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High-resolution grids of daily air 
temperature for Peru - the new 
PISCOt v1.2 dataset
Adrian Huerta   1,2,9 ✉, Cesar Aybar   3,4, Noemi Imfeld5,6, Kris Correa1, Oscar Felipe-Obando1, 
Pedro Rau7, Fabian Drenkhan   8 & Waldo Lavado-Casimiro1

Gridded high-resolution climate datasets are increasingly important for a wide range of modelling 
applications. Here we present PISCOt (v1.2), a novel high spatial resolution (0.01°) dataset of daily 
air temperature for entire Peru (1981–2020). The dataset development involves four main steps: (i) 
quality control; (ii) gap-filling; (iii) homogenisation of weather stations, and (iv) spatial interpolation 
using additional data, a revised calculation sequence and an enhanced version control. This improved 
methodological framework enables capturing complex spatial variability of maximum and minimum 
air temperature at a more accurate scale compared to other existing datasets (e.g. PISCOt v1.1, ERA5-
Land, TerraClimate, CHIRTS). PISCOt performs well with mean absolute errors of 1.4 °C and 1.2 °C 
for maximum and minimum air temperature, respectively. For the first time, PISCOt v1.2 adequately 
captures complex climatology at high spatiotemporal resolution and therefore provides a substantial 
improvement for numerous applications at local-regional level. This is particularly useful in view of data 
scarcity and urgently needed model-based decision making for climate change, water balance and 
ecosystem assessment studies in Peru.

Background & Summary
Air temperature is a fundamental parameter of the climate system, which is required for various applications 
such as ecology1, hydrology2, public health3, agriculture4, climate variability, and climate change5,6. Typically, 
temperature values are obtained from meteorological stations and show high accuracy and temporal reso-
lution but do not capture information for an entire unit or region of analysis. Therefore, gridded global- or 
continental-scale databases, derived from interpolated7, reanalyzed8 and/or combined9 in-situ and surface 
remote sensing data, are widely used. While each dataset offers several advantages for specific applications, 
limitations related to complex topography, spatial resolution, and the amount of assimilated data reduce their 
reliability10,11. In recent years, gridded high-resolution climate datasets at national and sub-national scales have 
been produced to close this gap12–18.

A broad range of methods exists for creating gridded air temperature data based on weather stations. 
Traditionally, they have been divided into geostatistical, non-geostatistical, and combined methods19,20. 
Although these methods are widely used and provide high efficiency, more recent procedures based on artifi-
cial intelligence including deep learning21,22 and machine learning23,24 are gaining relevance due to their abil-
ity to work with large amounts of data and capture non-linear and multivariate relationships25. However, the 
reduced capacity to estimate the value outside the range of the training data limits its use in large regions with 
low station density26,27. Besides, since the relationship between air temperature and auxiliary spatial predictors 
varies on spatiotemporal scales, recent research has also highlighted the importance of non-stationarity in the 
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spatiotemporal domain by building local models in contrast to global estimation models13,28–32. The diversity of 
methods has advantages and disadvantages regarding data availability, computational efficiency, computational 
cost, and estimation accuracy. Therefore, the method selected must be suitable or at least adapted to the purpose 
and study area.

In South America, only few efforts have been undertaken to create gridded temperature datasets, mainly 
because of the low density of weather stations or the lack of long-term data series. However, there are significant 
advances in the construction of gridded datasets in countries such as Brazil33,34, Chile35, and Bolivia36,37. For 
Peru, only two databases exist currently. The first is a gridded monthly-scale product for 1964–2014 at 5 km 
spatial resolution (henceforth “VS2018”) developed by Vicente-Serrano38. The second is a gridded daily-scale 
product for 1981–2016 at 10 km developed by the National Service of Meteorology and Hydrology (SENAMHI). 
SENAMHI introduced this product as part of the Peruvian interpolated data of the Climatological and 
Hydrological Observations of SENAMHI (PISCO), denominated PISCOt v1.139. Since its release, PISCOt has 
been applied in numerous areas of research and operation3,40–45. Due to the increasing availability of observed 
data and the need for higher spatial resolution, it is crucial to account for gridded air temperature datasets that 
allow modelling and process understanding at local scales, e.g., at the catchment level. Previously applied tech-
niques46–49, show that such a product can be optimised by enhancing the temporal homogeneity of the observed 
data and also by using topographic and climatic co-variables. Among the applied remote sensing data, Land 
Surface Temperature (LST) is the most frequently used parameter because it improves both the numerical accu-
racy and the spatiotemporal details of the interpolated air temperature.

Here, we present an updated version (v1.2) of PISCOt that consists of a gridded daily dataset for maximum 
(Tmax) and minimum (Tmin) air temperature at a spatial resolution of 0.01° (≈1 km) for the period 1981–2020. 
The updated version of PISCOt is essential for two main reasons: (i) it provides high-resolution estimates of 
daily Tmax and Tmin in a data scarce region taking into account steep climatic gradients that occur over com-
plex terrain; and (ii) it provides the basis for further applications such as studies related to climate change anal-
ysis, hydrological modelling, and ecology, among others.

Methods
Workflow for generation of the data.  Missing, inhomogeneous, and non-quality-controlled data are a 
typical concern in hydro-climatological studies. Particularly in regions with low financial resources and limited 
technical and institutional capacities, weather station networks are often sparse with poor coverage in rural and 
remote areas, many stations do not work appropriately, and quality control systems are inefficient50,51. In Peru, 
quality issues with station data are especially challenging due to the complex topography leading to steep climatic 
gradients52,53. The development of PISCOt requires therefore careful selection and pre-processing of the station 
observations before spatial interpolation can be applied.

The selection of the horizontal resolution is crucial in the spatial interpolation process. From a climatological 
perspective, deriving coarser products rather than topoclimatic-scale products13 (kilometer or sub-kilometer) 
based on sparse interpolated observations does not yield additional information54. The underlying station distri-
bution mostly defines the effective resolution, and it can be different from the target grid spacing55–57. However, 
from the user’s perspective, higher-resolution data can be more desirable since they are urgently needed for 
practical applications58. This is because these applications require a clear characterization of local gradients 
which in complex terrain might occur over shorter distances. An interpolation approach of air temperature 
based on high-resolution spatial predictors (0.01°≈1 km) is advantageous, especially in extremely complex 
mountain terrain such as the Andes, to properly account for the orographic gradients in a wide range of applica-
tions. Additionally, using high-resolution data makes it easier to interpret satellite observations or use them in 
hydrological models without further downscaling.

Therefore, the workflow for the development of the new PISCOt dataset includes four steps: (i) quality con-
trol, (ii) gap-filling, (iii) homogenisation of weather stations, and iv) spatial interpolation (Fig. 1). In step (i), 
statistical and visual techniques were applied to remove erroneous data in the times series of Tmax and Tmin. 
For (ii), all time series were gap-filled using data from neighbouring stations. The previously gap-filled data 
were then homogenised in step (iii) to reduce temporal inhomogeneities. Once a complete and homogenised 
database of Tmax and Tmin observations was established, we proceeded to step (iv). A climatologically based 
interpolation approach59–62 was used, where the spatial interpolation was divided into the mean monthly normal 
and anomalies, and then aggregated to obtain the final product. Topographic and remote sensing data served as 
a basis to estimate air temperature at the country scale. The following sections provide the data sources and four 
development steps in more detail.

