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Phase transitions in growing groups: How cohesion can persist
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The cohesion of a social group is the group’s tendency to remain united. It has important implications for the
stability and survival of social organizations, such as political parties, research teams, or online groups. Empirical
studies suggest that cohesion is affected by both the admission process of new members and the group size. Yet,
a theoretical understanding of their interplay is still lacking. To this end, we propose a model where a group
grows by a noisy admission process of new members who can be of two different types. Cohesion is defined in
this framework as the fraction of members of the same type and the noise in the admission process represents
the level of randomness in the evaluation of new candidates. The model can reproduce the empirically reported
decrease of cohesion with the group size. When the admission of new candidates involves the decision of only
one group member, the group growth causes a loss of cohesion even for infinitesimal levels of noise. However,
when admissions require a consensus of several group members, there is a critical noise level below which the
growing group remains cohesive. The nature of the transition between the cohesive and noncohesive phases
depends on the model parameters and forms a rich structure reminiscent of critical phenomena in ferromagnetic
materials.

DOI: 10.1103/PhysRevResearch.5.013023

I. INTRODUCTION

A social group is an organized collection of individuals
who share common interests or goals [1]. Social groups are
the building blocks of our society: They emerge naturally in
larger social networks [2–4] and play an important role in
opinion spreading [5–7], cultural diffusion [8,9], polarization
[10], and political impact [11,12], among many others. The
formation and growth of social groups have been studied in
both offline [13–16] and online [17–20] environments.

In the context of complex networks, research has focused
on how distinct growth mechanisms shape the group’s net-
work structure [21–23] and what are the consequences of the
former on various dynamical processes that can take place
on social networks [24–27]. Here, instead, we study how
group growth affects cohesion. Defined as “the tendency of
a group to stick together and remain united” [28], cohesion
is crucial for the survival of a group [29,30], and hence,
must be considered before any social structure. Cohesion is
a much-studied subject in psychology and sociology (see [31]
for a recent review) with important implications. For example,
cohesive groups have been shown to perform better in their
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tasks [28,32]. Among the main factors that influence cohesion
is the admission process of new members [13,33]. At the same
time, empirical studies show that groups with more members
tend to be less cohesive [34,35]. A successful group that
attracts new members is thus in danger of gradually losing
its cohesion, worsening its performance, and possibly even
fragmenting into smaller cohesive groups. One example of
well-documented group fragmentation due to a lack of group
cohesion is the classical Zachary karate club [36], where a
disagreement over lesson fees evolved into an ideological
conflict among club members and finally resulted in the club’s
division. Another situation where a lack of cohesion can have
serious consequences on society is that of political parties and
governments. Indeed, mechanisms that favor the formation of
heterogeneous coalition governments, i.e., noncohesive gov-
ernments, tend to result in a high degree of fragmentation and
instability, with negative social and economic consequences
[37]. To avoid the above-mentioned detrimental outcomes, it
is essential to understand the interplay between the admission
process, group size, and group cohesion. Yet, to the best of
our knowledge, no such integrative model exists.

Motivated by this lack of knowledge, we formulate a mini-
malist model for the evolution of a social group. In the model,
a small homogeneous group gradually grows by adding new
members through an admission process. We assume candidate
members of two types: Fit for the group (sharing goals or
values with the founder members) or unfit for the group other-
wise. Candidates are admitted or rejected based on positive or
negative evaluations received from the group members. Since
member similarity contributes significantly to group cohesion
[38–40], in our framework we define cohesion as the fraction
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of fit group members. More complicated definitions capturing
other aspects of group cohesion [41,42], such as the group’s
ability to work toward a given task, can be studied in the
future. We assume that individual evaluations of candidates
are at odds with homophily (a group member appreciating a
candidate of the same type) with some small probability that
we refer to as the evaluation noise. In the real world, the pres-
ence of noise is a joint result of carelessness and the intrinsic
difficulty of the evaluation process. A careless interviewer, for
example, has a high probability of wrongly assessing whether
a job candidate is suitable or not, yet even the most meticulous
interviewer has a nonzero chance of making a mistake [43,44].
In addition to noise, the rigorousness of the admissions pro-
cess in our framework is determined by how group members
who evaluate a candidate are chosen, their number, and how
individual evaluations are aggregated. Regarding the latter
point, we consider for simplicity an aggregation based on
unanimous consensus, meaning that all members involved in
the evaluation must agree on admissions.

