric dipole moment (EDM)
constrain |θ̄| ≲ 10−10 [3], the smallness of which is difficult to understand and leads to the
to the so-called strong CP problem of the SM. In the limit of vanishing θ̄, EDMs still arise
in the SM due to the CP-odd phase of the CKM, but are severely suppressed: namely,
quark EDMs receive contributions only at the three-loop level, while in the case of leptons,
they only arise at four loops (see e.g. ref. [4]). Numerically, the resulting neutron dipole
moment was found to be dn ∼ 10−32 e·cm [5], six orders of magnitude below the current
experimental limit.

Beyond the SM, EDM measurements in several distinct systems allow to disentangle
nonzero θ̄ contributions from other possible new physics (NP) sources of CP violation.
Similarly, measurements of CP-odd observables in several distinct quark flavour transitions
allow to search for new sources of CP violation in flavour beyond the CKM phase [6, 7].
However, while contributions to EDMs from flavour non-universal CP-odd phases, and
conversely θ̄ contributions to CP-odd flavour observables, are practically negligible in the
SM, this is not necessarily the case beyond SM. Consequently, the interplay between
flavour-conserving and flavour-violating CP-odd observables in the presence of NP requires
specifying the flavour structure of the model (see e.g. refs. [8, 9]).

The SM gauge-kinetic sector is invariant under a global flavour symmetry

GF ≡ U(3)5 = U(3)q ×U(3)u ×U(3)d ×U(3)l ×U(3)e , (1.1)

where q, u, d, l, e denote the left-handed quarks, right-handed up and down quarks and
left- and right-handed leptons, respectively. The fermion Yukawa couplings to the Higgs
(Yu,d,e) act as the only (spurionic) sources of GF → U(1)4 = U(1)B ×U(1)e ×U(1)µ ×U(1)τ

breaking in the SM.1 While in general, any flavour structure even beyond SM can be
parameterized in terms of a finite power sum of SM Yukawas [10], the hierarchical structure
of quark masses and nearly diagonal form of the CKM allow for an efficient flavour breaking
expansion and power counting. Models beyond SM respecting this power counting, where
formally the leading flavour breaking sources are proportional to the lowest powers of
the SM Yukawas, are called Minimally Flavour Violating (MFV) [11]. While such a
prescription completely determines the flavour breaking patterns even beyond SM, it does
not preclude the appearance of new (flavour universal) sources of CP violation. Consequently,
experimental searches for EDMs put strong constraints on such contributions [4, 11]. To
mitigate this, conventional definitions of MFV include the requirement/assumption that
the SM Yukawas are also the only (spurionic) sources of CP violation even beyond SM,
resulting in suppressed contributions to EDMs [12].

The idea of controlled spurionic breaking of GF can be developed beyond MFV and
leads to so-called U(2)3 flavour models [13, 14]. These build upon the observation, that
the top Yukawa coupling is the only O(1) flavour breaking in the SM, leading to a pattern
U(3)q × U(3)u → U(1)t × U(2)q × U(2)u, which is only further broken by small terms of
the order of |Vts|, mc/mt, etc. The hierarchical structure of the CKM furthermore dictates

1Here we are neglecting the breaking of lepton flavour numbers due to small neutrino masses since they
are irrelevant for the observables studied in this work.
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the simplest spurionic structure of such U(1)t ×U(2)q ×U(2)u breaking terms. The main
difference of U(2)3 flavour models with respect to MFV (related to both a smaller symmetry
and an increased number of spurions) is the breaking of correlations between processes
involving the third fermion generation versus those involving only the lighter two, including
the appearance of additional non-universal CP-odd phases unrelated to the phase of the
CKM. This in turn generally leads to significantly different predictions and correlations
between EDMs and flavour-violating CP-odd observables.

Recently the authors in ref. [4] analyzed EDMs of charged leptons and neutrons in the
presence of heavy NP within the framework Standard Model Effective Theory (SMEFT)
at the one-loop level, including both renormalization group (RG) running contributions
and finite corrections. They considered both flavour universal (U(3)3 symmetric) scenarios
as well as MFV and U(2)3 flavour models and derived bounds on the various spurionic
contributions.

In the present work we investigate complementary flavour- and CP-violating effects of
heavy NP, and study correlations between different flavour-violating processes and EDMs
both within MFV and U(2)3 flavour models. To this end we consider dimension-6 effective
operators within SMEFT that can contribute to CPV dipole transition observables at low
energies, both via direct operator matching (and matrix element computation) as well
as through RG mixing effects. We consider CP-violating observables in non-leptonic and
radiative B, D and kaon decays as well as the EDM of the electron and of the neutron.
Particular attention is paid to flavour-violating contributions to the latter due to long-
distance hadronic effects. These were first studied in ref. [15], where it was shown that
the c → u chromo-electric dipole operator can induce the neutron EDM at the level of
10−31 e·cm via tree-level second-order weak interaction effects. We generalize these results
to other flavour- and CP-violating dipole contributions and compute the relevant (heavy)
baryon exchange contributions for c → u, s → d and b → d transitions.

The purpose of our study is twofold. First, by studying the RG evolution of flavour- and
CP-violating operators, we can establish a connection between observable CPV effects at low
energies and general NP present at some high scale. Secondly, our low-energy phenomeno-
logical analysis summarizes existing constraints on CPV dipole transition operators. It can
serve as guidance for experimental and theoretical improvements in the future. The paper
is structured as follows: in section 2 we introduce the SMEFT operator basis relevant for
low energy CPV dipole transitions and present the relevant RG evolution equations (RGEs).
Section 3 reviews the flavour expansion of SMEFT within MFV and U(2)3 models. In
section 4 we analyse the relevant low-energy phenomenology from flavour- and CP-violating
dipole transitions. The resulting constraints on particular SMEFT flavour scenarios are
shown in section 5. Finally in section 6 we present our conclusions and prospects for
the future.

2 SMEFT framework

In this section we define the general framework for our analysis. First, we write out the
relevant operators in the SMEFT basis in section 2.1. We consider all operators that
participate in generating flavor-changing dipoles either directly, via RG running or via finite
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matching corrections. We consider their interplay through RG running in section 2.2. Then
we perform the matching to Low Energy Effective Field Theory (LEFT) [16] at the weak
scale, as detailed in section 2.3. Together with the leading log contributions, we also take into
account non-negligible finite one-loop threshold effects and two-loop matching conditions.

2.1 Operator basis

We work within the context of SMEFT valid at scales below any NP mass thresholds but
much above the electroweak symmetry breaking (EWSB) Higgs condensate v = 246GeV.
The effective Lagrangian is2

L = LSM + 1
Λ2

∑
Qi ̸=Q†

i

(CiQi + h.c.) , (2.1)

where LSM is the SM Lagrangian, Λ is the relevant operator suppression scale, the sums
run over the (non-hermitian) local dimension-six operators Qi, and Ci are the respective
Wilson coefficients. We work with the so-called “Warsaw” basis [17], where leading heavy
NP contributions to the quark dipole moments are parameterized by the operators

QuG
pr

=
(
q̄pσµνT Aur

)
H̃GAµν , QdG

pr

=
(
q̄pσµνT Adr

)
HGAµν ,

QuB
pr

= (q̄pσµνur) H̃Bµν , QdB
pr

= (q̄pσµνdr)HBµν ,

QuW
pr

= (q̄pσµνur) τaH̃W aµν , QdW
pr

= (q̄pσµνdr) τaHW aµν . (2.2)

Here H is the Higgs doublet, with H̃ = iσ2H∗. The gauge bosons in the unbroken phase
are G, W and B, with τ and T the generators of SU(2)L and SU(3), respectively. The
left-handed quark doublets are represented by q, while the right-handed singlets by u and d;
the quark generation indices are p and r. These operators generate dipole moments below
the EW scale at tree-level, by integrating out the H fields and rotating the SU(2)L bosons
by the weak mixing angle.

As we discuss in the next section, under one-loop RG evolution the above dipole
operators mix into Yukawa-like operators

QuH
pr

=
(
H†H

) (
q̄purH̃

)
, QdH

pr

=
(
H†H

)
(q̄pdrH) . (2.3)

In addition, both the dipole and Yukawa operators receive RG running and EW matching
contributions from additional sets of operators. First are the Higgs derivative operators

Q(1)
Hq
rs

=
(
H†i

↔
DµH

)
(q̄rγµqs) , Q(3)

Hq
rs

=
(
H†i

↔
D

a
µH
)
(q̄rτaγµqs) ,

QHu
rs

=
(
H†i

↔
DµH

)
(ūrγµus) , QHd

rs

=
(
H†i

↔
DµH

) (
d̄rγµds

)
,

QHud
rs

= i
(
H̃†
↔
DµH

)
(ūrγµds) , (2.4)

2For brevity we omit the single dimension five lepton number violating Weinberg operator, which does not
affect our analysis as well as possible hermitian operators (Qi = Q†

i ) since they do not contribute to CPV.
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where Dµ = ∂µ−ig1Y Bµ−ig2τaW aµ−ig3TAGAµ is the SM covariant derivative, with Y the
U(1) hypercharge and g1, g2, g3 the gauge couplings of U(1), SU(2)L, SU(3) respectively.
The left-right derivative is defined as H†i

↔
DµH = H†iDµH − H†i

←
DµH. Second group

consists of four-fermion operators

Q(1)
quqd
rspt

=
(
q̄j

rus

)
ϵjk

(
q̄k

pdt

)
, Q(8)

quqd
rspt

=
(
q̄j

rT Aus

)
ϵjk

(
q̄k

pT Adt

)
,

Q(1)
qu

rspt

= (q̄rγµqs) (ūpγµut) , Q(8)
qu

rspt

=
(
q̄rT Aγµqs

) (
ūpT Aγµut

)
, (2.5)

where j, k are SU(2)L indices and ϵjk is the Levi-Civita tensor.
On the other hand, here and in the following we neglect additional purely bosonic

operators, e.g. QHG̃ = H†HGA
µνG̃Aµν , as they do not depend on any flavour index. Namely,

both their contributions to operator mixing via RG and to matching conditions at the weak
scale vanish for flavour-changing transitions.

2.2 Renormalization Group evolution and operator mixing

The basic assumption in this work is that any NP mass thresholds are much above the EW
scale. The RG evolution of Wilson coefficients from the UV (NP) scale down to the IR
(EWSB) scale is the first mechanism responsible for the interplay of different operators in
low energy observables, due to operator mixing.

The complete set of one-loop RGEs for dimension-six operators in SMEFT was derived
in refs. [18–20]; furthermore, packages like wilson [21] and DsixTools [22, 23] have been
developed to solve the system of RGEs numerically and compute the Wilson coefficients at
any scale. We detail our approach for the full numerical analysis in section 5.1. Here, we
outline the relevant mixing for the subset of operators listed in the previous section, from
eqs. (2.2) to (2.5). This is intended as a guideline to understand the behaviour of various
operators with respect to quark dipoles, as these are the main focus of this manuscript.

We start with the dipole operators themselves. At one-loop order, their RGE running
and mixing consists of two types of terms, one from purely gauge interactions, the other
from Yukawa vertices of the Higgs field. For the Wilson coefficients of the up-quark dipoles,
we can write

Ċu
rs

G ∝ g1(2)g3Cu
rs

B(W )+g̃2Cu
rs

G+
[(

Ỹ 2
u +Ỹ 2

d

)
CuG

]
rs
−[CdG (YuYd)]rs ,

Ċu
rs

B(W ) ∝ g1(2)g3Cu
rs

G+g̃2Cu
rs

B(W )+
[(

Ỹ 2
u +Ỹ 2

d

)
CuB(W )

]
rs
−
[
CdB(W ) (YuYd)

]
rs

,
(2.6)

while the expressions for Ċ d
rs

G and Ċ d
rs

B(W ) can be obtained from these by replacing u ↔ d.

The scale derivative is defined as Ċ ≡ (4π)2dC/d lnµ, whereas r, s are flavour indices, g1,2,3
are the gauge couplings, and Yu, Yd are the quark Yukawa matrices. The factors g̃2, Ỹ 2

u , Ỹ 2
d

indicate particular combinations of the gauge couplings and Yukawa matrices appearing in
the full expressions, where we have omitted different contractions of flavour indices for the
sake of brevity. At this point, the exact form of these factors is not relevant, as we are only
interested in their parametric contribution to the mixing.3

3For details on the exact flavour structure of the above RGEs see e.g. ref. [19].
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From eq. (2.6) it is clear that gauge interaction contributions dominate the dipole RGEs,
as they preserve the exact flavour structure (see section 3 for the detailed expressions): any
suppression from small flavour braking parameters cancels exactly between the left- and
right-hand side of eq. (2.6). Conversely, the relevance of both Higgs-exchange terms of the
order Y 2

u,d will depend on the flavour scheme assumed. In particular, the mixing between
up-quark and down-quark dipoles induced at this order and proportional to YuYd might be
phenomenologically relevant. Lastly, notice that the operators QqH do not enter the dipole
RGEs at this order; that is, non-standard Yukawa-like interactions in the UV do not induce
contributions to dipole transitions through their RG flow at one-loop (see also ref. [24]).

There is an additional contribution to the dipole RGEs, coming from chirality-flipping
four-fermion operators Q(1)

quqd and Q(8)
quqd, see eq. (2.5). We have

Ċu
rs

X ∝ gXCquqd
psrt

(Yd)pt , Ċ d
rs

X ∝ gXCquqd
rtps

(Yu)pt , (2.7)

where X = B, W, G and gX is the respective gauge coupling. These equations show that
the Qquqd operators contribute to both up- and down-quark dipoles, proportionally to a
single power of the down- and up-Yukawa, respectively. The effects on the latter ones in
particular could thus be relatively enhanced by the top quark Yukawa contributions.