Weather station data.  Data source.  The database used in this study belongs to the Peruvian weather 
service (SENAMHI, https://www.senamhi.gob.pe) and includes 430 daily series of Tmax and Tmin (Fig. 2).  
To obtain a better spatial representation of the country boundaries (Fig. 2a), data from adjacent countries were 
used, such as the Ecuadorian Institute of Meteorology and Hydrology (INAMHI, https://www.inamhi.gob.ec), the 
Colombian Institute of Hydrology, Meteorology and Environmental Studies (IDEAM, http://www.ideam.gov.co),  
the Brazilian Institute of Meteorology (INMET, https://portal.inmet.gov.br) and the Climate Explorer portal 
of the Chilean Center for Climate and Resilience Research (CR2, https://explorador.cr2.cl). Consequently, we 
obtained a large set of climate data from Ecuador (18 time series), Colombia (3), Brazil (5), Bolivia (3), and Chile 
(3), representing a total of 462 potential time series (Fig. 2b). Due to restrictions on South American meteoro-
logical services, the raw data from the weather stations cannot be distributed with this publication. Readers that 
wish to obtain the primary data should apply to contact each agency or institution previously mentioned. It is 
important to note that while a substantial portion of the raw data is openly accessible, several data series remain 
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restricted and can only be accessed upon request. Researchers are referred to revise the data provided by each 
institution via their official webpage and for further data requests contact each agency or institution individually.

The spatial distribution of the stations is highly uneven in the study area. While in the Amazon region, 
only a limited number of stations exists, station density in the Andes is higher and largest at the Pacific Coast 
(Fig. 2). Depending on the altitude, there was a lower (higher) density of stations between 1000 and 2000 masl 
(0–1000 masl and >3000 masl)63. Thus, the spatial distance between stations varied considerably. The earliest 
observations started in the 1930s, with a significant increase up to date. Due to political instability and social 
conflicts (Supplementary Fig. 1), two episodes of under-reporting occurred before 1960 and during the 1980s. 
Due to the low reliability of data before the 1980s, the gridded product only covers the period 1981 to 2020. In 
addition, only stations with at least five years of data (365 days of the year repeated at least five times) were used. 
The 5-year threshold was chosen based on the finding that at least 5–7 years of observations are required before 
pairwise relationships between stations stabilise13,64,65.

Quality control.  The quality control (QC) of the air temperature series comprised the following steps:

	 1.	 Obvious errors: conversion of numerical values (−999, −99.9, −88.8) to empty values, and removal of 
duplicate or incorrectly formatted dates.

	 2.	 Extreme values: flagging of daily extreme (low and high) air temperature values based on physical and sta-
tistical values. The physical maximum and minimum limits for Tmax (Tmin) were 60 °C and −10 °C (40 °C 
and −30 °C), respectively66. The statistical algorithm identified records that are above the 3rd quartile plus 
m times the interquartile range (IQR) and those that are below the 1st quartile minus m times the IQR. For 
Tmax and Tmin, m was set to 3.5. It should be mentioned that the statistical algorithm was applied each 
month in order to take into account the seasonal cycle effect on the thresholds.

	 3.	 Internal consistency: inspection of daily records where Tmax is below Tmin. Furthermore, the values were 
flagged when Tmax and Tmin had the same magnitude (Tmax = Tmin).

	 4.	 Temporal coherence: inspection of daily values repeated over a long period and very extreme (day-to-day) 
jumps. It was defined that a value can be the same up to a maximum of 8 days. Additionally, a daily jump 
may not have a variation over 20 °C67.

	 5.	 Spatial coherence: comparison of the rank of each data value with the average rank of the data recorded at 
adjacent stations68. The original daily air temperature series were converted to percentiles. Each air tem-
perature value was replaced by its corresponding percentile. For each time series, we selected the neigh-
bouring stations which meet the requirements of being within 70 km and had an elevation difference of less 
than 500 m69,70. To perform the test, at least four neighbouring stations had to be available. If this was not 
the case, the daily value of the target station was not compared. The records of the target station with differ-
ences greater than a percentile of 0.85 concerning the average of the neighbouring stations were identified. 
The percentile difference approach allows for identifying only the most extreme spatial variations71–73.

	 6.	 Visual inspection: a visual inspection of the daily time series was carried out to identify periods with 
inhomogeneities that cannot be corrected (rounding errors, asymmetric rounding patterns, measurement 
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Fig. 1  Schematic overview of the development of the daily air temperature gridded dataset (PISCOt). Input 
data, related processes, and main output files are specified. Spatial interpolation uses the Regression Kriging 
(RK) and Geographically Weighted Regression Kriging (GWRK) techniques.
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precision, time irregularities, and obvious inhomogeneities)51,74. For this purpose, we used daily series and 
annual decimal frequency charts.

All QC-flagged values were set as a missing observation after the QC steps (Supplementary Figs. 1, 2). For 
the following procedures, only stations that retained the 5-year threshold after the QC were used. In addition, 
we manually verified the elevation information of weather stations using a digital elevation model (detailed in 
the Spatial predictors for air temperature sub-section) and modified it where necessary.

Gap-filling.  Simple interpolation of incomplete data may produce artificial inhomogeneities in the gridded 
product due to the irregular spatiotemporal distribution of weather stations during the 1981–2020 period75.  
This can affect the variance and lead to erroneous conclusions on changes and variability76. To reduce such artif-
ical inhomogeneities, data reconstruction of time series that do not cover the entire period and of gaps within 
time series was necessary.

A gap-filling procedure based on neighbouring stations77 was implemented to create a complete database. 
Before applying the algorithm, the available information was standardised using a daily climatology of the avail-
able data to avoid differences in the mean and the variance78. Subsequently, the model estimates were corrected 
to approximate the observed values as closely as possible. The correction was made by applying empirical quan-
tile mapping79,80. The Tmax and Tmin series were reconstructed independently.

A neighbouring station was considered for gap-filling if it met two conditions: (i) at least five years of 
data in common, and (ii) a correlation greater than or equal to 0.6 with the target station. An iterative pro-
cess of the gap-filling algorithm was performed to take advantage of those stations that did not have a com-
mon period at the beginning81. This was carried out in up to three iterations, where the availability of 
neighbouring stations was limited according to the following characteristics: horizontal-vertical distances of  
(i) 70 km–500 m, (ii) 100 km–500 m, and (iii) 150 km (no vertical limit), respectively. A maximum of 8 neigh-
bouring stations was considered during this procedure. The rationale for this configuration was based on a 
previous correlation-distance-elevation analysis (Supplementary Fig. 3).