Our goal is to study the long-term effects of various admis-
sion processes on group cohesion in the presence of noise.
We find that if each candidate is evaluated by one group
member, group cohesion markedly decreases with the group
size. The outcome of the admission process is fundamentally
different when admissions require a consensus of two or more
group members. We find analytically that a critical evaluation
noise level exists, above which group cohesion approaches the
cohesion of a random group or is even lower. As the number
of members involved in the admission process increases, the
critical noise level increases. We show that at the critical
point, the model exhibits a phase transition whose properties
depend on the relative proportion of fit and unfit candidates
who want to join the group. In particular, when fit and unfit
candidates are equally probable, the phase transition belongs
to the mean-field universality class.

II. GROUP GROWTH MODEL

The model is defined as follows. Consider individuals of
two different types, +1 (fit for the group) and −1 (unfit for
the group), respectively. Denote the type of group member i
by σi. The group initially consists of N0 founder members that
are all of type +1: σi = +1 for i = 1, . . . , N0. The growth
of the group proceeds in discrete steps. In each step, one
candidate member is considered to be admitted or rejected.
The type of each candidate is drawn at random with equal
probability (we relax this assumption later). Denote the type
of candidate in step j as c j . We assume that group mem-
bers tend to positively evaluate candidates of the same type.
Specifically, if group member i is asked to evaluate candidate
j and c jσi = +1, the evaluation is positive with probability
1 − η and negative otherwise. If c jσi = −1, the evaluation of
candidate j by member i is positive with probability η and
negative otherwise. Here, η ∈ [0, 0.5] is the noise parameter
that characterizes the level of randomness in the evaluation of
candidates.

We assume that each candidate is evaluated by m group
members (N0 � m to ensure a sufficient number of evalu-
ators). A candidate is admitted only if all evaluations are
positive. Within this framework, we consider two different

ways to choose the evaluating group members: (1) uniformly
(uniform case, UC) and (2) proportionally to the number
of admissions to which the member has already contributed
(preferential attachment, PA). The PA case mimics the accu-
mulation of social capital by influential group members who
thus evaluate more group members and leads to a scale-free
distribution of social capital in the group [45]. As an addi-
tional benchmark, we consider the case where one founder
member evaluates each candidate (dictatorship, DS).

The growth of the group continues until a given group size,
N , is reached. We then evaluate the resulting group cohesion,
C, as the fraction of fit group members,

C = ∣∣{i : σi = +1}N
i=1

∣∣/N. (1)

A group composed solely of fit members has the cohesion
of one (note that such a group can still be diverse when the
members differ in features other than being fit for the given
group). When N = N0, C = 1 as all founder members are fit
for the group. When η = 0, unfit candidates always receive
negative evaluations from fit group members. As the group
initially consists of only fit members, all unfit candidates are
rejected and the group cohesion remains one for any N . When
η = 0.5, the evaluations are not informative of the types of
candidates and thus the probability of admitting an unfit can-
didate is 1/2. As N grows, group cohesion then approaches
1/2 which is the cohesion level of a random group.

III. RESULTS

A. One evaluating member

Let us first consider the case where the candidate is
evaluated by only one group member. To study cohesion an-
alytically, we count the time in the growing process by the
number of admitted members. In this way, the N0 founder
members are in the group at time t = 0, while the N th member
is admitted at time t = N − N0. We introduce the probability
P(t ) that the t th admitted member is fit for the group. As
the group is assumed to initially consist of N0 fit members,
P(0) = 1. As fit and unfit candidates are equally likely, if
member i admits a candidate, the candidate is fit with the
probability

W (i) = P(i)(1 − η) + [1 − P(i)]η, (2)

where the two terms correspond to σi = +1 (i is fit) and σi =
−1 (i is unfit), respectively. For the dictatorship case, only
the founder members are allowed to evaluate, so i = 0 and
P(t ) = W (0) = 1 − η. The cohesion is then given by

C(N, N0, η)DS = (1 − η) + ηN0

N
. (3)

As N → ∞, group cohesion thus approaches 1 − η, i.e., it
decreases linearly with noise.