Next we consider all SMEFT operators whose RGEs are coupled to those of dipoles.
This is the case for the Yukawa-like operators, where ĊqH receive the dominant contributions
of the form

Ċu
rs

H ∝
[(

Ỹ 2
u +Ỹ 2

d

)
CuH

]
rs
+Cd

rt
H (YuYd)ts+

[(
g̃2+Ỹ 2

u

)
CuB(W )

]
rs
+
[
Ỹ 2

u CuG

]
rs

, (2.8)

and similarly for Ċ d
rs

H by use of the replacement u ↔ d. Note that the electroweak dipoles
CuB(W ) also contribute through a gauge interaction term, not suppressed by small quark
masses or CKM factors.

Two additional contributions to the right-hand side of (2.8) come from the four-fermion
operators, Qqu and Qquqd. We have

Ċu
rs

H ∝
[
CquqdỸ 3

d

]
rs
+
[
CquỸ 3

u

]
rs

, ĊdH ∝
[
CquqdỸ 3

u

]
rs

. (2.9)

Although the Yukawa suppression here is of the third power, it shows that these four-fermion
operators can connect the Yukawa and dipole sectors: Qquqd mixes into both via RGE,
while Qqu participates to the Yukawa RGE and then matches to dipoles at the electroweak
scale (see next section).4 This is important for the phenomenological analysis: on one
hand, NP that generates only CqH at the high scale cannot induce dipoles at lower scales at
one-loop order. It is then unlikely to probe the effect of CqH via flavour-violating dipole
transitions at low energies. On the other hand, non-zero dipole operators CqB(W )[G] at
the high scale do RG mix into the Yukawa-like operators, and can in principle be probed
through Higgs induced flavour- and CP-violating processes at low energies, such as neutral
meson oscillations (see section 4.6). Finally, high scale NP contributions to Cquqd and Cqu

will generate low-scale effects in both Yukawa-like and dipole operators.
4The operator Qqd mixes as ĊdH ∝ CqdỸ 3

d , which we find to be numerically negligible.
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The two four-fermion operators of interest have a rich RG mixing structure; however,
any other operator that mixes into them but not with the Yukawa or dipole operators
generates only a two-loop suppressed effect. Thus the relevant part of the RGE is

Ċ qu
prst

∝
[
CquỸ 2

u

]
prst

+
[
CquqdYuYd

]
prst

,

Ċquqd
prst

∝
[
CquYuYd

]
prst

+
[
Cquqd

(
Ỹ 2

u + Ỹ 2
d

) ]
prst

.
(2.10)

Finally, there is an additional set of operators, {Q(1,3)
Hq , QHud, QHu, QHd}, that mixes

into QqH . However, their contributions are always suppressed by small quark masses, thus
we neglect them in the rest of this work.

2.3 Matching at the electroweak scale

Around the EW scale the weak gauge bosons, the Higgs and the top quark become heavy
degrees of freedom. At lower energies, they are thus integrated out, and we consider a new
low energy EFT — LEFT, with particles lighter than mt,h,W,Z as the only dynamical degrees
of freedom. We impose the appropriate matching conditions between the two theories above
and below the matching scale µW . The matching is computed consistently to one-loop
order and the µW dependence is matched (cancelled) exactly against the corresponding
terms in the RGEs. The only exception is the 2-loop matching contribution of the modified
Yukawa coefficients into the (chromo) EDM LEFT operators. In particular, the finite
2-loop contribution to the electron EDM has been shown in refs. [25, 26], to be numerically
dominant in this specific case.

The relevant LEFT Lagrangian describing flavour-changing dipole transitions among
quarks reads

Leff
F qq′ = cqq′

8G±Q
qq′

8G± + cqq′

7γ±Q
qq′

7γ± + h.c. , (2.11)

where

Qqq′

8G± = gs

32π2 mq

(
q̄′σµνT A(1± γ5)q

)
Gµν

A ,

Qqq′

7γ± = e

32π2 mq
(
q̄′σµν(1± γ5)q

)
F µν , (2.12)

are mass dimension 6 operators, and the respective Wilson coefficients are dimensionful
with mass dimension −2. Here gs = g3 and e = g1 cos θW = g2 sin θW are the QCD and
EM gauge couplings, respectively. The sum over quark flavours is generation (and mass)
ordered so that mq > mq′ , where q denotes a quark field in its respective mass basis.

The flavour-violating Yukawa interaction can be described by the renormalizable
Lagrangian

Leff
Hqq′ = −cq′q

qY

(
q̄′LqR

)
h + h.c. , (2.13)

where the coefficients cq′q
qY are dimensionless.

The full one-loop matching conditions of SMEFT onto LEFT have been calculated in
ref. [27]. Before proceeding, notice that our notation in eq. (2.11) differs from the one in
the latter reference, where the dipoles are defined as dimension 5 operators through

Leff
qX = crs

qX q̄L,r (σ · X) qR,s + h.c. , (2.14)

– 7 –
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and crs
qX , where rs are flavour indices, has inverse mass dimension; here X = F, G is a

photon or gluon field strength. For simplicity, we have suppressed gauge indices. The
translation to the coefficients in (2.12) (through identification Leff

qX = Leff
F qq′) then reads

cqq′

qG = gs

32π2 2mq

(
cqq′

8G−

)∗
, cq′q

qG = gs

32π2 2mqcqq′

8G+ ,

cqq′

qF = e

32π2 2mq

(
cqq′

7γ−

)∗
, cq′q

qF = e

32π2 2mqcqq′

7γ+ . (2.15)

Our main focus is flavour-changing transitions, thus we first consider the case where
q ̸= q′. At this order, the SMEFT dipole operators can be matched onto LEFT by simply
integrating out the heavy degrees of freedom in the broken EW phase, that is the Higgs H

and the weak gauge bosons W and Z. We obtain

crs
qF = v√

2Λ2

(
cwC q

rs

B − swC q
rs

W

)
,

crs
qG = v√

2Λ2 C q
rs

G , (2.16)

where sw and cw are the sin and cosine of the weak mixing angle respectively. Similarly, for
the Yukawa operator we have in a particular quark mass basis

crs
qY = v2

√
2Λ2 C q

rs

H . (2.17)

Note that the above matching is independent of the matching scale µW and does not include
any extra terms from other operators.

At higher loop orders, however, additional terms appear in the matching conditions
in eqs. (2.16)–(2.17). Following the same approach as in the previous section, below we
outline the main contributions, which are taken into account in the numerical analysis, see
section 5.1. The four-fermion operators Q(1,8)

qu generate up-quark chirality-flipping operators
via closed loops of massive top quarks;5 the resulting matching contributions are of the
form

crs
uF ∝ g1mt

Λ2 C qu
r33s

,

crs
uG ∝ g3mt

Λ2 C qu
r33s

,

crs
uY ∝ m3

t

vΛ2 C qu
3rs3

[
1 + ln

(
mt

µW

)]
. (2.18)

In the case of dipole coefficients, this is a purely finite term, while the Yukawa receives
both a finite and a renormalized contribution [27].

Similarly, the chirality-flipping four-fermion operators Qquqd match onto dipoles and
Yukawas at one-loop. Given their flavour structure, they generate down-quark operators by

5Similarly, the operator Qqd can contribute to the down dipole coefficients, although with a factor mb

from the bottom-quark loop.
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loop-contracting up-quarks, and vice versa. Contrary to the previous case, the top-quark
enhanced contributions are then

crs
dF ∝ g1mt

Λ2 Cquqd
r33s

ln
(

mt

µW

)
,

crs
dG ∝ g3mt

Λ2 Cquqd
r33s

ln
(

mt

µW

)
,

crs
dY ∝ m3

t

vΛ2 Cquqd
r33s

[
1 + ln

(
mt

µW

)]
. (2.19)

The corresponding contributions to the up-quark operators are instead suppressed by at
least mb/v. Note that here the matching contributions to dipoles are purely logarithmic
with the coefficients matching those of the corresponding SMEFT RGEs, see eq. (2.7).

Finally, at the two-loop order, operators QuH,dH generate additional phenomenologically
important contributions to eq. (2.11) as well as to leptonic dipole operators defined via

Leff
ℓF = crr

ℓF ℓ̄L,r (σ · F ) ℓR,r + h.c. . (2.20)

The contributions proceed through Barr-Zee type diagrams [25, 26], where the SMEFT
operator is inserted in the fermion loop. As before, here we give the parametric dependence
of the leading matching terms:

crr
dF ∝ g1g2

3
v

Λ2

[(
mt

mh

)2
− 1

4 ln
(

m2
h

Λ2

)]
CdH

rr

, (2.21)

crr
dG ∝ g3

v

Λ2

{
g2

3

(
mt

mh

)2
CdH

pp

δrp + g2
1

mdr

mqp

[
1 + ln

(
m2

h

m2
W

)]
CqH

pp

(1− δrp)
}

, (2.22)

crr
uF ∝ g1g2

3
v

Λ2

[(
mt

mh

)2
− 1

4 ln
(

m2
h

Λ2

)]
CuH

rr

, (2.23)

crr
uG ∝ g3

v

Λ2

{
g2

3

(
mt

mh

)2
CuH

pp

δrp + g2
1

mur

mqp

[
1 + ln

(
m2

h

m2
W

)]
CqH

pp

(1− δrp)
}

, (2.24)

crr
ℓF ∝ g3

1
v

Λ2
mℓr

m2
h

mt CuH
33

+
∑

q=c,b

12mq CqH Q2
q

[
ln2
(

m2
q

m2
h

)
+ π2

3

] , (2.25)

where in the last expression Qq = 2/3(−1/3) is the up (down) quark electric charge. Quark
dipoles receive the dominant matching contribution from the CP violating Higgs coupling
of the same flavour, that is, by insertion of the SMEFT operator on the external quark
legs. The chromo-dipole coefficients instead receive the most relevant contributions from
CP-violating Higgs couplings to light quarks (up, down and strange). The second term in
eqs. (2.22) and (2.24) is indeed the dominant one for r = 2, 3. Lastly, the two-loop matching
to electron EDM is dominated by the top-quark loop, the first term in eq. (2.25); however,
large quadratic logarithms lead to contributions from the bottom and charm quarks that
are only an O(5− 10) smaller, and we show them for completeness.

– 9 –



J
H
E
P
1
0
(
2
0
2
3
)
1
3
3

3 Flavour expansion in MFV and U(2)3

When simultaneously considering SMEFT contributions to various flavour-changing and
flavour-conserving processes, in addition to a consistent expansion in terms of operator
dimension, gauge, and Yukawa couplings, one also needs to specify the flavour structure of
the operators. In this section, we explore two schemes for the flavour-breaking patterns in
SMEFT: MFV and a U(2)3 symmetry-based flavour expansion. In both cases, we define
the spurions that parameterize the explicit flavour symmetry breaking and carry out the
expansion of operator coefficients to the relevant leading order.

3.1 MFV

MFV models respect the flavour-breaking pattern of the SM, that is, the only spurions that
break the flavour group, eq. (1.1), are the Yukawa matrices. The spurion transformation
properties under such a group can be derived from the SM Lagrangian. The up- and
down-quark Yukawa couplings are defined in terms of dimension-4 Lagrangian terms as

LY = −q̄Yuu H̃ − q̄Ydd H + h.c. , (3.1)

where H̃ = iτ2H∗. Under the quark flavour subgroup, Gq = U(3)q ⊗ U(3)u ⊗ U(3)d, the
quark fields transform as

q → Uqq , u → Uuu , d → Udd , (3.2)

where Uq,u,d are the U(3) transformations in the fundamental representations, i.e.

q = (3, 1, 1) , u = (1, 3, 1) , d = (1, 1, 3) . (3.3)

In order to maintain the Lagrangian in (3.1) formally invariant under the flavour symmetry,
one promotes the Yukawa matrices to spurionic fields, transforming as Yu = (3, 3̄, 1), and
Yd = (3, 1, 3̄) under Gq. Explicitly, they transform as

Yu → UqYuU †u , Yd → UqYdU †d . (3.4)

In the MFV setting, the transformation properties of Yukawa matrices and quarks, eqs. (3.4)
and (3.2) respectively, are all the ingredients needed to write down the spurion expansion of
various fermion bilinears. We derive explicitly the expansion for chirality flipping bilinears
as an example.

The chirality flipping bilinears, present in the dipole operators, transform under U(3)3 as

q̄rΓus =
(
3̄ ⊗ 1, 1 ⊗ 3, 1

)
(3.5)

where Γ is the scalar or tensor Dirac structure, which we will omit in the following. To
obtain a singlet under Gq we can contract this bilinear with Y rs

u : the latter transforms as a
3 under U(3)q, thus from the tensor product 3⊗ 3̄ = 1⊕8 we can obtain a singlet structure,
by appropriately contracting the flavour indices. Similarly, Y rs

u is a 3̄ under U(3)u and we
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can obtain a singlet by contracting it with the fundamental representation. The simplest
flavour structure is

CuX
rs

QuX
rs

= F
(1,0)
uX (q̄rus)Y rs

u + h.c. . (3.6)

Here we have introduced our notation for the flavour-independent expansion coefficients
F

(i,j)
uX : the subscript indicates the associated operator, in this case, QuX with

X = B, W, G, H , while the superscript is the order of the respective contribution in
Yu and Yd.