Due to the low density of weather stations in some regions, virtual stations (time series at the closest grid 
point) from the ERA-5 Land reanalysis82 were additionally included to fill temporal gaps. These time series were 
not directly used, but an anomaly-based bias correction (detrended empirical quantile mapping83) was applied 
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Fig. 2  (a) Study area of Peru and its three main regions: Pacific Coast, Andes, and Amazon. The panel in 
the upper right corner shows the location of the study area in South America. (b) Spatial distribution of 462 
available time series (Raw) for daily maximum (Tmax) and minimum (Tmin) temperature. After the data 
pre-processing, 302 time series were used for spatial interpolation (Interpolation). The red boxes represent the 
southern (A) and northern (B) Andes areas of Peru. Lake Titicaca is shown in light blue.
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to series with at least ten years of data. Only those virtual stations with a correlation greater than or equal to 0.6 
with the target station (within Peru) were preserved and used for gap-filling.

Homogenisation.  Many non-climatic influences can affect measurements (changes in station location, instru-
mentation, and observing practices, among others). To eliminate these inhomogeneities and to obtain more 
reliable observations, time series must be homogenised84,85. A variety of statistical methods has been developed, 
each with different results84,86. In sparse networks, homogenisation performance is drastically reduced, and there 
is a risk of erroneous corrections due to the low signal-to-noise ratio87. Consequently, the chosen method must 
be applied carefully.

We tested the temporal homogeneity using the Standard Normal Homogeneity Test88,89 in both its relative 
form, known as the Pairwise Homogeneity Algorithm (PHA)90,91, and its absolute implementation. The pro-
cess was fully automatic and straightforward. Therefore, the approach was consistent, unlike semi-automatic 
approaches that require several subjective decisions that can influence the whole process74. In addition, PHA has 
been applied at global scale datasets92,93, and is one of the approaches with the best performance84,86.

The algorithm searched a maximum (minimum) of eight (four) neighbouring reference stations with a cor-
relation greater than or equal to 0.6 with the target station within a horizontal (vertical) distance of 1000 km 
(1000 m) in order to perform a relative test. In absence of these conditions, the absolute test was applied. 
Absolute tests have a lower detection efficiency than relative tests84. Therefore, the condition was designed as 
a backup test when a relative test was almost impossible to apply94. In both cases, a p-value < 0.05 (with a 95% 
confidence interval) was used to define significant breakpoints which were then used to adjust past values com-
pared to the present.

As the algorithm was applied on a monthly scale, a linear time interpolation of the monthly correction 
factors to a daily scale was performed95. The homogeneity tests were applied after the gap-filling to (i) detect 
inhomogeneities introduced by the gap-filling process, and, (ii) because the process was more reliable if the time 
series had no gaps50,71. Finally, as for the gap-filling procedure, homogenisation was performed in up to three 
repetitive cycles according to the boundary conditions previously defined.

Spatial predictors for air temperature.  In the gridding process, Tmax and Tmin were adjusted to a series 
of auxiliary spatial predictors such as land surface temperature (LST), elevation (DEM), latitude (Y), longitude 
(X), and the topographic dissection index (TDI).

The LST observations were selected from MODIS96. This satellite product provides average 8-day values 
starting in the year 2000 and at a 1 km spatial resolution. The Terra version (MOD11A2 V6)97 was used for 
day (LST_day) and night (LST_night) observations. Because of missing data before 2000, the average monthly 
values for 2000–2020 for both day and night times were used as spatial predictors for Tmax and Tmin, respec-
tively. Only LST values were used without cloud contamination, emissivity error >0.02, or LST errors >2 °C.  
If any grid cell in the final average were empty, they were reconstructed through nearest neighbour interpolation. 
The LST was downloaded from https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_
MOD11A2 (accessed 31 October 2022).

The DEM data were obtained from the Global Multi-resolution Terrain Elevation Data (GMTED) 201098 at a 
spatial resolution of 1 km. This dataset was selected because it has also been used in other temperature-gridded 
products at a national level38. X, Y, and TDI were derived at the same spatial resolution as the DEM. The digital 
elevation model was downloaded from https://developers.google.com/earth-engine/datasets/catalog/USGS_
GMTED2010 (accessed 31 October 2022).

The TDI was calculated through a multi-scale DEM calculation:
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Where TDI s( )0
 is the final multi-scale TDI value for the grid cell location s0, Z s( )0  is the elevation at the grid cell 

location s0, Z i( )min  is the minimum elevation at the grid cell location in the spatial window i, Z i( )max  is the max-
imum elevation at the grid cell location in the spatial window i, and n is the number of spatial windows99.  
The TDI value for a specific window size represented the height of a grid cell relative to the surrounding terrain. 
The multi-scale TDI was calculated for five spatial window sizes (at 3, 6, 9, 12, and 15 km). Valley bottoms and 
low areas relative to surrounding grids have values close to zero, while ridges and areas above surrounding areas 
have high values approaching 5. The selection of this topographic variable was based on the high correlation 
with daily Tmin anomalies which are influenced by cold air drainage13,99.

The spatial predictors were downloaded from the Earth Engine Data Catalog100 repository via rgee101. For 
efficient processing, the data were adapted to the extent of −81.405°, −67.185°, −18.595°, and 1.225° (min lon-
gitude, max longitude, min latitude, and max latitude); and re-gridded at 0.01° spatial resolution.

Air temperature interpolation.  For the interpolation of Tmax and Tmin, a climatologically aided inter-
polation (CAI) approach59–62 was used. With CAI, deviations from the average (anomalies) on a given day were 
interpolated and combined with an average field (climatology) to produce the final daily product. The CAI 
approach has been employed in several studies13,18,62,73 and has proven to be effective to improve the accuracy 
of air temperature estimation in regions of complex terrain with limited observations102–105. This approach dras-
tically reduced computational costs compared to independent runs for each time step, and the co-variables did 
not necessarily need to be in the same temporal range as the observational data. The procedure was applied inde-
pendently for Tmax and Tmin and comprised three steps:
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	 1.	 Interpolation at monthly (normal) average scale for the 1981–2010 period.
	 2.	 Interpolation at the daily anomaly scale (based on the monthly normal) for 1981–2020 period.
	 3.	 Combination of 1 and 2 to obtain the daily temperature value.

Monthly normal interpolation.  For the interpolation of the monthly normal, the Regression-Kriging (RK) 
method13,29,106 was used, which represents a spatial process expressed as the sum of a deterministic and a sto-
chastic part:

= +T s m T s m T s m( , ) ( , ) ( , ) (2)u e0 0 0 0 0 0

Where T s m( , )0 0  is the final interpolated normal temperature at the grid cell location s0 and for the month 
m0, T s m( , )u 0 0  is the deterministic spatial trend in normal temperature modelled by the weather station locations 
and auxiliary predictors, and T s m( , )e o o  is the spatially autocorrelated stochastic residual with zero mean107. We 
use a linear model to fit T s m( , )u 0 0 , and ordinary kriging (OK) to interpolate the residual part T s m( , )e o o :
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β0 is the intercept; β1, β2 β3 and β4 are the model coefficient estimates for monthly average LST, elevation, 
latitude, and longitude, respectively; lst m( )0 , z, x and y are the average LST at m0, elevation, longitude, and lati-
tude at grid level at the location s0; w s m( , )i 0 0  are the weights defined by the residual spatial covariance; and 
T s m( , )e i 0  are the residuals of the regression for n stations.