For the uniform case, the t th admitted member can be
evaluated by a random group member i with i < t ; P(t ) is
thus obtained from W (i) by averaging over all i < t [W (0)
contributes N0 times as there are N0 founder members].
We get

P(t + 1) = N0

t + N0
W (0) + 1

t + N0

t∑
i=1

W (i), (4)
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FIG. 1. Analytical and numerical results when fit and unfit candidates are equally likely. (a) Mean cohesion, C, for various ways (UC, PA,
DS) of choosing one evaluating member vs. evaluation noise η (N0 = 1 and N = 103). (b) Scaling of C − 1/2 with group size N for various
ways (UC, PA, DS) of choosing one evaluating member (N0 = 1 and η = 0.1). In panels (a) and (b), the solid lines represent the analytical
solutions given by Eqs. (3), (7), and (11). The symbols and their error bars (too small to be visible) represent means and standard errors
based on 10 000 model realizations. (c) Mean cohesion, C, in the UC case with m = 2 evaluating members vs evaluation noise η (N0 = m and
N = 103, 106, 109). The solid line is the analytical limit when N → ∞, given by Eq. (15). (d) The phase diagram of mean cohesion, C, in
the (m, η) plane for the UC case (N = 106 and N0 = m). The solid line is the analytical solution in the N → ∞ limit, given by Eq. (17). (e)
Scaling of C − 1/2 in the UC case with m = 4 evaluating members close to the critical noise level ηc = 3/8 (N0 = m and N = 103, 106, 109).
The solid line is the analytical limit when N → ∞. (f) A phase diagram in the (η, N ) plane comparing multiple evaluators with a dictator.
Each point is colored by the smallest number of evaluators that are needed to outperform a single dictator (up to m = 4). In panels (c)–(f), each
point is an average over 500 model realizations (error bars representing twice the SEM are too small to be visible).

which is a recursive equation for P(t ) with the initial condition
P(1) = 1 − η (as the first member is certainly evaluated by a
founder member). Eq. (4) can be rearranged as

P(t + 1) =
(

1 − 2η

N0 + t

)
P(t ) + η

N0 + t
, (5)

which can be solved analytically. Averaging the solution over
t = 0, . . . , N − N0 [again, the weight of P(0) is N0], the ex-
pected cohesion reads

C(N, N0, η)UC = 1

2

(
1 + �(N0 + 1)�(N + 1 − 2η)

�(N0 + 1 − 2η)�(N + 1)

)
. (6)

When η = 0, C(N, N0, η) = 1 for any N and N0, as only fit
candidates can be admitted. However, the expected cohesion
decreases fast with η and is always lower than that of the
dictatorship case [Fig. 1(a)]. When N0 is fixed and N � N0,
Eq. (6) implies

C(N, N0, η)UC ≈ 1

2
+ �(N0 + 1)

2�(N0 + 1 − 2η)
N−2η, (7)

which approaches to 1/2 as N grows. This means that, with
only one evaluating member (randomly chosen), the group
cohesion tends to the cohesion of a random group as the
group grows, regardless of how small the level of noise is
and how many are the founder members [Fig. 1(b)]. This is
in agreement with the empirical studies showing that large
groups are less cohesive [34,35]. In particular, the model

with one evaluating member and uniform choice (UC) can be
mapped on a recent opinion formation model [46] where a
result analogous to Eq. (7) has been derived using the master
equation formalism.

To study the impact of introducing social capital in the
model, we now consider choosing the evaluating member
by the classical PA mechanism. To this end, we keep an
activity counter, k, for all group members. This counter in-
creases by one for each participation in the admission of a new
member. Without loss of generality, we set the initial activity
counter to a0 := N0 − 1 and 1 for all founder members and
the later admitted group members, respectively (when N0 =
1, we set a0 = 1 to avoid zero counter of the sole founder
member). The probability of choosing a member is assumed
to be directly proportional to the activity counter. Using the
continuum approximation [47] for the dynamics of the activity
counter, we can write

ki(t + 1) = ki(t ) + ki(t )

2t + N0a0
, (8)

where the second term on the rhs reflects the PA selection
mechanism.