Higher order terms in the expansion can be obtained via insertions of arbitrary powers
of bilinear contractions, (YuY †u )n and (YdY †d )n, in such a way that the transformation
properties are respected. That is, whatever the structure of CuX is, it should transform in
the same way as Yu, i.e. CuX → UqCuXU †u. We then get the following expansion

CuX
rs

=F
(1,0)
uX Y rs

u +F
(3,0)
uX ([YuY †u ]Yu)rs+F

(5,0)
uX ([YuY †u ]2Yu)rs+· · · (3.7)

+F
(1,2)
uX (YdY †d Yu)rs+F

(3,2)
uX (YdY †d [YuY †u ]Yu)rs+F̃

(3,2)
uX ([YuY †u ]YdY †d Yu)rs+· · · ,

where the dots denote terms with higher orders of YuY †u . Due to small down-quark masses,
the expansion in (YdY †d )n converges rapidly (assuming perturbative F

(n,m)
X ). On the other

hand, the expansion in (YuY †u )n in general needs to be resumed due to the yt ∼ 1 entry.6

For example, in the up-quark mass basis I +a1[YuY †u ]+a2[YuY †u ]2+ · · · amounts to a matrix
diag(1+O(y2

u), 1+O(y2
c ),O(yt)). Thus, we can effectively absorb contributions from higher

orders of YuY †u in the first line of eq. (3.7) into a single term (denoted F
(∞,0)
uX ) as

F
(1,0)
uX

yu +O(y3
u)

yc +O(y3
c )

O(yt)


rs

≃ F
(1,0)
uX Y rs

u + F
(∞,0)
uX δr3δs3. (3.8)

The resummation thus reduces the number of independent spurions to two, following the
flavour-breaking pattern induced by the large top Yukawa: U(3) → U(2)×U(1) [28, 29].
However, as we see, F

(n,0)
uX are always flavour conserving in the up-quark basis and are

well constrained by EDM measurements [4, 30]. Only terms including powers of Yd can
entail explicit up-quark flavour violation. Focusing on flavour-changing and CP-violating
transitions, the first relevant coefficient in our phenomenological analysis is then F

(1,2)
uX .

More generally, the second line of eq. (3.7) represents the leading contribution in YdY †d
insertions (and all orders in YuY †u ). Again inserting the (YuY †u )n resummation, it reads

F
(1,2)
uX


1 1

O(yt)

 [V (Y diag
d )2V †]

yu

yc

O(yt)




rs

≃ F
(1,2)
uX y2

b

 yu|Vub|2 ycVubV
∗

cb O(yt)VubV
∗

tb

yuVcbV
∗

ub yc|Vcb|2 O(yt)VcbV
∗

tb

yuO(yt)VtbV
∗

ub ycO(yt)VtbV
∗

cb O(yt)|Vtb|2


rs

≃ F
(1,2)
uX y2

b VrbV
∗

pbY
ps

u + F
(∞1,2)
uX y2

b δr3VtbV
∗

pbY
ps

u

+ F
(∞2,2)
uX y2

b VrbV
∗

tbδs3 + F
(∞3,2)
uX y2

b δr3|Vtb|2δs3 ,

(3.9)

6Formally the expansion is always a polynomial of finite degree [10], and in the case of linear MFV only
two coefficients are expected to be relevant.
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where V is the CKM matrix and Y diag
d = diag(yd, ys, yb). We have checked that yd, ys can be

safely neglected in V (Y diag
d )2V † and we do not consider them. The resummation of the large

top Yukawa again reduces the number of relevant spurions following the U(3) → U(2)×U(1)
breaking pattern. In practice, since the more general U(2) flavour scheme (see next section)
predicts exactly the same pattern of flavour breaking, we restrict our MFV phenomenological
analysis in section 5.2 to only the first term (F (1,2)

uX ).
The hierarchical structure of the CKM allows to perform the above resummation

explicitly in any basis and with consistent results. For the down-type dipole coefficients we
have, in the down-quark mass basis

CdX
rs

= F
(0,1)
dX Y rs

d + F
(2,1)
dX (YuY †u Yd)rs + F

(4,1)
dX ([YuY †u ]2Yd)rs + · · · (3.10)

≃ F
(0,1)
dX (Y diag

d )rs + F
(2,1)
dX y2

t (Y
diag

d )rp VtpV ∗ts + · · · .

As expected, now the leading contribution to flavour changing dipole processes among
down-quarks will be proportional to F

(2,1)
dX . Note that here the large Yu resummation

reduces the number of relevant terms to just the two leading ones. The leading charm
Yukawa contribution is at least an order of magnitude below y2

t term in s → d processes.
It is clear that, once the order at which we truncate the (Yd) expansion is fixed, all

terms and respective coefficients in (3.7) and (3.10) will enter into the RG mixing, the
threshold matching, and will also contribute to observables. The same line of reasoning can
be applied to four-fermion operators, eq. (2.5), with additional complication that we need to
consider the expansion of two bilinears. We report decompositions under the MFV flavour
assumption of the SMEFT operators considered in this work in the following compact form:

CuX
rs

= F
(1,2)
uX (YdY †d Yu)rs + . . . , (3.11)

CdX
rs

= F
(2,1)
dX (YuY †u Yd)rs + . . . , (3.12)

Cquqd
rspt

= F
(1,1)
quqd Y rs

u Y pt
d + F̃

(1,1)
quqd Y ps

u Y rt
d + . . . . (3.13)

Note, however, that all the terms in the expansion of Qqu under the MFV assumption are
hermitian:

Chermitian
qu

rspt

=
[
F (2,0)

qu (YuY †u )rs + F (0,2)
qu (YdY †d )

rs
]

δpt + F̂ (2,0)
qu (Y †u )psY rt

u + . . . , (3.14)

hence we do not consider them further.

3.2 U(2)3 symmetry

The U(2)3 flavour scheme is based on the idea of disentangling the third-generation Yukawas
from the first two. While in principle the top-quark Yukawa is the only O(1) flavour
breaking parameter in the SM, the hierarchical structure of both up- and down-quark
masses suggests the following breaking pattern of the quark flavour group

U(3)3 → U(2)q ×U(2)u ×U(2)d ×U(1)t ×U(1)b . (3.15)

That is, the flavour symmetry group distinguishes light (first two generations) and heavy
(third generation) quarks. As a consequence, in the limit of exact symmetry flavour
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transitions among the light quarks are completely decorrelated from the heavy sector.
Importantly however, the last two factors, U(1)t × U(1)b, must also be explicitly broken
by allowing for small mixing of the third generation with light quarks, which is necessary
to reproduce the hierarchical non-diagonal structure of the CKM. This in turn leads to
correlated effects in heavy-to-light quark transitions.

The spurions responsible for the leading breaking of U(2)3 groups, denoted with ∆u

and ∆d, transform as
∆u =

(
2, 2̄, 1

)
, ∆d =

(
2, 1, 2̄

)
. (3.16)

The mixing of the third and light generations can be induced by adding another spurion
charged under U(1)t. It needs to be a doublet under U(2)q,

Vq = (2, 1, 1) , (3.17)

and is responsible for breaking of U(1)t × U(1)b. Following ref. [13] and [31], we start with
the quark Yukawa matrices in the basis

Y ′u =
(
∆u Vq

0 yt

)
, Y ′d =

(
∆d 0
0 yb

)
, (3.18)

where
Vq =

(
0
ϵq

)
, ∆u = U †u

(
δ′u 0
0 δu

)
, ∆d = U †d

(
δ′d 0
0 δd

)
, (3.19)

and
Uu =

(
cu su

−su cu

)
, Ud =

(
cd eiαdsd

−e−iαdsd cd

)
, (3.20)

are unitary matrices respectively. Here and in the following we use abbreviated notation
cx ≡ cosx and sx ≡ sin x.

All the parameters in the decomposition above are physical [31], thus it is possible
to directly connect them to CKM and mass factors. By requiring that it reproduces the
structure of SM masses and mixings, we can estimate the size of the spurion parameters [32].
The parameters δ′d and δd correspond to Yukawa couplings yd and ys, respectively, whereas
the small parameter ϵq is responsible for mixing the third and light generations. Parameters
δ′u and δu correspond respectively to up-quark Yukawas yu and yc up to linear order in ϵq.

In order to fix the values of the parameters in the spurion parameterization, and for
easier matching onto the up/down-diagonal Warsaw basis, we diagonalise the Yukawa
matrices in eq. (3.18) via bi-unitary transformations

Y ′u = WuŶuV †u ,

Y ′d = WdŶdV †d ,
(3.21)

where Ŷu,d denote the diagonal Yukawa matrices. The CKM matrix is then given as
VCKM = W †

uWd. From eq. (3.18) it is straightforward to see that

Wd =
(

U †d 0
0 1

)
, Vd = 1 . (3.22)

– 13 –



J
H
E
P
1
0
(
2
0
2
3
)
1
3
3

The up-quark rotation matrices read

Wu =

 cu −su 0
su cu

ϵq

yt

− ϵqsu

yt
− ϵqcu

yt
1

 , Vu = 1 + ϵq

y2
t

 0 0 δ′usu

0 0 δucu

−δ′usu −δucu 0

 , (3.23)

where we have omitted terms of order O(ϵ2
q , δ′2u , δ2

u). Note that the above matrices do not
correspond to the CKM matrix in standard phase convention (as used in the PDG) and
we extract mixing parameters θu, θd, αd and ϵq by matching them to CKM rephasing
invariants:

|Vus| =
(
c2

us2
us2

d + (cusd cosαd − cdsu)2
)1/2

,

|Vcb| = |ϵqcu/yt| , |Vub| = |ϵqsu/yt| ,

J = −
ϵ2
q sdcd sucu sinαd

y2
t

.

(3.24)

The relations for CKM moduli are valid up to O(ϵq, δ
(′)
u ) while the expression for J is valid

up to O(ϵ2
q , δ

(′)
u ). The values of the rephasing invariants are given in the appendix A. In our

calculations, we use exact expressions for Wu,d, Vu,d, and for the rephasing invariants. One
possible set of values of the spurion parameters that reproduce the physical information in
CKM is θd = 2.9258, θu = 0.085477, ϵq = 0.032230, αd = 1.63147, however this choice is
only one of the many discrete possibilities which satisfy eqs. (3.24). Furthermore, additional
quark field rephasings are required in order to obtain the CKM matrix, VCKM in the
standard PDG phase convention. For convenience, we explicitly give the rotation matrices
Wu,d, Vu,d that correspond to such a phase convention in appendix A.

Having the numerical sizes of these parameters, we can define consistent power counting
for the expansion. We truncate the series at O(10−4) level, that is, we expand up to factors
of order O

(
V 2

q ,∆u,d × Vq

)
. Such expansions have been already performed in [31, 32].

As a useful example to gain insights into this flavour scheme, here we report explicitly
in matrix form the expansion of a LR bilinear. In the basis of Y ′u,d, we can conveniently
write the flavour expansion in U(2)3 for up-dipoles as [31, 32]

CuX
rs

=


F

(∆u)
uX δ′ucu − F

(∆u)
uX δusu 0

F
(∆u)
uX δ′usu F

(∆u)
uX δucu F

(Vq)
uX ϵq

F
(Vq ,∆u)
uX ϵqsuδ′u F

(Vq ,∆u)
uX ϵqcuδu F

(1)
uX

+ . . . , (3.25)

where, similarly as in the MFV case, we denote the expansion term corresponding to a
spurion A as F

(A)
uX . The term A = 1 indicates no spurion insertions, A = Vq one insertion of

the Vq spurion, and so on. Independent combinations at the same order in the expansion
will have different accents, e.g. F

(A)
uX , F̄

(A)
uX , F̃

(A)
uX , . . . . The pattern of flavour violation in

eq. (3.25) can be easily understood by the structure of spurions entering the quark Yukawas
in eq. (3.18). The zero-th order term, F

(1)
uX , appears in the 33 entry only. Transitions among

the light quarks are instead dictated by a single insertion of ∆u, that is F
(∆u)
uX . Transitions
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between the third and the light generations go through Vq, which at leading order mixes
the third and the second generation, the F

(Vq)
uX term. Finally, mixing of the third with the

first generation appears only at order ∆u ⊗ Vq with F
(Vq ,∆u)
uX .