Due to the large variability and extent of the study area, it was not appropriate to use a global model 
for the spatial prediction of normal temperature. A version of RK with a moving spatial window based on 
Geographically Weighted Regression-Kriging (GWRK)108 was used to account for the spatial heterogeneity in 
the interpolation process. The GWR109,110 calculated local trends for a subset of the study area with a weighting 
of weather stations using a distance-based function. To improve prediction accuracy, it added the OK from 
the residuals to the regression estimate. The weighting of the observations in GWR was calculated using the 
bi-square kernel nearest neighbourhood function:
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Where wi(s0) is the distance-based weighting function of the station i at the interpolation location s0, h(s0) is 
the distance between the station i and the interpolation location s0, r is the bandwidth for the size of the spatially 
adaptive kernel function. The bandwidth optimisation was necessary because a significant deviation in estimat-
ing the regression parameters would be generated if the bandwidth were too large or too small109. The Corrected 
Akaike Information Criterion automatically determined the optimal bandwidth110.

The regression coefficients of the GWR model were estimated at a spatial resolution of 0.1°, assuming that 
the relationship between the normal temperature and the auxiliary predictors is independent of the spatial 
resolution scale111,112. Then it was locally interpolated with a bilinear approach at a resolution of 0.01° to be 
applied to the auxiliary predictors. The OK of the residuals was set to 0.05° and then disaggregated to 0.01° to 
reduce the measurement precision inconsistencies51,113,114 of the observed time series (Supplementary Fig. 4). 
Both sub-products at the final resolution were aggregated according to Eq. 3 to obtain the grids of the monthly 
normals of Tmax and Tmin.

We used the GWmodel110 and gstat115,116 packages for the implementation of GWRK. For the estimation of 
the theoretical variogram (in OK), an automatic adjustment by iteratively repeated minimum squares was used, 
and the nugget value was forced to zero according to the automap package117.

Daily interpolation.  A method similar to the monthly normal temperature was used in the daily temperature 
interpolation. In this sense, the daily anomalies of Tmax and Tmin were expressed as the sum of two compo-
nents (deterministic and stochastic). Because of the large number of days (14244) per variable and the intention 
to produce PISCOt operationally, it was chosen to use RK due to computational limitations. The model here was 
similar to Eq. 3 but added the spatial predictor TDI.

Therefore, the daily temperature product was obtained according to:

T s d T s m T s d( , ) ( , ) ( , ) (5)0 0 0 0 0 0δ= +

Where T s d( , )0 0  is the temperature at the interpolation point s0 for the day d0 within the month m0, T s m( , )0 0  is 
the normal temperature in the month m0 according to Eq. 3, and δT s d( , )0 0  is the daily temperature anomaly at 
the interpolation point s0 for the day d0.

Unlike traditional CAI applications, we employed spatial predictors in T s m( , )0 0  and δT s d( , )0 0
13,39. Some 

research have found that topographic factors in a mountainous region are directly related to the spatial patterns 
of T s d( , )0 0δ , particularly during stable atmospheric conditions that favour cold air inversion13,99.
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Data Records
The generated dataset consists of gridded, geo-localised files and a chart presenting information on the weather 
stations used. For quick access, the data are divided into different repositories (Table 1) and are stored in a 
figshare collection118 (https://doi.org/10.6084/m9.figshare.c.5959863).

The files of normal (average) and daily Tmax and Tmin values are stored in Repository 1 and 2, respectively. 
These data represent the primary output of the research (a gridded 0.01° spatial resolution product, PISCOt 
v1.2) and are available in the Network Common Data Form (NetCDF) format. Normal values are stored in a 
single file whereas daily values are stored in different archives divided by year from 1981 to 2020.

The files of the spatial covariables are stored in Repository 3. These represent the predictors (X, Y, DEM, 
LST_day, and LST_night) used to build the spatial models of Tmax and Tmin and are available in NetCDF 
format.

The list of all weather stations used as input for PISCOt v1.2 is stored in Repository 4. The file contains the 
following information (headers): code (ID), name (NAM), longitude (LON), latitude (LAT), elevation (ALT), 
and source (SRC) of each weather station. In addition, it also provides information if a weather station has 
been selected as a virtual station (bias-correction of ERA5-Land) in the gap-filling procedure (filter_qc); and, 
if a weather station has been used for cross-validation in the gap-filling procedure and daily spatial model  
(filter_qc70). The file is available in Comma Separated Values (CSV) format.

The gridded product of PISCOt v1.2 was also produced at a coarser spatial resolution (at 0.05° and 0.10°) 
using the same methodology and input data. This dataset is available in Repository 5. The purpose to provide 
these different versions is to facilitate quick access to the data of Tmax and Tmin as the original version (0.01°) 
includes large file sizes. The normal and daily values of Tmax and Tmin at 0.05° and 0.10° spatial resolution are 
stored in single NetCDF files.

The data in each NetCDF file consists of three dimensions (time, latitude, and longitude). For monthly nor-
mal files, the time dimension corresponds to the month of the year beginning with January. Each repository in 
Table 1 provides in addition a README file with a brief explanation of the dataset. Finally, Repositories 1 and 2 
will also be available as a secondary repository in the Google Earth Engine Data Catalog.

Technical Validation
The development process of PISCOt has been evaluated in three steps: (i) gap-filling validation; (ii) spatial 
model validation; and (iii) usefulness of the PISCOt product. In the spatial model validation, we focused on the 
assessment at monthly normal and daily scales. In the usefulness of the PISCOt product, we provided two appli-
cations, one associated with spatio-temporal variability of air temperature, and the other related to the coastal 
fog effect on air temperature.

The statistics used to evaluate the skill of each step were simple error (mean bias), mean absolute error 
(MAE), and the refined index of agreement (dr)119. The dr metric ranges from −1.0 to 1.0, with a value of >0.5 
indicating a higher predictive capacity than the observed average. Because the primary mode of variability in air 
temperature is usually the seasonal cycle, the metrics were calculated independently for each month and then 
averaged. This baseline adjustment in dr prevented from overestimating the skill of each reconstruction (i.e. 
gap-filling, etc.) by correcting for the seasonal cycle120. Furthermore, the non-parametric Mann-Kendall test 
associated with Sen’s slope estimator was used for trend analysis in the evaluation.