We furthermore report the decompositions under the U(2)3 flavour assumption of the
SMEFT operators considered in this work in the following compact form:

CuX
rs

=F
(1)
uXδr3δs3+F

(Vq)
uX αr3δs3V r

q +F
(∆u)
uX αr3αs3∆rs

u +F
(Vq ,∆u)
uX δr3αs3(V †q ∆u)s , (3.26)

CdX
rs

=F
(1)
dX δr3δs3+F

(Vq)
dX αr3δs3V r

q +F
(∆d)
dX αr3αs3∆rs

d +F
(Vq ,∆d)
dX δr3αs3(V †q ∆d)s , (3.27)

Cquqd
rspt

=F
(1)
quqdδr3δs3δp3δt3+F

(Vq)
quqdαr3δs3δp3δt3V r

q +F̄
(Vq)
quqdδr3δs3αp3δt3V p

q

+F
(V 2

q )
quqd αr3δs3αp3δt3V r

q V p
q +F

(∆u)
quqd αr3αs3δp3δt3∆rs

u +F
(∆d)
quqd δr3δs3αp3αt3∆pt

d

+F̄
(∆u)
quqd δr3αs3αp3δt3∆ps

u +F̄
(∆d)
quqd αr3δs3δp3αt3∆rt

d

+F
(Vq∆u)
quqd δr3αs3δp3δt3(V †q ∆u)s+F̄

(Vq∆u)
quqd αr3αs3αp3δt3∆rs

u V p
q

+F
(Vq∆d)
quqd δr3δs3δp3αt3(V †q ∆d)t+F̄

(Vq∆d)
quqd αr3δs3αp3αt3V r

q ∆
pt
d

+F̂
(Vq∆u)
quqd αr3αs3αp3δt3V r

q ∆ps
u +F̂

(Vq∆d)
quqd αr3δs3αp3αt3∆rt

d V p
q , (3.28)

C qu
rspt

=F (Vq)
qu αr3δs3αp3αt3V r

q δpt+F̄ (Vq)
qu αr3δs3δp3δt3V r

q +F (∆u)
qu αr3δs3δp3αt3∆rt

u

+F (Vq∆u)
qu αr3αs3δp3αt3(V †q )s∆rt

u +F̄ (Vq∆u)
qu αr3αs3δp3αt3δrs(V †q ∆u)t

+F̂ (Vq∆u)
qu δr3δs3δp3αt3(V †q ∆u)t , (3.29)

where αrs ≡ (1− δrs) is used to reflect the fact that Vq,∆u,∆d only act on the first and
second generation fermions, and there is no summation over repeated indices. Note that,
contrary to the MFV case, some of the terms in the expansion of Qqu are non-hermitian.
For completeness, we also list the Hermitian part of Qqu

Chermitian
qu

rspt

= F (1)
qu αr3αs3αp3αt3δrsδpt + F̄ (1)

qu αr3αs3δp3δt3δrs + F̂ (1)
qu δr3δs3αp3αt3δpt

+ F̃ (1)
qu δr3δs3δp3δt3 + F

(V 2
q )

qu αr3αs3αp3αt3V r
q (V †q )sδpt

+ F̄
(V 2

q )
qu αr3αs3δp3δt3V r

q (V †q )s ,

(3.30)

which is not considered further in this work. All of these expansions are done in the basis of
Y ′u, Y ′d in eq. (3.18). To match onto the up- or down-diagonal quark mass basis we perform
the following rotations of the quark fields with the rotation matrices defined in eq. (3.21):
u → Vuu, d → Vdd, and q → Wu/dq for the up/down-diagonal mass basis, respectively.
Explicit forms of the rotation matrices that also reproduce the CKM matrix in standard
phase convention are given in appendix A.

4 Low energy constraints on flavour and CP violating operators

In this section, we present the phenomenology of flavour-changing and CP-violating dipole
operators in eq. (2.12), in low energy observables. We first reiterate the contributions of
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Process Bound Sec.

nEDM
∣∣∣c̃u

7γ − 8.2 c̃d
7γ + 0.56 c̃s

7γ − 11. c̃u
8G − 48. c̃d

8G + 0.16 c̃s
8G

∣∣∣ < 0.69 TeV−2 4.1

eEDM
∣∣0.16 Im

(
c33

dY

)
+ 0.27 Im

(
c22

uY

)
+ Im

(
c33

uY

)∣∣ < 7.9× 10−4 4.1

nEDM (c → uγ)
∣∣∣Im (

ccu
7γ+ − ccu

7γ−

)∣∣∣ ≲ 90TeV−2 4.2

nEDM (b → dγ)
∣∣∣cos γ Im

(
cbd∗

7γ+ − cbd∗
7γ−

)
− sin γ Re

(
cbd∗

7γ+ − cbd∗
7γ−

)∣∣∣ ≲ 6.8× 103 TeV−2 4.2

nEDM (s → dγ)
∣∣∣Im (

csd
7γ+ − csd

7γ−

)∣∣∣ ≲ 2.3× 103 TeV−2 4.2

∆ACP(D0)
∣∣∣Im (

ccu
8G±(µW )

)∣∣∣ ≲ 0.05TeV−2 4.3

ACP(D0 → ργ)
∣∣∣Im (

ccu
7γ±(µW )

)∣∣∣ ≲ 40TeV−2 4.3

ϵ′/ϵ −0.87TeV−2 < Im(csd
8G+(µEW)− Im(csd

8G−(µEW)) < 0.47TeV−2 4.4

B(KL → π0e+e−) |Im(csd
7γ+(µEW ) + csd

7γ−(µEW ))| < 4.86TeV−2 4.4

ACP(B → Xγ),
B(B → Xγ)

|Im(cbs
7γ+(µEW ))| ≲ 0.3TeV−2 4.5

|Im(cbs
8G+(µEW ))| ≲ 0.5TeV−2

B(B → Xγ)
|Im(cbs

7γ−(µEW ))| ≲ 0.5TeV−2 4.5
|Im(cbs

8G−(µEW ))| ≲ 2TeV−2

K0 − K̄0 Re((c12
dY )2), Re((c21

dY )2) ∈ [−5.9, 5.6]× 10−10 4.6
Im((c12

dY )2), Im((c21
dY )2) ∈ [−2.9, 1.6]× 10−12

D0 − D̄0 |c12
uY |2, |c21

uY |2 < 5.0× 10−9 4.6

B0
d − B̄0

d |c13
dY |2, |c31

dY |2 < 2.3× 10−8 4.6

B0
s − B̄0

s |c23
dY |2, |c32

dY |2 < 1.8× 10−6 4.6

Table 1. Summary of low energy processes considered in this work (1st column), the respective
bounds on the low energy coefficients (2nd column), and more details given in sections listed in the
last column. The bounds from radiative B meson decays are given separately for cbs

7γ± and cbs
8G± as

an approximate indication of their range, while the proper bound is obtained by their combined fit
to observables, see section 4.5 for details.

flavour diagonal dipole operators and CP-violating Higgs Yukawas to electron (eEDM) and
neutron (nEDM) electric dipole moments, section 4.1. We then estimate the additional
effects on the nEDM from flavour changing vertices, section 4.2. Moving to flavour changing
observables, we evaluate the most relevant meson decays in the D, K, and B sector, in
section 4.3, 4.4 and 4.5 respectively. Finally, in section 4.6, we collect the bounds on CP-
violating Yukawa coupling to quarks coming from neutral meson oscillation measurements.
The complete set of bounds considered in our analysis is summarized in table 1.

4.1 Electron and neutron EDMs

The electric and chromoelectric dipole moments of a (coloured) fermion f (q) are defined via
the effective Lagrangian of f interacting with appropriate field strengths as (see e.g. [33])

Ldipole = − idf

2
(
f̄σµνγ5f

)
Fµν − id̃qgs

2 (q̄σµνGµνγ5q) , (4.1)
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where Fµν and Gµν are the electromagnetic and chromomagnetic field strengths, respectively.
In particular, the above definition of an electric dipole moment df implies a nonrelativistic
Hamiltonian Hnr = −(2df S) · E for a fermion f in a static electric field, in agreement
with [3]. Conversely, d̃q is the chromoelectric dipole moment and can be present only for
coloured fermions. The correspondence between flavour diagonal EDM operators and dipole
moments at a low energy scale is

df = −2 Im cff
fF = −emf

8π2 Im c̃f
7γ , d̃q = −2 Im cqq

qG = − mq

8π2 Im c̃q
8G , (4.2)

where c̃f
7γ(8G) ≡ cff

7γ(8G)+ − cff
7γ(8G)−.

Null results from electron and neutron EDM measurements put stringent limits on
their size. Namely, we have [34, 35]

|dn| < 1.8× 10−26 e cm , (4.3)
|de| < 1.1× 10−29 e cm . (4.4)

The low-energy dipole operators induce potentially large shifts in these quantities, resulting
in strong bounds on CP-violating contributions from new interactions.

A strong bound could in principle be also obtained by considering the EDM of mercury,
see the discussion in ref. [26] (see also [36]). The total EDM can be expressed as the
contribution of unpaired neutrons and protons in the nucleus, plus the additional pion-
nucleon interactions; the latter could then lead to slightly stronger bounds on the chromo-
dipole coefficients. However, the prediction of the total mercury EDM is not completely
under control, as it strongly depends on hadronic parameters and pion-nucleon couplings,
which are affected by large uncertainties. Thus we refrain from including bounds from
nuclear EDMs in this work and only consider the more established neutron EDM (nEDM).

At the hadronic scale, µhad ∼ 2GeV, the nEDM is obtained as a combination of light
quark dipoles and chromo-dipoles, where we are neglecting small contributions from the
Weinberg operator. We translate this expression, given in ref. [26] at the hadronic scale, to
the weak scale µW , by rescaling the dipole coefficients via their QCD running [37]. We can
write in general ∣∣∣∣∣∣

∑
q=u,d,s

(
aq

n Im
[
c̃q

7γ(µW )
]
+ bq

n Im [c̃q
8G(µW )]

)∣∣∣∣∣∣ < |dn| , (4.5)

where aq
n, bq

n are numerical coefficients which, in addition to the QCD rescaling, depend on
hadronic and electric dipole operators matrix elements. For simplicity, we normalize all
coefficients to have au

n = 1 and express the limit in TeV−2. At the weak scale we obtain the
bounds reported in table 1, where we have omitted the scale dependence of the coefficients.

Flavour-conserving quark dipole operators in SMEFT match onto the c7γ(8G) coefficients
at the tree-level, while four-fermion operators enter at the one-loop level, as discussed in
section 2.3. A complete analysis of such operators and the respective contributions has
been performed in ref. [4]. As a consistency check, using eq. (4.5) and the method detailed
in section 5.1, we reproduce their results for the leading terms in the MFV and U(2)3
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expansions.7 At the two-loop order, CP-violating Higgs couplings also enter nEDM via
Barr-Zee type diagrams [25, 26]. The parametric expressions of these contributions are
given in eqs. (2.21) to (2.24).

Lastly, the leading contributions to the electron EDM (eEDM) come solely from the
two-loop matching of CP-violating Higgs couplings. As shown in eq. (2.25), only heavy
quarks (top, bottom and charm) have a sizeable effect. In the low energy basis, the running
of the cee

ℓF coefficient is dictated by QED and thus negligible. We can then perform the
matching directly with SMEFT operators at the weak scale and obtain∣∣∣0.16 Im

(
c33

dY

)
+ 0.27 Im

(
c22

uY

)
+ Im

(
c33

uY

)∣∣∣ < 7.9× 10−4 . (4.6)

Note that in the low-energy running to the hadronic scale, bottom and charm coefficients
receive Next-to-Leading-Log (NLL) corrections [38]; these amount to ∼ 10% and ∼ 30%
corrections with respect to our fixed order computation for bottom and charm quark
coefficients evaluated at the weak scale, respectively.

As shown in ref. [26], the constraints on the modified Higgs coupling contributions
to eEDM strongly depend on the assumption about the electron Yukawa coupling with
the Higgs. Allowing for modified electron-Higgs couplings could lead to cancellations and
consequently to more relaxed constraints. In this work, however, we assume that the Higgs
coupling to electrons is purely dictated by the SM Yukawa ye = 2.9× 10−6.

4.2 Flavour changing dipole contributions to neutron EDM

Here we focus on the flavour-changing dipole operators that contribute to the electric dipole
moment of the neutron. The flavour changing dipole operators Qqq′

7γ± can contribute to the
low energy CP-violating and flavour conserving amplitude n → nγ, which results in neutron
EDM. This can be achieved by mixing the neutron with the nearest baryonic state B with
matching quantum numbers, and a subsequent CPV dipole transition of the state B into
nγ. Another possibility is to insert the lightest axial-vector 1+ meson as an intermediate
state that can mix with the external photon via the CPV dipole operator. In figure 1 we
show the two diagrams contributing in the specific case of c → uγ electric dipole operator
insertion. A similar approach was taken in ref. [15] to estimate the contribution of CKM
phases to neutron EDM. In the following, we estimate the total contribution to the nEDM
due to the c → uγ operator and then generalize it to b → dγ and s → dγ dipole transitions.
Note that b → sγ does not concern any of the valence quarks of the neutron and thus
cannot be constrained from nEDM.

c → uγ. First, we focus on the left-hand diagram in figure 1. The box vertex corresponds
to the SM weak mixing between a neutron and the intermediate (1/2)+ baryon octet state,
namely Σ0

c . Such mixing is proportional to the CKM factor VcdVud
∗. For the cases of

s → dγ and b → dγ, the neutron mixes with the Λ and Λb baryon states, with CKM
7Note that in the convention of ref. [4] the Yukawa matrices in the U(2)3 scheme are defined with the

heavy quark Yukawa couplings factored out and absorbed in the respective Wilson coefficient. In our
definition, eq. (3.18), these couplings are instead kept explicitly. The bound on coefficients involving the
spurions ∆u and ∆d thus differ by a factor of y−1

t and y−1
b respectively.
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Figure 1. Estimate of a long-distance contribution of CP-violating cuc
7γ± to the neutron EDM. The

left diagram contributes to dn via a Σc → nγ insertion accompanied by the charged weak interaction.
There is a second diagram that involves conjugated vertices: n → Σcγ vertex followed by Σ0

c → n

mixing. The right diagram represents the D1 axial-meson exchange that should be accompanied by
the conjugated vertices with a D̄1 exchange.

suppressions of VudVus
∗ and VudVub

∗, respectively. The CP-violating operator then induces
an effective vertex between the intermediate baryon state and the neutron, thus leading
to dipole transitions Σ0

c → nγ (Λ → nγ and Λb → nγ for s → dγ and b → sγ dipoles,
respectively). The latter dipole transitions are denoted by a crossed-circle vertex. A recent
study also pointed out a possibility of electric dipole operators leading to enhanced CP
asymmetries of various radiative charmed-baryon decays [39].

Heavy to light quark transition Qcu
7± induces the transition between the neutron and the

lowest lying octet state Σ0
c , comprised of valence quarks cdd. The form factors of Λc → p

have been computed on the lattice [40] and we use these results as an approximation to the
Σc → n matrix element. The form factors of the σµνqνγ5 operator are defined as

〈
n(p′)

∣∣∣ ūiσµνqνγ5c
∣∣∣Σ0

c(p)
〉
=−ū(p′)γ5

[
h̃+(q2) q2

s−

(
p+p′−(m2

Σ−m2
n)

q

q2

)µ

+

+ h̃⊥(q2)(mΣ−mn)
(

γ+2mn

s−
p− 2mΣ

s−
p′
)µ]

u(p) ,

(4.7)

where q = p − p′ and s− = (mΣc − mn)2 − q2. In the limit of a real photon with imposing
q2 → 0 and ϵ · q → 0, only the h̃⊥ form factor contributes:〈

n(p′)
∣∣∣ ūiσµνqνγ5c

∣∣∣Σ0
c(p)

〉
q2→0

=−ū(p′)γ5h̃⊥(0)
[
(mΣ−mn)γµ−(p+p′)µ]u(p)

= h̃⊥(0) ū(p′)iσµνqνγ5u(p) .
(4.8)

The lattice calculation [40] found h̃⊥(0) ≈ 0.5 for Λ → p, the value of which we adopt also
for Σc → n transition.

The weak mixing vertex (see figure 1) between Σc and n can be parameterized as〈
Σc(p)

∣∣∣ (c̄LγνdL)(d̄LγνuL)
∣∣∣n(p)〉 = ūΣ(p) [gS + gP γ5]un(p) , (4.9)

where gS and gP are the scalar and pseudoscalar mixing parameters. Notice that only the
parity-conserving term gS will contribute to the neutron EDM, since parity-violation is
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already contained in the matrix element of Σc → nγ transition, see eq. (4.8). Lacking a
proper estimate of this matrix element, we resort to dimensional analysis; this suggests
that gS ∼ 4Λ3

h, where 4 is a combinatorial factor accounting for the two valence d-quark
contained both in n and Σc. We estimate that the hadronic scale Λh can take any value in
the range between ΛQCD ∼ 200MeV and mΣc = 2.45GeV. Finally, we can assemble the
final result by combining together the two vertices, eqs. (4.8) and (4.9), and including the
Σc propagator. The contribution of the left-hand side diagram in figure 1 to the neutron
EDM then amounts to

dΣc
n = e

GF gS h̃⊥(0)mc

8
√
2π2(mn + mΣc)

Im
[
(ccu

7γ+ − ccu
7γ−)VcdV ∗ud

]
, (4.10)

where mc = 1.27GeV is the charm quark mass.
Now let us focus on the right-hand side diagram in figure 1. The box vertex again

indicates the neutron coupling with axial-vector 1+ meson, D1. The vertex n → nD1 can
be written in the factorization approximation as the product〈

n(p′)D1(q,ϵ)
∣∣∣(c̄LγνdL)(d̄LγνuL)

∣∣∣n(p)〉≈ 〈n
∣∣∣ d̄LγνdL

∣∣∣n〉 ⟨D1(q,ϵ) | c̄LγνuL |0⟩

∝ ϵ∗ν(q)
〈
n
∣∣∣ d̄LγνdL

∣∣∣n〉 .
(4.11)

where ϵ(q) is polarization vector of the intermediate D1. Parity violating terms generated
by the axial operator d̄γνγ5d result in axial and induced-pseudoscalar form factors [41],
none of which can contribute to the EDM of the neutron. However, working beyond the
factorization approximation, we can have an induced EDM transition:〈

n(p′)D1(q,ϵ)
∣∣∣(c̄LγνdL)(d̄LγνuL)

∣∣∣n(p)〉
NF

=−idnnD(q2)ϵ∗µū(p′)σµνqνγ5u(p) . (4.12)

By simple dimensional analysis and accounting for combinatorial factors due to d field
contractions with external states, we find that the form factor is at most dnnD(q2 → 0) ≲
4mD1 . The axial D1 meson then mixes into the photon via insertion of (2.11) and the
transverse decay constant:〈

0
∣∣∣ ūσµνqµγ5c

∣∣∣D1(ϵ, q)
〉
= ifT

D1m2
D1ϵν , (4.13)

where ϵ is the polarization vector of D1. Results on the lattice report similar values for
transverse and vector decay constants, within 10% accuracy, in the case of 1− mesons [42]
(see also [43]), thus we use the results of the fV

D∗ [44] and approximate fT
D1

≃ 0.3 GeV. In
fact, the meson exchange diagram also gets contributions by D̄1 state with an opposite sign.
The total meson exchange contribution then reads:

dD1
n = −e

GF gnnDmcf
T
D1

8
√
2π2 Im

[
(ccu

7γ+ − ccu
7γ−)VcdV ∗ud

]
. (4.14)

The upper bound on the neutron EDM [45], dn/e < 9.1× 10−13 GeV−1, then leads to∣∣∣Im (
ccu

7γ+ − ccu
7γ−

)∣∣∣ ≲ 3.7-90TeV−2 . (4.15)
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The range for the upper bound reflects our ignorance of the hadronic parameters dnnD and
gS . Taking maximal (minimal) allowed values of those parameters leads to the strictest
(most conservative) bound. Future progress on non-perturbative matrix elements entering
this calculation will result in more precise estimates. In our further analysis, we will use
the most conservative upper bound, namely 90TeV−2. Note that this bound is numerically
dominated by the dD1

n contribution with lowest possible gnnD1 = 4ΛQCD ≈ 1.2 GeV.

b → dγ. In this case the electric dipole operator Qbd
7± is inserted between the neutron

and Λb (udb). Form factors of the heavy-to-light transition H → N , where H is the heavy
baryon and N the nucleon, can be parameterized using the velocity-dependent heavy baryon
bispinor u(v) [46]:〈

N(p′)
∣∣ ūiσµνqνγ5c

∣∣H(p)
〉
=
√

mH ū(p′)
[
F1(v ·p′)+F2(v ·p′)/v

]
iσµνqνγ5u(v) . (4.16)

Here p′ is the nucleon moment and p = mHv +O(ΛQCD), where the heavy quark mass scale
is factored out [47]. The form factors F1 and F2 are now functions of v · p′. We can relate
these form factors to the h̃⊥(0) factor, see eq. (4.7), as

h̃H→N
⊥ (0) =

√
mH (−F1 + 2F2) |v·p′=(m2

H+m2
N )/(2mH), (4.17)

where we have already neglected subleading mN /mH terms in the heavy quark expansion.
Using the above expansion, we can express form factors for Λb → n in terms of the respective
Λc → p form factors as

h̃Λb→n
⊥ (0) = √

mΛb
(−F1 + 2F2) |v·p′=(m2

Λb
+m2

N )/(2mΛb
)

=
√

mΛb

mΛc

h̃Λc→p
⊥

(
m2

Λc
(1− mΛb

/mΛc) + m2
N (1− mΛc/mΛb

)
)

= 1.57 h̃Λc→p
⊥ (q2 = −7.1GeV2) .

(4.18)

This point is deep in the space-like region for Λc → p transition, while lattice results only
reach q2 = −0.36GeV2 [40], thus rendering in practice impossible to extrapolate from them.
We use h̃Λb→n

⊥ (0) ≈ 0.3 as a crude estimate.
Similarly to the previous case, for the weak mixing n → Λb transition we have gn→Λb

S =
2Λ3

h, where the combinatorial factor of 2 comes from two d-quarks in neutron. The resulting
contribution to dn is

dΛb
n = e

GF gn→Λb
S h̃Λb→n

⊥ (0)mb

8
√
2π2(mn + mΛb

)
Im

[
(cbd

7γ+ − cbd
7γ−)VudV ∗ub

]
, (4.19)

where mb = 4.18GeV and mΛb
= 5.62GeV are the bottom quark and Λb baryon

mass respectively.
The B1(5721) axial meson exchange contribution can be easily adapted from (4.14),

dB1
n = −e

GF gnnB1mbf
T
B1

8
√
2π2 Im

[
(cbd

7γ+ − cbd
7γ−)VudV ∗ub

]
, (4.20)
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where now gnnB1 ∈ [ΛQCD, mB1 ] without a combinatorial factor, since there is only one
u-quark in the neutron. The tensor decay constant has been calculated using light-cone
sum rules in [43] resulting in fT

B1
= 0.28± 0.06.

The resulting constraint depends on both the real and imaginary parts of the flavour-
violating coefficient cbd

7γ± due to the interplay with the CKM phase in Vub = |Vub| exp(−iγ),
namely ∣∣∣cos γ Im

(
cbd

7γ+ − cbd
7γ−

)
+ sin γ Re

(
cbd

7γ+ − cbd
7γ−

)∣∣∣ ≲ 35-6800TeV−2 . (4.21)

Again, the most aggressive (lowest) bound is dominated by dΛb
n when we set the scale to

Λh = mΛb
. On the other hand, we will be using the conservative 6800 TeV−2 which is

determined by dB1
n with gnnB1 = ΛQCD ≈ 0.3 GeV.

s → dγ. To evaluate the dΛ
n contribution, driven by Qsd

7γ±, we can adapt the expression
for Σc → nγ contribution to dn:

dΛ
n = e

GF gΛ→n
S h̃Λ→n

⊥ (0)ms

8
√
2π2(mn + mΛ)

Im
[
(csd

7γ+ − csd
7γ−)VudV ∗us

]
. (4.22)

Here we express the mixing parameter as gS = 2Λ3
h, where the 2 stems from two possible

contractions with the d-quark in the neutron. The electric dipole transition form factor
h̃Λ→n
⊥ (0), to the best of our knowledge, has not been determined theoretically and cannot

be simply extracted from the experimental value of Br(Λ → nγ) [48]. Due to lack of better
estimate we will vary h̃Λ→n

⊥ (0) in the range 0.2-0.4, around the value for h̃Σc→n = 0.3.
The axial-meson K1(1270) exchange contribution reads:

dK1
n = −e

GF gnnK1msfT
K1

8
√
2π2 Im

[
(csd

7γ+ − csd
7γ−)V ∗usVud

]
, (4.23)

with gnnK1 ∈ [ΛQCD, mn]. The tensor current decay constant has been estimated in the
light-cone sum rule approach to be fT

K1
= (145± 15) MeV [49]. The resulting constraint is∣∣∣Im (

csd
7γ+ − csd

7γ−

)∣∣∣ ≲ 760-2300TeV−2. (4.24)

4.3 Direct CP violation in singly Cabibbo suppressed D meson decays

The LHCb collaboration has reported the first observation of CP violation in the charm
sector. In particular, they have measured [50]

∆ACP ≡ ACP (K+K−)− ACP (π+π−) = (−1.54± 0.29)× 10−3 , (4.25)

where

ACP (f) ≡
Γ(D0 → f)− Γ(D̄0 → f)
Γ(D0 → f) + Γ(D̄0 → f)

. (4.26)

While at present the SM predictions for this observable cannot be firmly established, they
could possibly account for the observed value [51–54]. In the following, we will thus assume
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NP can at most saturate the measured value in eq. (4.25). One can parameterize such
effects in terms of a NP effective low energy Lagrangian as [55]

∆A8G±
CP ≃ 1√

2λs
cuGF

Im(ccu
8G±)Im

(
R8G±

)
, (4.27)

where we have assumed approximate U -spin limit, λs
cu = |VcsV ∗us| ≃ 0.22, and we have

defined R8G± = R8G±
ππ + R8G±

KK , with

R8G±
P P =

⟨PP |4Quc
8G±|D⟩

⟨PP |ūγµ(1− γ5)qq̄γµ(1− γ5)c|D⟩
, (4.28)

where q = s, d for P = K, π, respectively. At the charm scale µc ≃ 2GeV, |Im(R8G±(µc))| is
expected to be O(1). Explicitly, at the leading perturbative order in the QCD factorization
limit one obtains |R8G±(µc)| ≃ 0.23 [56]. Since large absorptive (rescattering) effects are
expected in these decays [51, 57], in the following we use this value as a crude estimate
of |Im(R8G±(µc))|. The operator Qcu

8G±, however, runs with QCD, so the corresponding
Wilson coefficient needs to be renormalized to leading logarithmic order as [37]

cuc
8G±(µEW ) =

[
αs(µb)

αs(µEW)

]14/23
×
[

αs(µc)
αs(µb)

]14/25
× c8G±(µc) , (4.29)

or explicitely cuc
8G±(µEW ) ≃ 1.9c8G±(µc) for µEW ≃ 160GeV. Comparing the above

expression to the experimental value, we thus obtain the limit

|Im(ccu
8G±(µEW))| ≲ 0.05TeV−2 . (4.30)

A more reliable theoretical estimate of Im(R8G±) would however be needed to establish this
bound on firm ground.

The EM dipole operators Quc
7γ± are probed by the direct CP asymmetry measured by

Belle, ACP(D0 → ργ) = 0.056± 0.152± 0.006 [58]. Together with the measured branching
fraction B(D0 → ργ) = (1.77± 0.30± 0.07)× 10−5 the authors of ref. [59] derive that the
NP modification of the amplitudes can be at most |δA

(′)
7 | ≲ 0.5, where δA

(′)
7 = v2

2 δccu
7±(mc).

The resulting constraint that follows is

|ccu
7γ±(µEW )| < 40 TeV−2. (4.31)

This limit will improve at Belle II through CP asymmetries in radiative D meson decays [37],
allowing for improvement of the bound on ccu

7±.