Order Repository Name Data Format Number of files Files Access

1 Maximum temperature 
(PISCOt v1.2) Tmax .nc 41

tmax_mean_1981-2010.nc,
tmax_daily_1981.nc,
⋮
tmax_daily_2020.nc

https://doi.org/10.6084/m9.figshare.20522806

2 Minimum temperature 
(PISCOt v1.2) Tmin .nc 41

tmin_mean_1981-2010.nc,
tmin_daily_1981.nc,
⋮
tmin_daily_2020.nc

https://doi.org/10.6084/m9.figshare.20533715

3 Spatial Covariables for 
PISCOt v1.2

DEM, Y, X, TDI, LST_day, 
LST_night .nc 6

DEM.nc,
Y.nc,
X.nc,
TDI.nc,
LST_day.nc,
LST_night.nc

https://doi.org/10.6084/m9.figshare.15167517

4 Weather stations used in 
PISCOt v1.2 list of weather stations .csv 1 xyz_qc_gf_hmg. csv https://doi.org/10.6084/m9.figshare.14329208

5
Maximum and 
Minimum temperature 
at a coarser resolution 
(PISCOt v1.2)

Tmax, Tmin .nc 8

tmax_mean_1981-2010_005.nc,
tmin_mean_1981-2010_005.nc,
tmax_daily_1981_2020_005.nc,
tmin_daily_1981_2020_005.nc,
tmax_mean_1981-2010_010.nc,
tmin_mean_1981-2010_010.nc,
tmax_daily_1981_2020_010.nc,
tmin_daily_1981_2020_010.nc

https://doi.org/10.6084/m9.figshare.22712365

Table 1.  Accession and data files for each repository of the database.
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Gap-filling validation.  A gap-filling procedure was applied to extend shorter times series of weather sta-
tions (back to 1981) before constructing PISCOt. Two analyses were conducted to evaluate the efficiency of the 
gap-filling procedure. (i) Validation: comparing infilled and observed data for available dates with observed val-
ues, i.e., comparing available data that has been used to build the model. (ii) Cross-validation: comparing infilled 
and observed data for dates that were artificially set as missing data, i.e., comparing data that has not been used to 
build the model. In cross-validation, it is assumed a worst-case missing data scenario, we set only ten years of data 
in stations with more observed data (in time series with ≥75% of non-missing data in the period 1981–2020).

Table 2 summarises the statistical metrics, and Fig. 3 shows the distribution of dr for both experiments. 
The experiments showed that the efficiency was slightly better for Tmax than Tmin. Both experiments had a 
bias <0.2 °C and MAE <1.5 °C. The most significant difference was in dr; although moderate-to-high efficiency 
values were obtained in both experiments (dr > 0.5), the best results were obtained in experiment (i). This can 
be explained due to the small amount of information available in the experiment (ii), as it was a worst-case 
scenario. By visualising the spatial distribution of dr, it was noted that there were higher (lower) values in more 
(less) dense regions of weather stations for both experiments. The areas where dr reached values from 0.8 to 0.9 
were found in experiment (i). On the other hand, in experiment (ii), it reached values from 0.6 to 0.7.

Experiment

Tmax Tmin

Number of stations bias (°C) MAE (°C) dr Number of stations bias (°C) MAE (°C) dr

Validation (Available data) 346 0.11 0.98 0.67 342 0.1 0.98 0.63

Cross-validation (10-years data) 51 0.03 1.27 0.56 52 −0.02 1.44 0.54

Table 2.  Gap filling error statistics for daily maximum (Tmax) and minimum (Tmin) temperature for bias, 
mean absolute error (MAE), and refined index of agreement (dr) for 1981–2020 in two experiments: using all 
available data and when only a complete period of 10-years (with ≥75% data) is available.
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Fig. 3  Spatial distribution of the refined index of agreement (dr) for gap filling (1981–2020) of daily maximum 
(Tmax) and minimum (Tmin) air temperature in two experiments: validation, using all available data; and, 
cross-validation, when only a complete period of 10-years (with ≥75% data) is available. Black lines represent 
the three main climate regions: Pacific Coast (Western Peru), Andes (Central Peru), and Amazon (Eastern 
Peru).
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In general, the validation errors showed that the here-in used infill models worked reasonably well, consid-
ering the complicated topographic variability of the study area and the limited observational data. It must be 
pointed out that the errors of experiment (i) represented the residuals between the filled and observed values, as 
these were used to construct the infilled models that were finally used in PISCOt.

Spatial model validation.  Monthly normal air temperature.  K-fold cross-validation was performed to 
characterise the efficiency of the spatial model for the monthly normal temperature. In this study, K = 10 was 
defined. Therefore, 10 clusters were set up for each model and data series. We applied the statistical metrics (bias 
and MAE were only used as they are less affected by sample size) at the scale of two seasonal periods: “warm” 
(October to March) and “cold” (April to September).

Figure 4 showed a smaller positive bias in Tmax than in Tmin, with an average (warm and cold) value of 
0.15 °C and 0.25 °C, respectively. However, this may be biased due to negative errors in the average. Considering 
the biases at the station scale, more points fall within the range of −1 °C to 1 °C in Tmin, implying that the esti-
mation was better for Tmin. This pattern confirmed the findings for MAE, where Tmin (Tmax) averages 1.22 °C 
(1.42 °C) for both seasons. Spatially, the monthly normal interpolation performed worst in the mountainous 
regions between the boundaries of the climatic regions (Pacific Coast - Andes and Andes - Amazon), mainly 
in Tmax. Similarly, the largest errors in Tmax can be found in the southern Pacific Coast. At the seasonal level, 
there was no considerable difference in Tmax. However, for Tmin, estimates were slightly better in the warm 
period than in the cold period.

These results showed that the monthly normal interpolation for Tmin tends to be more efficient than for 
Tmax. In order to understand the impact of the spatial predictors (LST and DEM) on the air temperature esti-
mation, the Lindemann, Merenda, and Gold method was applied13,121,122. This method quantifies the relative 
influence of a spatial covariate by partitioning the total variance explained by the R2 of the model (Fig. 5).

In Tmax (Fig. 5a), the DEM had the highest relative importance. The DEM contributed slightly more in sum-
mer than in winter months. About 50% (40%) of the observed variance can be explained by DEM in summer 
(winter). LST, on the other hand, adopts a major role from summer to autumn rather than during the period 
from winter to spring. One probable reason why DEM was such a good predictor for Tmax is that Tmax gen-
erally has a decreasing simple linear relationship with DEM, and DEM already has a solid predictive capacity 
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Fig. 4  10-fold cross-validation bias and mean absolute error (MAE) for interpolated monthly maximum 
(Tmax) and minimum (Tmin) normal temperature in the period 1981–2010 (n = 299 stations). Black lines 
represent the three main climate regions in Peru (Fig. 3).
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without the addition of LST13,28,47,123. In addition, LST_day is highly influenced by incoming solar radiation and 
biophysical properties (e.g. land cover, albedo, moisture, roughness) and, thus, has a high degree of microscale 
variability124. As a result, LST_day is more spatially variable than Tmax, especially during higher solar radiation 
dates47. The relationship between Tmax and LST is often more complex than that between Tmin and LST13,47. 
From a seasonal perspective, we found that LST_day is more efficient in explaining the variance of Tmax from 
summer to autumn rather than winter to spring. We hypothesize that this behaviour can be related to solar 
radiation seasonality which is coupled with the cloud cover amount due to the rainfall season42,75. From winter 
to spring (summer to autumn) there is more (less) incoming solar radiation due to the presence of less (more) 
cloud cover. Consequently, the spatial relation between LST_day and Tmax is weaker in the winter season com-
pared to the summer period.