4.4 Direct vs indirect CP violation in Kaon decays

In kaon decays the observable ϵ′/ϵ measures the size of direct CP violation in KL → ππ

relative to the indirect CP violation described by ϵK . The experimental world average for
this quantity is [60–62]

(ϵ′/ϵ)exp = (16.6± 2.3)× 10−4 . (4.32)
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Theoretically, determination of the SM contributions to ϵ′/ϵ has been a long-lasting challenge,
but recent Lattice QCD calculations find values consistent with the experimental result [63]

(ϵ′/ϵ)SM = (21.7± 8.4)× 10−4 . (4.33)

The possible effects of heavy NP can be parameterized in terms of an effective low energy
Lagrangian as

ϵ′/ϵ = (ϵ′/ϵ)SM + P8ggs

16π2 Im(csd
8G+ − csd

8G−) , (4.34)

where P8g parameterizes the matrix element ⟨ππ|16π2Qsd
8G±/gs|K⟩, which has been com-

puted in refs. [64, 65]. In particular, using the master formulae in ref. [66], one obtains
P8g(µEW)gs(µEW)/16π2 ≃ 0.0026TeV2 for µEW ≃ 160GeV. Comparing the experimental
world average with the SM expectation we obtain a bound of

−0.87TeV−2 < Im(csd
8G+(µEW)− Im(csd

8G−(µEW)) < 0.47TeV−2 . (4.35)

The EM dipole operators Qsd
7γ± contribute to rare semileptonic Kaon decays. In

particular B(KL → π0e+e−) is sensitive to the combination Im(csd
7γ+ + csd

7γ−) [67]8

B(KL → π0e+e−) ≃ 4.6× 10−12
[
Im(csd∗

7γ+ + csd∗
7γ−)

Im(λt
sd)

√
2

8πGF

ms

mK

BT (0)
f+(0)

]2

, (4.36)

where λt
sd ≡ VtsV ∗td. Here we take BT (0)/f+(0) ≃ 0.64 [68] at the QCD renormalization

scale of µc ≃ 2 GeV and we have neglected pure SM and interference contributions, which
are negligible compared to the current experimental upper bound of B(KL → π0e+e−) <

2.8× 10−10 [69]. Including QCD RG evolution to the weak scale given by [37]

csd
7γ±(µEW ) =

[
αs(µb)

αs(µEW)

]16/23
×
[

αs(µc)
αs(µb)

]16/25
× csd

7γ±(µc) , (4.37)

or explicitly csd
7γ±(µEW ) ≃ 2csd

7γ±(µc) for µEW ≃ 160GeV, we obtain a bound of

|Im(csd
7γ+(µEW ) + csd

7γ−(µEW ))| < 4.86TeV−2 . (4.38)

4.5 Radiative B meson decays

The Qbs
7γ± and Qbs

8G± operators contribute to radiative and rare semileptonic B meson
decays. We use flavio [70] to predict the CPV observables ACP(B(0,+) → K∗(0,+)γ),
as well as the branching ratios B(B+ → K∗γ), B(Bs → ϕγ) and B(B → Xsγ), and the
photon polarisation observables measured by LHCb in B → K∗e+e− at very low q2 [71].
Furthermore, we consider the inclusive CP asymmetry ACP(B → Xsγ) [72]. As for the
experimental values, we use the latest averages by the HFLAV collaboration [73].

The obtained bounds on the Wilson coefficients Im
(
cbs

7γ±

)
and Im

(
cbs

8G±

)
at the scale

µEW = 160GeV are shown on figure 2, where we assume NP modifies only the imaginary
8We are neglecting the csd

8G± contributions, since they are more tightly constrained by ϵ′/ϵ.

– 24 –



J
H
E
P
1
0
(
2
0
2
3
)
1
3
3

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-0.4 -0.2 0.0 0.2 0.4

-2

-1

0

1

2

Figure 2. Bounds in the (Imcbs
7γ+, Imcbs

8G+) and (Imcbs
7γ−, Imcbs

8G−) planes from radiative B meson
decays. The allowed 1σ contours of single contributions are shown, whereas the allowed 1, 2 and 3σ

regions are shown for the combination of all constraints.

parts of the Wilson coefficients. The considered CP asymmetries are only sensitive to
Im
(
cbs

7γ+

)
and Im

(
cbs

8G+

)
[74], hence they only appear on the left plot of figure 2. On the

left plot we combine all of the considered branching ratios into a single ellipse (orange),
whereas on the right plot we show their sensitivities one-by-one. On the right plot we also
show the constraints from the photon polarisation observables in B → K∗e+e−, which
offer excellent sensitivity, however information from B → Xsγ is crucial to achieve a closed
combined fit in the (Imcbs

7γ−, Imcbs
8G−) plane.

4.6 Neutral meson oscillations

Flavour (and CP) violating Higgs boson couplings induced by QuH and QdH operators
lead to Higgs-mediated FCNCs in the quark sector and are currently best constrained
by neutral meson oscillation measurements [75]. Writing the effective off-diagonal Higgs
boson couplings to q = u, d quarks as in eq. (2.13) and the tree level matching condition in
eq. (2.17), we can identify the effective off-diagonal Yukawa couplings with the SMEFT
Wilson coefficients in the corresponding quark mass basis at the Higgs boson mass scale
µH ≃ 125GeV via cpr

qY = CqH
pr
(µH)v2/

√
2Λ2. The resulting bounds on cpr

qY from neutral
meson oscillation measurements [75] are compiled in table 1.

5 Results

In this section we present the main results of this work, the bounds obtained on SMEFT
coefficients at the Λ = 5TeV scale in the two flavour schemes considered, namely MFV and
U(2)3. We first outline the numerical methodology to compute the effects in low energy
observables in section 5.1. In section 5.2 we discuss the results in the MFV scheme. The
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bounds on Yukawa and dipole operators are shown in figure 3, while the full list of bounds
is presented in table 2. In section 5.3 we discuss the results in the U(2)3 scheme. The
bounds on Yukawa and dipole operators are shown in figures 4 and 5, while the full list of
bounds is given in tables 3, 4, 5, 6, and 7

5.1 Numerical method

We fix the high energy scale to Λ = 5TeV in our analysis, and present our results in terms
of upper bounds on individual SMEFT Wilson coefficients, expanded in either the MFV or
U(2)3 scheme, separately. The schematic of our procedure is as follows:

1. Fix flavour scheme (e.g. MFV);

2. Fix one flavour invariant coefficient to be purely imaginary (e.g. Im[F (2,1)
dG ] = c), and

all the other coefficients to vanish at the scale Λ;

3. Perform RG running from Λ to the weak scale, which we fix to µW = 160GeV;

4. Perform matching to LEFT;

5. Compute effect on observables;

6. Repeat the process by scanning over different values of c.

The first two steps of our procedure are the only assumptions made on the imprint of heavy
New Physics on SMEFT: we assume how the SM flavour symmetry is broken and we assume
that a single type of operator is generated at the scale Λ by integrating out the heavy
degrees of freedom. Furthermore, we take the non-vanishing flavour invariant coefficients to
be purely imaginary, as our work is focused on new CP-odd phases; in general, the CP-even
parts can be best bounded by a different set of observables.

The RG running in step 3 is taken care of by the software wilson [21]. Two inputs
require special attention. Firstly, we need to set the operator basis as either ‘Warsaw up’ or
‘Warsaw down’, that is the Warsaw operator basis [17], with either the up or down quarks
rotated to their respective mass basis. We fix the basis to ‘Warsaw down’ for all initial
conditions.9 Individual observables are of course computed in the appropriate mass basis
so in general a rotation to the chosen basis of SMEFT coefficients in the unbroken phase is
required. Secondly, we need to input as the RGE initial condition the full spurionic term
for the desired coefficient. Taking F

(2,1)
dG as an example, the full initial condition at scale

Λ is CdG
rs

(Λ) = i c × (YuY †u Yd)rs(Λ), where the flavour indices are r, s = 1, 2, 3. Assuming
that the running of CKM matrix elements is negligible, all the scale dependence of Yu,d is
then given by the quark masses, which thus need to be evaluated at the high scale. We list
explicitly their numerical values in appendix A.

The matching condition in step 4 also needs some additional care, as different con-
ventions, normalizations and methods are used in the literature. We use the notation for

9We have checked, that our results, both in the MFV and U(2)3 schemes, are invariant under the change
of the SMEFT basis to ‘Warsaw up’, as expected.
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low energy operators as in eq. (2.12), and the matching conditions from [27]; the latter
includes the full one-loop matching condition in the Warsaw basis. We find that in most
cases adding loop contributions to the matching does not give a sizable effect, thus we
only keep the tree-level part, except for two particular cases. Firstly, in the analysis for
the four-fermion operator Qqu. This operator provides purely finite top-loop enhanced
contribution to the matching to dipoles; that is, these do not mix with dipoles under RG
running. The one-loop term is thus the dominating piece in the interplay with the low-energy
observables considered. Secondly, the CPV Higgs boson couplings can induce relatively
large shifts in the matching contributions via two-loop Barr-Zee diagrams. After running
our SMEFT coefficients to the electroweak scale, we use the results for the two-loop effects
to the matching with the low energy basis presented in refs. [26, 76], and schematically in
eqs. (2.21) to (2.25). We do not include other possible two-loop effects in our analysis; a full
calculation of two-loop running and matching in SMEFT is not available in the literature
yet and is beyond the scope of this work. Furthermore, we expect these additional terms to
be suppressed.

Finally, in step 6, we scan the flavour invariant coefficients in the range c ∈ [10−3, 103],
taking log-equidistant points in the interval. Bounds that exceed these limits are obtained
by extrapolating the results of our scan outside this region.10

5.2 Results in MFV scheme

In the MFV scheme, there are only flavour universal NP phases, meaning that all quark
transitions are correlated, with the relative magnitude dictated by ratios of CKM matrix
elements and quark masses. Nevertheless, we expect that processes with the smallest CKM
and mass suppression, which are typically known with better experimental precision, will
dominate in constraining the flavour invariant coefficients.

We show in the top plot of figure 3 the three strongest bounds on the imaginary part of
down-quark Yukawa-like (first set) and dipole (second to fourth sets) coefficients, F

(2,1)
dH and

F
(2,1)
dX respectively. The same bounds are reported in table 2. The striking result shown is

the dominant importance of flavour-changing bounds for down-quark dipoles. In particular,
the constraints from ACP (B → Xγ) are in general F

(2,1)
dX ≲ 1 and are at least one order of

magnitude stronger than nEDM bounds. Conversely, the Yukawa-like coefficient F
(2,1)
dH is

mostly bounded by the electron EDM induced by CPV Higgs couplings, with F
(2,1)
dH ≲ 5×102,

while B meson mixings can only reach O(103) limits. The weakness of the latter bounds
is to be expected, as the RG mixing with dipoles is small and further suppressed by the
MFV expansion, thus significant quark dipole transitions are not generated by Yukawa-like
operators. Secondly, the dominant meson mixing contribution is induced by two insertions
of the SMEFT operators, leading to the heavy scale suppression of Λ−4.

The same line of reasoning outlined above for F
(2,1)
dH and F

(2,1)
dX can be applied to F

(1,2)
uH

and F
(1,2)
uX , with bounds shown in the bottom plot of figure 3 and listed in table 2. In

this case the MFV suppression for the c − u sector is even stronger, ∼ ycy
2
b VubV

∗
cb, thus

the bounds are far less stringent. It is noticeable however that the CP violating Higgs
10Note that wilson gives numerically unstable results when the initial condition is close to unity,

c̃/(Λ/GeV)2 ∼ 1, where c̃ indicates the numerical value of some initial condition.
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Figure 3. Top: upper bounds on the imaginary part of down-quark Yukawa-like (first set) and
dipole (second to fourth set) coefficients in the MFV flavour scheme, fixing the New Physics scale to
Λ = 5TeV. We show the three strongest bounds for each coefficient as red, orange and dark yellow
for first, second and third respectively. Bottom: same for up-quark coefficients. The specific process
that provides the bound is indicated by the label in the bar, as summarized in table 1.

couplings, contributing via the two-loop Barr-Zee diagrams, give the strongest bound on all
the coefficients shown.

Finally, we comment on bounds on the four-fermion operators, Q(1)
quqd and Q(8)

quqd, listed
in table 2. These match to down dipoles and Yukawa operators via top-quark loops and
are most constrained by two-loop EDMs and b − s processes. In the MFV scheme however,
these bounds only reach O(50) level in the best case due to the severe CKM suppression.

5.3 Results in U(2)3 scheme

In the U(2)3 scheme we can disentangle transitions involving heavy quarks from the
respective two light quark generations. The relevance of constraints for each coefficient will
then in general reflect the spurion structure.

The dipole expansion down to O(10−4) contains four spurion structures, as shown in
eq. (3.25). We show in figure 4 the results for up-quark dipoles, considering the F

(1)
uX (top),

F
(Vq)
uX (center) and F

(∆uVq)
uX (bottom) coefficients, respectively. The full list of bounds is

reported in table 3, including bounds on the F
(Vq ,∆u)
uX spurion.
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Figure 4. Upper bounds on the imaginary part of up-quark Yukawa (first set) and dipole (second
to fourth set) coefficients in the U(2)3 flavour scheme, fixing the New Physics scale to Λ = 5TeV.
See eq. (3.25) for the definition of the spurion expansion structures. The color code is the same as
figure 3.

– 29 –



J
H
E
P
1
0
(
2
0
2
3
)
1
3
3

The first spurion, F
(1)
uX , induces NP contributions to operators involving exclusively

third-generation quarks. Consequently, any contributions to flavour-changing observables
are purely due to RG running and LEFT matching. The chromo-electric dipole operator
naturally generates a large shift in the nEDM, and is thus strongly bounded by it. Otherwise,
the strongest bounds come from CPV Higgs couplings and their contributions to eEDM;
these lead to F

(1)
uH(G) ≲ 1 and F

(1)
uW (B) ≲ 10− 102. Additionally, the RG mixing in eq. (2.6)

leads to large b → s effects at low energy, which in turn are probed by B-meson physics.
The Vq spurion is responsible for the heavy-light quark mixing. Furthermore, it does

not match onto nEDM, thus CPV flavour-changing processes represent the only relevant
probes. In a similar way as the F

(1)
uX case, the RG evolution induces down-quark coefficients

mixing heavy and light flavours, leading to F
(Vq)
uG,W,B ≲ 20, dominated by ACP(B → Xγ).