For Tmin, LST was a slightly more critical predictor than DEM in most months except for February (Fig. 5b). 
However, no covariate reached a relative importance of 50%. It is somewhat notable that LST reached its highest 
values from June to November and, inversely, in DEM. Due to the strong gradients and complex topography, 
micro-climatic influences on Tmin play an essential role. Cold air inversions are a common phenomenon, espe-
cially during periods of atmospheric stability and significant radiative cooling which is typical for mountainous 
regions28,99. Therefore, Tmin does not have a simple linear relationship with DEM, which can limit its capacity 
as an individual predictor for the spatial patterns of Tmin125. The addition of LST, however, contributed to the 
spatial estimation of Tmin. Unlike LST_day, without direct solar radiation LST_night spatial variability is more 
influenced by local and mesoscale atmospheric processes important for air temperature124. Therefore, LST_night 
and Tmin maintain similar spatial variability throughout the annual seasonal cycle as contrary to LST_day and 
Tmax13,47,126. This is also shown by the fact that higher values of R2 were reached with Tmin (Fig. 5c) than with 
Tmax.

In summary, it was shown that the spatial model used had a greater predictive capacity and a lower average 
error in the estimation of Tmin than Tmax, mainly during the summer months. LST had a higher value-added in 
Tmin than in Tmax in the study region. Furthermore, DEM was more important for Tmax prediction.

Daily air temperature.  The evaluation of the efficiency of daily air temperature data was similar to the one 
presented for the monthly normals, but only focused on the stations with long time series (with ≥75% of 
non-missing data) to reduce the influence of synthetic data. In addition, trends (Sen’s slope) were computed 
over the available period for each station and were compared with trends calculated based on the 10-fold 
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Fig. 5  Relative and absolute influence of spatial predictors (land surface temperature (LST), elevation (DEM), 
latitude (Y), and longitude (X)) over Peru using a monthly-normal moving window with multiple linear 
regression relating the Geographically Weighted Regression Kriging (GWRK). Proportion of variance explained 
(R2) of each predictor for (a) maximum air temperature (Tmax) and (b) minimum air temperature (Tmin); and, 
(c) overall R2. The statistical values are averaged over 253 stations.

https://doi.org/10.1038/s41597-023-02777-w


1 1Scientific Data |          (2023) 10:847  | https://doi.org/10.1038/s41597-023-02777-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

cross-validation. This analysis allows to estimate how reliable temperature trends can be predicted at un-sampled 
locations by interpolation, giving insight into the accuracy of temperature trends from the gridded dataset16,127.

Figure 6 shows the results for bias and MAE, while Fig. 7 shows the results for dr. On average, a lower bias 
was observed compared to the normal scale. This was probably due to the greater amount of averaged data. 
Despite this, it can be observed that there was a similar pattern to the normal scale. For the bias (MAE), values of 
−0.01 °C and 0.05 °C (1.36 °C and 1.11 °C) were found on average for Tmax and Tmin, respectively. Furthermore, 
estimates were slightly better for Tmax (Tmin) in the cold (warm) period. For dr, it reached moderate-to-high 
efficiency values (dr > 0.5) at most of the weather stations. Efficiency values were lowest for the warm period 
of Tmax (dr = 0.48). The area with the lowest dr values was in the south, mainly along the Pacific Coast and the 
border regions of the Andes and the Amazon.

Figure 8 exhibits the cross-validated predictions of the 1981–2020 trends in the annual mean and the warm 
and cold seasons of air temperature with the trends observed in the homogenized weather stations. This shows 
that most signs of observed trends are well detected by the estimated time series, particularly for Tmax rather 
than Tmin. The disparity is also evidenced by the dr metric, where estimated trends for Tmax are above 0.6 
while for Tmin they are around 0.5–0.6. There is not much difference between the annual and seasonal means.  
The results indicate that there is moderate efficiency in reproducing the observed spatial variations of the tempo-
ral trends in Tmax, but for Tmin, there is a poorer capability. This is probably due to the limited station density 
in Peru and artificial temporal variability mixed with real local climate features, despite the homogeneity check 
and QC procedures16. For the case of Tmin, the low temporal variability estimation can also be attributed to the 
lower temporal correlation power at shorter distances compared to Tmax (Supplementary Fig. 3), leading to a 
less efficient temporal reconstruction (as shown in the Gap-filling validation sub-section), and hence a lower 
temporal variability estimation. Furthermore, as Tmin is more influenced by local conditions, there would be 
a possible role of land cover change that has not been taken into account as a predictor128,129. Finally, it is worth 
mentioning that LST did not cover the entire period, which could also explain the bad performance of temporal 
trends.

In general, the results demonstrated a reasonably good capacity of the spatial model to estimate daily Tmax 
and Tmin. Similarly to the results from the normal monthly scale, Tmin outperformed Tmax in both the warm 
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Fig. 6  10-fold cross-validation bias and mean absolute error (MAE) for interpolated daily maximum (Tmax) 
and minimum (Tmin) temperature in the period 1981–2010 (n = 48 stations). Black lines represent the three 
main climate regions in Peru (Fig. 3).
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and cold periods. However, Tmax is slightly more efficient in estimating the observed spatial variations of the 
temporal trend.

Usefulness of the PISCOt v1.2 product.  Spatio-temporal variability of air temperature.  To present an 
application of PISCOt v1.2, a description of the spatio-temporal variability of air temperature indices characteris-
ing the trend (Mann-Kendall test and Sen’s slope) was conducted. This was applied in the southern Andes of Peru, 
a region characterised by agricultural and livestock subsistence and production42, and therefore highly dependent 
on climatic conditions. The indices selected were annual mean Tmax (MTmax), annual mean Tmin (MTmin), and 
the annual number of frost days (FD, number of days with Tmin <0 °C).

Additionally, to provide a full comparison with existing temperature products, both national datasets 
(PISCOt v1.1 and VS2018, described above) and global products (TerraClimate130, CHIRTS9, and ERA5-Land82) 
were included. TerraClimate provides Tmax and Tmin at monthly temporal resolution and a ≈4 km spatial res-
olution for 1958–2020. CHIRTS produces daily values of Tmax and Tmin at 5 km (0.05°) and is available from 
1983 to 2016. ERA5-Land is a reanalysis product that contains a great diversity of surface variables at a spatial 
resolution of 9 km (≈0.1°) since 1981. For ERA5-Land, daily Tmax and Tmin were obtained from the maximum 
and minimum hourly values.