A competitive bound can only be achieved by ∆ACP (D0) in the case of the chromo-
electric dipole, while other limits are two or more orders of magnitude weaker. The F

(Vq)
uH

coefficient is again most stringently bounded by contributions to the eEDM, although only
at O(102 − 103).

The ∆u spurion dictates the light quark sector flavour expansion, and thus leads
predominantly to contributions to flavour conserving terms; it is not surprising then that
the EDMs dominate the budget of the constraints. We have F

(∆u)
uG,W,B ≲ 10−2 and F

(∆u)
uH ≲ 10

from nEDM. In this sector RG mixings with the respective down-quark counterparts are
suppressed by mass terms, δd and δ′d, while the matching to low energy dipoles is purely
tree level. This is reflected in the next-to-strongest bounds coming from the D meson
phenomenology, in particular from ACP (D0); we have F

(∆u)
uG ≲ 10 for chromo-electric dipole

operator, while electromagnetic dipoles are only constrained to F
(∆u)
uW,B ≲ 102 − 103.

The last spurion in the expansion shown in eq. (3.25), ∆u ⊗ Vq, generates higher
order terms for the heavy-light generation mixing. These terms receive an additional Vts

suppression with respect to ∆u, thus leading to similar but weaker limits, see table 3.
Indeed, the strongest bounds come from ACP (D0) but at the O(102 − 103) level.

The analysis in the case of down-quark Wilson coefficients goes along the same lines
of the up-quark case. We show the results in figure 5 and table 4. In this sector B and
K processes are generated directly, instead of via RG evolution. This is already clear in
the results for F

(1)
dX , where B → Xγ leads to O(0.1− 1) bounds for all dipoles coefficients.

These represent the tightest constraints for W and B, while chromo-dipoles and Yukawa
coefficients induce large contributions to EDMs, thus F

(1)
dG ≲ 10−3 from nEDM and F

(1)
dH ≲ 1

from eEDM.
Similarly, bounds on the F

(Vq)
dG coefficients are dictated by B meson physics, as b − s

mixings are generated at tree level. We have F
(1)
dG,W,B ≲ 10−2 from ACP(B → Xγ) and

F
(1)
dH ≲ 10 from Bd mixings.

On the other hand, the F
(∆d)
dG spurions induce d and s processes directly and thus large

shifts in EDMs, giving F
(1)
dG,W,B ≲ 5 × 10−3 and F

(1)
dH ≲ 10. The respective bounds from

s − d transitions, as K meson mixing and KL decay, can only reach the O(103) level.
Finally, we comment on four-fermion operators. In the U(2)3 flavour scheme the number

of independent spurion structures appearing in such operators is quite large, see eqs. (3.28)
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Figure 5. Same as figure 4 for down-quark dipoles in the U(2)3 scheme.

and (3.29). However, similarly to the dipole case, their effects and resulting bounds can be
understood through the quark sectors upon which they act. Bounds for chirality flipping
operators, Q(1)

quqd and Q(8)
quqd, are listed in tables 5 and 6, respectively. As in the MFV

case, the mixing into the b − s and b − d sectors is the most relevant source of constraints.
This is the case of the (1) and Vq spurion structures, which are limited to be ≲ O(1) by
ACP (B → Xγ) measurements. The V 2

q spurion follows this pattern, albeit with a weaker
bound, O(103), due to the additional suppression. The ∆u and ∆d spurions act in the
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light quark sectors, thus the F
(∆u)
quqd and F

(∆d)
quqd are again strongly constrained by nEDM,

with F
(∆d)
quqd ≲ 10−3 versus F

(∆u)
quqd ≲ 10, due to the contraction of top quarks in the former

case. Similarly, the different index contractions induce F̄
(∆d)
quqd ≲ 102 from nEDM, while

F̄
(∆u)
quqd ≲ 104 from B meson mixing. Lastly, the Vq ⊗∆u,d spurion can only be probed at

the 103 − 105 order due to the stronger suppression from light quark masses. For the case
of operators Q(1)

qu and Q(8)
qu , we only consider the non-hermitian terms in eq. (3.29), with

bounds reported in table 7. The effect of these operators on observables is induced solely by
the one-loop matching to low energy coefficients, eqs. (2.18), thus it is expected that CPV
probes have a very weak constraining power for the Q(1)

qu and Q(8)
qu spurions. Indeed, the

strongest bounds shown in table 7 are typically of O(103 − 104). The single exception is
the spurion F

(∆u)
qu , which generates light quark dipoles and thus large shifts in the nEDM,

with F
(∆u)
qu ≲ 4.

6 Conclusions

In the present paper, we analysed CP CP-violating effects of heavy NP-inducing flavour-
violating quark dipole transitions. We parameterized NP at high scales within the dimension
six SMEFT framework and defined the relevant (dipole, four-quark and Higgs Yukawa-like)
operators. To properly calculate the effect of NP on low energy CPV observables, we
included the one-loop RG running of SMEFT at dimension six, together with one-loop (and
some known relevant two-loop) matching conditions at the weak scale. Both effects induce
mixing of dipoles among themselves, as well as mixing with Yukawa-like operators and
four-fermion operators, which thus needed to be included in our phenomenological analysis.
This interplay leads in principle to possible probes of dipoles from the Yukawa and four-
quark sector and vice versa. The most significant impact comes from one-loop contributions
involving top quarks in the matching conditions of four fermion chirality flipping operators
to flavour-changing dipoles, as well as two-loop contributions of Yukawa-like operators to
flavour-conserving dipoles.

We explored two different symmetry-based approaches to specifying the flavour structure
of SMEFT: MFV and U(2)3. The MFV scheme leads to flavour universal NP phases, while
all the flavour breaking is dictated by the SM Yukawa matrices. Flavour-violating dipoles in
the up (down) sector are thus induced by insertions of down (up) Yukawas; this translates to
suppressed NP contributions due to insertions of multiple CKM (and/or small quark mass)
factors. The U(2)3 symmetry scheme instead disentangles the third quark generation from
the first two by assuming separate flavour groups: the light quarks transform under a U(2)
group, and the flavour symmetry is broken in a similar way as in the SM. Third-generation
quarks instead transform under a different group, namely U(1)t ×U(1)b, broken only by
small mixings with the light generations. This leads to flavour specific NP phases and a
richer flavour structure than in the MFV case.

We performed a comprehensive phenomenological analysis of existing constraints on
CPV dipole transitions at low energy, as summarised in table 1. Firstly, we considered
bounds on EDMs of the neutron and electron. These observables are mostly sensitive to
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flavour conserving and CP-violating dipole operators, however important one- and two-loop
matching contributions are also obtained for chirality flipping four-quark and Yukawa
operators, respectively. We also considered the effects of flavour-violating dipoles on the
neutron EDM: the neutron mixes into baryon octet states via weak interactions, and the
following c → uγ, b → dγ or s → dγ transition induce a contribution to the nEDM. These
bounds are mostly limited by the poor knowledge of the relevant form factors, which dominate
the uncertainties in the computation of the matrix elements. Secondly, we reviewed the
present measurements of CPV effects in D, K and B meson decays, and the corresponding
effects of flavour-violating dipoles. On one hand, QCD dipole transitions are most strongly
constrained by measurements of direct CP asymmetries (ACP). For c → ug, this comes
from the ACP difference of D0 → π+π− and D0 → K+K− decays, while for s → dg and
b → sg the best sensitivity is exhibited by ϵ′/ϵ and ACP(B → K(Xs)γ) respectively. On the
other hand, EM dipoles are at present best bounded by their contributions to rare radiative
(and semileptonic) meson decays: D → ργ, KL → π0e+e− and B → Xγ (X = K∗, ϕ, Xs),
for c → uγ, s → dγ and b → dγ respectively. In addition, we also considered bounds on
CP and flavour-violating couplings of the Higgs boson coming from neutral meson mixing.
These currently represent the most stringent probes of such NP effects, which in turn can
be induced by high-scale dipole operators through operator mixing.

We performed our numerical analysis, both in the MFV and U(2)3 schemes, by fixing
the heavy NP scale at Λ = 5TeV, computing the full SMEFT one-loop RG evolution and
matching conditions to LEFT at the weak scale µW = 160GeV. The resulting bounds on
single coefficients are summarized in figures 3, 4 and 5 and in the tables in appendix B.
Our results demonstrate that flavour-violating observables can serve as complementary
probes to EDMs, giving in most cases similar or even stronger bounds. This is most
evident in down-quark dipoles, where the most stringent limits are provided by precise
measurements of CP asymmetries in b → sγ transitions. Similarly, the top-loop enhanced
matching conditions of Qquqd operators into dipoles lead to O(10) and O(102) limits on the
Wilson coefficients from b → sγ in MFV and U(2)3 schemes respectively. In the up-quark
sector, smaller quark masses and CKM factors entering c → u transitions generally lead to
strongly suppressed contributions to low energy observables within MFV. Consequently,
the best ∼ O(103) or larger bounds are obtained by two-loop induced EDMs. In the
U(2)3 scheme these suppressions are alleviated and can lead to stronger bounds, O(1− 10),
depending on the precise spurion structure considered. Finally we note that within the
general structure of SMEFT, EDMs can receive contributions from additional operators,
which do not carry quark flavour indices and have thus been omitted in the present analysis.
Possible cancellations among these various contributions can thus partially alleviate EDM
constraints on dipole operators, making complementary flavour probes essential.

The results presented in this paper can serve as a guideline for building models of
heavy NP that violate CP at high scales, as well as a benchmark for the present status of
CPV bounds in SMEFT. Future high-precision experimental results will help improve the
bounds considered in this analysis. Together with better limits on neutron and electron
EDMs, precise measurements of CP asymmetries in K, D and B meson decays are thus
highly anticipated.
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A Numerical inputs

Here we list the numerical inputs used in the analysis. We employ the CKM matrix with
the following values of rephasing invariants:

|Vus| = 0.2243 , |Vcb| = 0.04221 , |Vub| = 3.62× 10−3 , (A.1)
J = Im [VudV ∗usV ∗cdVcs] = 3.1872× 10−5 .

These exactly reproduce the CKM matrix form in the wilson package, guaranteeing the
consistency of flavour rotations that we use throughout the calculation. The above set
corresponds to the standard Wolfenstein parameters

λ = 0.2243 , A = 0.8390 , ρ̄ = 0.1105 , η̄ = 0.3562 . (A.2)

We assume that the running of CKM elements is negligible. For completeness, we give
here the rotation matrices that transform the quarks from the “primed” basis (3.18) to the
quark mass basis in the standard CKM phase convention:

Wu =

 0.99634 0.085449 −4.8847× 10−8

0.085372 −0.99545 0.042365
−0.00362 0.04221 0.99910

 diag(e−1.872 i, 1, 1) , (A.3)

Wd =

 −0.97681 −0.21412 0
−0.012985− 0.21373i 0.059234 + 0.97501 i 0

0 0 1

 diag(e1.251 i, e1.650 i, 1) (A.4)

for the rotations of the left-handed quarks, and

Vu =

 1 3.0642× 10−7 2.6680× 10−8

3.0642× 10−7 −(1− 1.2076× 10−8) 0.00015541
−2.6727× 10−8 0.00015541 1− 1.2076× 10−8

 diag(e−1.872 i, 1, 1) ,

(A.5)

Vd = 1 diag(e1.251 i, e1.650 i, 1) , (A.6)

for the right-handed quarks. Rephasings of the left- and right-handed quark components
have to be the same to keep the quark mass terms real.

Next, we give the values of the three gauge couplings at the matching scale, µW =
160GeV. We have

g1(µW ) = 0.358 , g2(µW ) = 0.648 , g3(µW ) = 1.177 . (A.7)
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The running of the gauge couplings is decoupled from the other SM sectors [77] and is
not affected by new SMEFT operators in our framework. The evolution to the scale
Λ = 5TeV gives

g1(Λ) = 0.366 , g2(Λ) = 0.630 , g3(Λ) = 0.983 . (A.8)

Turning our attention to the SM Yukawa couplings, at the matching scale we have

yu(µW ) = 6.967× 10−6 , yc(µW ) = 3.477× 10−3 , yt(µW ) = 9.413× 10−1 ,

yd(µW ) = 1.480× 10−5 , ys(µW ) = 2.928× 10−4 , yb(µW ) = 1.578× 10−2 .
(A.9)

The running of Yukawa couplings to Λ is with good approximation independent of SMEFT
operators and driven by the QCD evolution as yi(Λ) = [αs(Λ)/αs(µW )]14/21 yi(µW ) ∼
0.8 yi(µW ), where αs = g2

3/(4π). We obtain the values

yu(Λ) = 5.612× 10−6 , yc(Λ) = 2.801× 10−3 , yt(Λ) = 7.601× 10−1 ,

yd(Λ) = 1.193× 10−5 , ys(Λ) = 2.359× 10−4 , yb(Λ) = 1.267× 10−2 .
(A.10)

The parameters of the U(2)3 spurions can be obtained with the procedure detailed in
section 3.2. The parameter ϵq, computed at the scale Λ, is

ϵq(Λ) = yt(Λ)|Vts| = 3.22× 10−2 . (A.11)

The phase and rotation angles in eq. (3.24) are defined in terms of CKM element ratios
and thus are scale invariant:

θd = 2.9258 , θu = 0.085477 , ϵq = 0.032230 , αd = 1.63147 . (A.12)
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B Tables of bounds

Here we list the three most stringent bounds for all the relevant coefficients in the operator
flavour expansions. See section 3 for definitions of the terms in the MFV and U(2) expansions.
All bounds are referred to the respective Wilson coefficient taken at the New Physics scale
Λ = 5TeV, see section 5.1 for details on the numerical method.