First, the spatial differences for the annual average air temperature indices were examined for the period 
1981–2010. Figure 9a shows the annual climatologies of MTmax, MTmin, and FD in PISCOt v1.2, while Fig. 9b 
indicates the difference of PISCOt v1.2 with each gridded product. For MTmax, differences were small (below 
1 °C), mainly in PISCOt v1.1 and VS2018. ERA5-Land presented the lowest MTmax values compared to PISCOt 
v1.2, reaching differences of up to more than 6 °C in large parts of the Andean and Amazonian regions. The larg-
est areas of differences between the multiple gridded products occured at the boundaries of the climatic regions, 
i.e., at the Andes-Amazon and Pacific-Andean transitions and where no data were available. For MTmin, the 
spatial pattern of the differences was similar to MTmax for PISCOt v1.1 and VS2018. The largest differences were 
found in TerraClimate and CHIRTS, where the latter had the highest MTmin values, reaching differences of up 
to more than −6 °C in the Andean highlands. For FD, PISCOt v1.1 and ERA5-Land showed the best agreement 
with PISCO v1.2 (differences within 10%). Only for CHIRTS, differences of up to 60% were discovered. This was 
not surprising as CHIRTS represents the most diverging product regarding Tmin.
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Fig. 7  10-fold cross-validation refined index of agreement (dr) for interpolated daily maximum (Tmax) and 
minimum (Tmin) temperature in the period 1981–2010 (n = 48 stations). Black lines represent the three main 
climate regions in Peru (Fig. 3).
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The spatio-temporal variability of air temperature indices was assessed through trend analysis at different 
temporal and spatial windows. Figure 10 shows the decadal rate of change for 10-year time windows from 1981 
to 2020 for areas above 2000 masl in the Southern Andes of Peru. For MTmax, there was a good agreement 
between the trends of the different products. Periods with significant positive trend were coinciding well in 
all products in the 1990–1995, 2000–2005, and 2010–2015 years. Periods with slightly negative or zero trends 
coinciding well in all products in the 1995–2000 and 2005–2010 years. This was evident in PISCOt v1.2 com-
pared to ERA5-Land, VS2018, and PISCOt v1.1. For MTmin, there was more variability in the trends, with no 
clear overall direction as in MTmax, except for the latest years (since 2010). From 1980 to 2000, PISCOt v1.2 
showed similar variability (a slightly positive trend) to ERA5-Land, then moves closer (a slightly negative trend) 
to PISCOt v1.1 and VS2018 in the 2000–2007 period, and finally, since 2010, being in agreement with PISCOt 
v1.1 and VS2018 and ERA5-Land into a positive trend. It is worth noting that PISCOt v1.1 and VS2018 showed 
good agreement in Tmin throughout the analysis period, diverging to a greater extent from PISCOt v1.2 before 
1990. Significant positive trends in common in MTmin were only found during 1990–1995 and 2010–2015.  
A similar pattern as for MTmin was also found for FD. ERA5-Land (PISCOt v1.1) tended to behave analogously 
to PISCOt v1.2 for much of the analysis period, only disagreement (agreement) from 1995 to 2007. There were 
only significant overlapping trends in FD during 1990–1995 (negative) and 2010–2015 (positive).

Regarding spatial variability, Fig. 11 shows the trend by different elevation intervals for the period 1983–2013 
(common reporting period). In MTmax, the magnitude of trends increased for higher elevation intervals mainly 
in PISCOt v1.2, PISCOt v1.1, VS2018, and ERA5-Land. In contrast, in CHIRTS and TerraClimate no direct rela-
tionship between the elevation and trend magnitude was evident. There was a more substantial spatial disparity 
in the direction of the trends at lower than high elevations in the different products (Supplementary Fig. 5). 
For MTmin, the various products (except for CHIRTS) showed a better agreement of the relationship between 
the trend magnitude and elevation. However, this was less pronounced than for MTmax. Significant positive 
or negative trends in FD were only found between 3000 and 3500 masl, with a similar (inverse) agreement of 
PISCOt v1.2 with PISCOt v1.1 and ERA5-Land (CHIRTS). PISCOt v1.2 and ERA5-Land reached zero trends 
above 5000 masl, because for this elevation level for every year 100% FD was reached. Consequently, no tempo-
ral change can be found.

The results showed that PISCOt v1.2 performed well over the southern Andes of Peru. PISCOt v1.2 presented 
spatiotemporal trends and overall distribution similar to the other products. Some differences in the results can 
be pointed out. Firstly, there was a high degree of correspondance in the magnitude of the air temperature 
between PISCOt v1.2 and PISCOt v1.1 and VS2018. This was expected, since the three datasets used information 
from the same station’s network, albeit with a different number of stations and distinct pre-processing applied. 
Larger differences were obtained in ERA5-Land (MTmax) and CHIRTS (in MTmin and FD). ERA5-Land is a 
reanalysis-based dataset, thus, it is expected to represent the physics. However, it was subject to systematic dif-
ferences caused by the misrepresentation of the topography, requiring a bias correction prior to its use at high 

●

●
●

●

●

●

●

●

●
●●●

●
●

● ●

●

●

●

● ●

●

●

●●

●

●
●●

● ●●●

●

●●●

●

●

●
●●

●

●
●

●

●

●

dr � 0.68

●

●

●

●

●

●

●● ●

●

● ●

● ●

● ●

●

●

●

●

●

●
●

●
● ●

●
●
●

●

●

●
●

●

●
● ●

●

● ●

● ●●

●
●

●

●

●

dr � 0.55

● ●

●

●

●

●

●

●

●

●
● ●

●
●
●
●

●

●

●

●
●

●

●

●●

●

●
●

● ●
●

●

●

●

●●●
●

●

●

●●

●

●

●

●

●
●

dr � 0.67

●

●

●

●
●
●

●
● ●

●

●
●

●
●

●

●

●

●

●

●
●

●● ●●
●

●
●●

●

●

●●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

dr � 0.54

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

● ● ●●
●

●

●
●

●

●

●

●
●●

●

●●●

●

●

dr � 0.65

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●●

●
●

●

●

●
● ●

●

● ●

●

●

●

●

●

●
●●

●

●

●

● ●
●

●
●

●

●

●

dr � 0.58

Annual Oct.−Mar. Apr.−Sep.
Tm

ax
Tm

in

0.00 0.03 0.06 0.09 0.00 0.03 0.06 0.09 0.00 0.03 0.06 0.09

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.01

0.02

0.03

0.04

0.05

Observed (°C/year)

Es
tim

at
ed

 (°
C

/y
ea

r)

Fig. 8  Scatterplot of estimated (10-fold cross-validation) and observed air maximum (Tmax) and minimum 
(Tmin) temperature trends (Sen’s slope) in the period 1981–2020. Mean values at annual; and October-March 
and April-September mean seasons. Blue lines (linear regression) show the agreement between observed and 
estimated trends. The refined index of agreement (dr) is also shown for each plot (n = 48 stations).
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elevations131. CHIRTS is a merged product of station-based and reanalysis data. In its construction, it prioritised 
the estimation of Tmax rather than Tmin9, possibly explaining the significant differences with the latter variable. 
Considering the trends, there was a clear warming signal5,38, with larger magnitudes and spatially more homoge-
neously for Tmax than for Tmin42. CHIRTS and TerraClimate showed largest differences in temporal and spatial 
trends, leading to large unphysical trends due to unhomogenized or missing station data. This is an issue that 
should be fixed by using homogenisation algorithms.

Fig. 9  Spatial distribution and differences of the mean annual (1981–2010) temperature indices (mean Tmax 
(MTmax), mean Tmin (MTmin), and frost days (FD)) in the southern Andes of Peru. (a) Spatial distribution 
for PISCOt v1.2. (b) Difference of PISCOt v1.2 with each gridded product (PISCOt v1.1, VS2018, TerraClimate, 
CHIRTS, and ERA5-Land) and temperature indices. For CHIRTS, the mean average corresponds to 1983–2010. 
Black lines represent the three main climate regions in Peru (Fig. 3); Lake Titicaca is shown as a lightblue filled 
area.
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Fig. 10  Running annual Sen’s slope (for 10-years window from 1981 to 2020) of temperature indices (mean 
Tmax (MTmax), mean Tmin (MTmin), and frost days (FD)) for PISCOt v1.2 and gridded products (PISCOt 
v1.1, VS2018, TerraClimate, CHIRTS, and ERA5-Land) in the southern Andes of Peru (following delimitation 
of red box in Fig. 2 considering all land >2000 masl). Significant trend estimates (Mann–Kendall trend test with 
p < 0.05) are shown with an open circle. The x-axis shows the centroid year of running trends.
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v1.1, VS2018, TerraClimate, CHIRTS, and ERA5-Land) over the southern Andes of Peru.
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Coastal fog effect on air temperature.  In order to assess PISCOt v1.2 at a daily time step, we provide an analysis 
of the effect of coastal fog on modulating the daily mean air temperature. Coastal fog frequently occurs along 
the Peruvian coast and low Andean foothills. This phenomenon is especially persistent during austral winter 
(June-September), although it can occasionally appear throughout the year132–134. The occurrence of fog is often 
produced by the particular thermal inversion layer situation with cool lower air masses due to the south-north 
flowing Humboldt Current. The frequency of coastal fog increases gradually to the south, causing a marked 
diurnal cooling in the influenced coastal-Andean areas134.

We exemplified two situations with two variables: surface reflectance (Sref) from the MODIS terra satellite 
(MOD09GA version 6.1, band 1)135, which relates to the amount of cloud cover and the mean air tempera-
ture (Tmean: mean of Tmax and Tmin). This was performed during a coastal fog-covered (2007/08/25) and 
cloud-free (2006/08/24) day in northern Peru, including the Pacific Coast and Andean slopes134.

Figure 12 shows the spatial variability of Sref and Tmean during the two situations and its spatial difference; 
in addition, the vertical distribution of Tmean with elevation was included. For the Pacific Coast area, Sref 

Fig. 12  Examples of surface reflectance (Sref, MODIS-Terra) and mean air temperature (Tmean: mean of Tmax 
and Tmin) for two conditions of coastal fog-covered (a1 and a2) and cloud-free (b1 and b2) day for the northern 
regions of Peru (Pacific Coast and Andes). In addition, the difference between Sref and Tmean of both days is 
shown (c1 and c2; cloud-free day - fog-covered day). The vertical distribution of Tmean for both situations is 
shown in the lower panels as counts per air temperature values and elevation (a3, b3, and c3, respectively). c3 
shows the number of grid cells with Tmean differences between −2.5 to 5.0 °C by elevation. Red (a1 and b1) and 
black (c1, a3, b3, and c3) lines represent the three main climate regions in Peru (Fig. 3).
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values were higher (more reflectance) on the fog-covered day than on the cloud-free day, reaching a contrast of 
up to −1 (Fig. 12a1,b1,c1). The negative differences in Sref revealed very well the spatial configuration of the 
fog. When inspecting Tmean, lower values were found on the fog-covered day compared to the cloud-free day, 
leading to differences of up to 2–6 °C; outlining certainly the Pacific Coast area (Figure 12a2,b2,c3). In this sense, 
there was a clear spatial contrast in both variables in the two situations: the higher the Sref values (more cloud 
cover), the lower the Tmean.

From a vertical perspective (Figure 12a3,b3,c3), it was also confirmed that there was a contrast on both 
days in low-elevation areas where the fog was located. We found that the higher Tmean differences were mostly 
present for grid cells below 500 masl. There are, however, also positive differences above 500 masl, but for much 
fewer grid cells. This high contrast in the number of grid cells determined the presence of fog on low levels. 
Interestingly, the value of 500 masl is close to the height of the thermal inversion layer of 400 masl identified in a 
previous study134. Furthermore, we found negative Tmean differences between both situations above 2500 masl 
(Figure 12c3), which can also be attributed to the presence of clouds at higher elevations on the cloud-free day 
rather than on the fog-covered day (Sref difference is positive in those areas).

These results suggest that PISCOt v1.2 is able to identify the effect of coastal fog on air temperature. 
Nevertheless, more in-depth analysis is required for a better understanding of this phenomenon.

Usage Notes
The PISCOt v1.2 database is a valuable dataset for different applications in Peru as it allows for high-resolution 
analyses linked to e.g. climate change, health, hydrology, ecosystem assessments, and other fields for research 
and practitioners. PISCOt v1.2 supports the generation of new findings urgently required for more robust local 
decision-making in the scientific and political communities, especially in a context of data scarcity and high 
uncertainties in the region.

The new PISCOt v1.2 product has improved compared to the earlier version 1.1 in several key aspects: 
more assimilated time series, better consistency of station data pre-processing (quality control, gap-filling, and 
homogenisation), use of updated freely available auxiliary predictors, higher spatial resolution, a tidier and 
revised calculation sequence, and improved version control. Therefore, the development of PISCOt v1.2 is more 
consistent, traceable, and reproducible compared to other previously established gridded products in Peru.

PISCOt v1.2 adequately characterises the spatiotemporal variability of air temperature in average and 
extreme values using indicators. However, within the scope of this study only three indices were used. Future 
assessments therefore need to focus on more indicators of climate extremes not assessed in this study.

As the region is topographically complex, including steep climatic gradients, and is characterized by a low 
density and uneven distribution of weather stations, inherent limitations in spatial interpolation are expected, 
mainly at high elevations (between 1000 and 2000 masl, and >3500 masl). It is therefore recommended to use 
PISCOt v1.2 along with other gridded multi-source products which would allow for a better characterisation 
of the associated uncertainties in air temperature. More importantly, when aiming the evaluation of temporal 
trends on Tmin. A poor trend validation was found for Tmin that could lead to local erroneous climatic evalua-
tion, in some cases with the opposite sign.

Furthermore, it is essential to clarify that matching weather stations with PISCOt v1.2 (and other products) 
is not recommended for assessing air temperature accuracy136. This is because such an analysis would favour 
products with interpolation algorithms that constrain the gridded data to precisely match weather station data. 
Likewise, if processes such as gap-filling, and homogeneity correction, among others, are applied to the observed 
data before spatial interpolation, the updated information would therefore no longer match the original data.

Finally, the gridded data of PISCOt v1.2 should only be used for continental areas. Due to the differences in 
LST values over water bodies compared to their surrounding terrestrial landscapes and the lack of observations 
over lakes, further validation is required to confirm the accuracy of spatial air temperature patterns over water13. 
Estimates over e.g. water bodies should therefore be masked out (i.e. be considered as empty grids).

Code availability
The construction of the gridded dataset PISCOt v1.2 was performed using the R (v3.6.3) and Python (v3.8.5) 
programming languages. The entire code used is freely available at figshare137 and GitHub (https://github.com/
adrHuerta/PISCOt_v1-2) under the GNU General Public License v3.0.
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