B.1 Tables of bounds: MFV scheme

Coefficient 1st 2nd 3rd

F
(1,2)
uH

eEDM nEDM B0
d − B̄0

d

4.6× 103 1.1× 105 1.4× 108

F
(1,2)
uG

eEDM nEDM ∆ACP(D0)
7.6× 103 2.1× 105 5.3× 105

F
(1,2)
uW

eEDM nEDM ACP(B → Xγ)
3.8× 105 3.4× 106 3.7× 106

F
(1,2)
uB

eEDM ACP(B → Xγ) nEDM
1.0× 105 2.0× 106 2.3× 106

F
(2,1)
dH

eEDM B0
d − B̄0

d B0
s − B̄0

s

3.6× 102 1.2× 103 2.4× 103

F
(2,1)
dG

ACP(B → Xγ) nEDM B(B → Xγ)
2.0 2.5× 101 1.5× 102

F
(2,1)
dW

ACP(B → Xγ) B(B → Xγ) nEDM
8.2× 10−1 2.4× 101 5.2× 101

F
(2,1)
dB

ACP(B → Xγ) B(B → Xγ) nEDM
6.7× 10−1 1.4× 101 3.4× 101

F
(1,1)
quqd,1

ACP(B → Xγ) nEDM eEDM
9.8× 101 3.4× 102 1.4× 103

F̃
(1,1)
quqd,1

ACP(B → Xγ) nEDM eEDM
2.8× 102 3.4× 102 1.4× 103

F
(1,1)
quqd,8

ACP(B → Xγ) nEDM B(B → Xγ)
6.8× 101 3.9× 102 1.7× 103

F̃
(1,1)
quqd,8

nEDM ACP(B → Xγ) eEDM
3.9× 102 1.3× 103 8.3× 103

Table 2. Three strongest bounds on up-quark Yukawa, dipoles, and the considered four-fermion
operators in the MFV scheme.
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B.2 Tables of bounds: U(2)3 scheme

Coefficient 1st 2nd 3rd

F
(1)
uH

eEDM nEDM B0
s − B̄0

s

5.6× 10−1 1.3× 101 1.6× 104

F
(1)
uG

nEDM eEDM ∆ACP(D0)
3.0× 10−2 9.3× 10−1 1.7× 102

F
(1)
uW

eEDM ACP(B → Xγ) B(B → Xγ)
4.6× 101 4.4× 102 5.0× 102

F
(1)
uB

eEDM ACP(B → Xγ) nEDM
1.2× 101 2.4× 102 2.9× 102

F
(Vq)
uH

eEDM B0
d − B̄0

d B0
s − B̄0

s

4.0× 102 4.3× 104 8.3× 104

F
(Vq)
uG

ACP(B → Xγ) ∆ACP(D0) eEDM
4.4× 101 2.2× 102 6.6× 102

F
(Vq)
uW

ACP(B → Xγ) ∆ACP(D0) B0
d − B̄0

d

2.3× 101 2.5× 103 1.3× 104

F
(Vq)
uB

ACP(B → Xγ) eEDM ∆ACP(D0)
2.0× 101 8.7× 103 9.5× 103

F
(∆u)
uH

nEDM eEDM D0 − D̄0

2.1× 101 5.7× 102 5.3× 103

F
(∆u)
uG

nEDM ∆ACP(D0) D0 → ργ

5.8× 10−3 1.3× 101 1.8× 104

F
(∆u)
uW

nEDM ∆ACP(D0) D0 → ργ

1.7× 10−2 1.5× 102 2.1× 103

F
(∆u)
uB

nEDM ∆ACP(D0) D0 → ργ

1.8× 10−2 5.5× 102 1.2× 103

F
(Vq ,∆u)
uH

D0 − D̄0 eEDM nEDM
1.2× 105 4.1× 105 9.2× 107

F
(Vq ,∆u)
uG

∆ACP(D0) D0 → ργ nEDM
2.9× 102 3.6× 106 8.1× 106

F
(Vq ,∆u)
uW

∆ACP(D0) D0 → ργ nEDM
3.6× 103 1.6× 105 3.6× 105

F
(Vq ,∆u)
uB

∆ACP(D0) D0 → ργ D0 − D̄0

1.2× 104 1.9× 107 2.7× 107

Table 3. Three strongest bounds on up-quark Yukawa and dipoles coefficients in the U(2)3 scheme.
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Coefficient 1st 2nd 3rd

F
(1)
dH

eEDM B0
s − B̄0

s nEDM
2.6 1.6× 104 2.5× 104

F
(1)
dG

nEDM ACP(B → Xγ) B(B → Xγ)
7.4× 10−2 1.5 1.4× 101

F
(1)
dW

ACP(B → Xγ) B(B → Xγ) eEDM
1.1× 10−1 2.9 1.7× 101

F
(1)
dB

B(B → Xγ) ACP(B → Xγ) eEDM
1.4 2.1× 101 3.2× 102

F
(Vq)
dH

B0
d − B̄0

d B0
s − B̄0

s nEDM
1.2× 101 2.4× 101 1.2× 103

F
(Vq)
dG

ACP(B → Xγ) nEDM ϵ′/ϵ

1.9× 10−2 4.2× 10−1 1.5× 102

F
(Vq)
dW

ACP(B → Xγ) B0
d − B̄0

d B0
s − B̄0

s

7.2× 10−3 2.5× 102 4.7× 102

F
(Vq)
dB

ACP(B → Xγ) KL → π0e+e− B0
d − B̄0

d

6.4× 10−3 2.9× 102 1.4× 103

F
(∆d)
dH

nEDM ϵK eEDM
1.0× 101 3.4× 103 6.5× 107

F
(∆d)
dG

nEDM ϵ′/ϵ B(B → Xγ)
4.1× 10−3 7.5× 102 1.8× 103

F
(∆d)
dW

nEDM KL → π0e+e− B(B → Xγ)
5.2× 10−3 2.6× 102 6.6× 102

F
(∆d)
dB

nEDM B(B → Xγ) KL → π0e+e−

7.8× 10−3 1.2× 102 1.5× 102

F
(Vq ,∆d)
dH

nEDM B0
s − B̄0

s B0
d − B̄0

d

7.7× 104 9.6× 104 9.7× 105

F
(Vq ,∆d)
dG

B(B → Xγ) KL → π0e+e− ϵ′/ϵ

9.2× 101 7.4× 105 1.9× 106

F
(Vq ,∆d)
dW

B(B → Xγ) KL → π0e+e− ϵK

1.9× 101 3.3× 104 1.4× 105

F
(Vq ,∆d)
dB

B(B → Xγ) ϵ′/ϵ KL → π0e+e−

8.9 2.1× 106 8.0× 106

Table 4. Three strongest bounds on down-quark Yukawa and dipoles coefficients in the U(2)3 scheme.
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Coefficient 1st 2nd 3rd

F
(1)
quqd,1

ACP(B → Xγ) eEDM B(B → Xγ)
7.9 1.3× 101 1.8× 102

F
(Vq)
quqd,1

ACP(B → Xγ) B0
d − B̄0

d B0
s − B̄0

s

1.1 2.7× 102 5.2× 102

F̄
(Vq)
quqd,1

ACP(B → Xγ) B0
d − B̄0

d B0
s − B̄0

s

3.5 6.4× 101 1.3× 102

F
(V 2

q )
quqd,1

ACP(B → Xγ) B0
d − B̄0

d B0
s − B̄0

s

7.3× 102 4.0× 105 7.8× 105

F
(∆u)
quqd,1

nEDM B0
d − B̄0

d B0
s − B̄0

s

1.2× 101 1.4× 105 2.8× 105

F
(∆d)
quqd,1

nEDM B(B → Xγ) ϵK

2.1× 10−1 8.6× 102 1.9× 104

F̄
(∆u)
quqd,1

B0
d − B̄0

d B0
s − B̄0

s ∆ACP(D0)
1.3× 104 2.7× 104 3.4× 104

F̄
(∆d)
quqd,1

nEDM B(B → Xγ) KL → π0e+e−

2.6× 102 1.6× 104 2.3× 104

F
(Vq∆u)
quqd,1

∆ACP(D0) eEDM D0 − D̄0

6.8× 105 3.1× 106 1.5× 108

F̄
(Vq∆u)
quqd,1

ACP(B → Xγ) B0
d − B̄0

d B0
s − B̄0

s

1.3× 105 2.2× 107 4.3× 107

F
(Vq∆d)
quqd,1

B(B → Xγ) ϵ′/ϵ nEDM
1.2× 103 2.3× 105 3.4× 105

F̄
(Vq∆d)
quqd,1

ϵ′/ϵ KL → π0e+e− nEDM
2.2× 104 2.2× 105 2.6× 105

F̂
(Vq∆u)
quqd,1

ACP(B → Xγ) B0
d − B̄0

d B0
s − B̄0

s

1.3× 105 2.2× 107 4.3× 107

F̂
(Vq∆d)
quqd,1

ϵ′/ϵ ϵK nEDM
1.9× 105 3.6× 105 2.6× 106

Table 5. Three strongest bounds on four-fermion operators Q(1)
quqd coefficients in the U(2)3 scheme.
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Coefficient 1st 2nd 3rd

F
(1)
quqd,8

ACP(B → Xγ) eEDM B(B → Xγ)
1.1× 101 8.0× 101 1.9× 102

F
(Vq)
quqd,8

ACP(B → Xγ) B0
d − B̄0

d B0
s − B̄0

s

8.3× 10−1 3.2× 102 6.1× 102

F̄
(Vq)
quqd,8

ACP(B → Xγ) B0
d − B̄0

d eEDM
9.3 4.5× 104 7.5× 104

F
(V 2

q )
quqd,8

ACP(B → Xγ) B0
d − B̄0

d B0
s − B̄0

s

5.5× 102 2.6× 105 5.1× 105

F
(∆u)
quqd,8

nEDM B0
d − B̄0

d ∆ACP(D0)
1.4× 102 3.1× 105 3.5× 105

F
(∆d)
quqd,8

nEDM B(B → Xγ) KL → π0e+e−

4.5× 10−1 1.0× 103 1.7× 105

F̄
(∆u)
quqd,8

nEDM ∆ACP(D0) B0
d − B̄0

d

1.9× 105 2.6× 105 7.9× 105

F̄
(∆d)
quqd,8

nEDM B(B → Xγ) KL → π0e+e−

2.9× 102 7.0× 103 2.2× 104

F
(Vq∆u)
quqd,8

∆ACP(D0) eEDM D0 → ργ

7.4× 106 1.4× 108 5.3× 108

F̄
(Vq∆u)
quqd,8

ACP(B → Xγ) B0
d − B̄0

d B0
s − B̄0

s

8.8× 104 1.3× 108 2.6× 108

F
(Vq∆d)
quqd,8

B(B → Xγ) nEDM ϵ′/ϵ

1.3× 103 2.0× 106 2.0× 106

F̄
(Vq∆d)
quqd,8

ϵ′/ϵ KL → π0e+e− nEDM
1.7× 105 2.1× 105 4.4× 105

F̂
(Vq∆u)
quqd,8

ACP(B → Xγ) B0
d − B̄0

d B0
s − B̄0

s

8.8× 104 1.3× 108 2.6× 108

F̂
(Vq∆d)
quqd,8

nEDM ϵ′/ϵ KL → π0e+e−

2.6× 105 6.2× 105 1.7× 106

Table 6. Three strongest bounds on four-fermion operators Q(8)
quqd coefficients in the U(2)3 scheme.
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Coefficient 1st 2nd 3rd

F
(Vq)
qu,1

∆ACP(D0) ACP(B → Xγ) D0 − D̄0

3.9× 104 3.7× 105 8.0× 105

F̄
(Vq)
qu,1

ACP(B → Xγ) ∆ACP(D0) nEDM
1.0× 103 3.9× 104 1.1× 105

F
(∆u)
qu,1

nEDM ∆ACP(D0) eEDM
3.8 2.5× 103 5.1× 103

F
(Vq∆u)
qu,1

∆ACP(D0) nEDM D0 − D̄0

4.9× 104 1.3× 105 1.0× 106

F̄
(Vq∆u)
qu,1

nEDM D0 − D̄0 /
5.0× 107 2.7× 108 /

F̂
(Vq∆u)
qu,1

nEDM D0 − D̄0 /
5.0× 107 2.7× 108 /

F
(Vq)
qu,8

∆ACP(D0) ACP(B → Xγ) D0 − D̄0

2.3× 105 3.2× 105 6.0× 105

F̄
(Vq)
qu,8

ACP(B → Xγ) nEDM ∆ACP(D0)
2.2× 103 7.6× 104 2.4× 105

F
(∆u)
qu,8

nEDM eEDM ∆ACP(D0)
4.1 3.8× 103 1.5× 104

F
(Vq∆u)
qu,8

nEDM ∆ACP(D0) D0 − D̄0

1.0× 105 2.9× 105 7.5× 105

F̄
(Vq∆u)
qu,8

nEDM D0 − D̄0 /
3.7× 107 2.0× 108 /

F̂
(Vq∆u)
qu,8

nEDM D0 − D̄0 /
3.7× 107 2.0× 108 /

Table 7. Three strongest bounds on four-fermion operators Q(1,8)
qu in the U(2)3 scheme.
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