Analogously to Eq. (4), the probability that the t th admitted
member is fit for the group, P(t ), for the PA case reads

P(t + 1) = N0
W (0)k0(t )

2t + N0a0
+

t∑
i=1

W (i)ki(t )

2t + N0a0
, (9)
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where W (i) is defined by Eq. (2). With the solution of Eq. (8)
and the initial condition P(1) = 1 − η, Eq. (9) can be rear-
ranged in a simpler form [similar to Eq. (5)]

P(t + 1) =
(

1 − 2η

2t + N0a0

)
P(t ) + η

2t + N0a0
. (10)

Similarly to the uniform case, the expected group cohesion is
obtained by averaging the obtained P(t ) over t = 0, . . . , N −
N0 (again assigning weight N0 to t = 0). We see [Fig. 1(a)]
that the expected cohesion still decreases rapidly with η, yet it
differs from the uniform case. When N → ∞ and N0 is fixed,
the leading contribution to cohesion is

C(N, N0, η)PA ≈ 1

2
+ (1 − 2η)�(l0 + 1)

2(1 − η)�(l0 + 1 − η)
N−η, (11)

where l0 := N0(N0 − 1)/2. We find that group cohesion in the
PA case is not only higher than in the uniform case [Fig. 1(a)],
it also decays with N slower [Fig. 1(b)]: The scaling exponent
is η instead of 2η. This higher robustness is due to preferen-
tial attachment effectively giving more power to early group
members who, on average, are more likely to be fit than group
members who join the group later. At the same time, the
limit cohesion remains unchanged: As the group grows, its
cohesion approaches the cohesion of a random group.

B. More evaluating members

We now study the model behavior when m > 1 members
evaluate each candidate who is admitted only when all evalu-
ations are positive. Because of the strong nonlinearity of the
process, we only treat the N → ∞ limit. Consider first the
uniform case with m = 2 and denote the evaluating members
i and j. For large N , the correlation between the types of
i and j can be neglected, and the probabilities of admitting
fit and unfit candidates can be factored as W (i)W ( j) and
[1 − W (i)][1 − W ( j)], respectively, where W (i) is given by
Eq. (2). As fit and unfit candidates are assumed to be equally
likely, the probability that an admitted member is fit is

Wi j ≡ W (i)W ( j)

W (i)W ( j) + [1 − W (i)][1 − W ( j)]
. (12)

We build the solution again on the probability P(t ). As for
Eq. (4), P(t ) is obtained by averaging Wi j over all possible
pairs of evaluating members, each of whose is equally likely
in the case of uniform selection. Thus, we can write

P(t + 1) =
(N0

2

)
W00 + N0

∑t
i=1 Wi0 + ∑t

j>i �=0 Wi j(t+N0

2

) , (13)

where the initial condition remains P(0) = 1.
If limt→∞ P(t ) exists, then limN→∞ C(N ) =

limt→∞ P(t ) := P. To find the expected cohesion for
N → ∞, it thus suffices to obtain the stationary solution of
Eq. (13). For large t , the main contribution to the numerator
of Eq. (13) comes from Wi j where i and j are large. Denoting
W := P(1 − η) + (1 − P)η, we obtain

P = lim
i, j→∞

Wi j = W 2

W 2 + (1 − W )2
. (14)

Besides the trivial solution P = 1/2, this equation has two
nontrivial solutions when η < ηc = 1/4, representing the

group composed of mostly fit and mostly unfit members,
respectively. As we assume that the founder members are fit,
the second solution is not physical, and we can write

P =
⎧⎨
⎩

1
2 +

√
1−4η

2(1−2η) if η < 1/4,

1
2 if η � 1/4.

(15)

As we said before, this P is equal to the expected group
cohesion in the limit N → ∞. The expected cohesion thus
undergoes a second-order phase transition at the critical
noise ηc = 1/4: From an “ordered phase,” where most of
the group’s members are fit, to a “disordered phase,” where
the group is equally composed of fit and unfit members.
Figure 1(c) shows that the numerical simulations converge
consistently to Eq. (15) as N increases, thus confirming our
analytical results.

The above results can be generalized to m > 2, leading to

P = W m

W m + (1 − W )m
. (16)

The solution again undergoes a second-order phase transition,
this time at

ηc = 1

2
− 1

2m
, (17)

as confirmed in Fig. 1(d). This phase transition can be further
characterized by studying its critical exponents. Expanding
Eq. (16) around the critical value, we find P − 1/2 ∝ (ηc −
η)β , where β = 1/2 for any m � 2 [Fig. 1(e)]. This shows that
our model belongs to the mean-field universality class [48].
Note that Eqs. (16) and (17) are in principle also valid for
m = 1, but in this case, we have a first-order phase transition
at ηc = 0 where the limit cohesion immediately drops from
one (for η = 0) to 1/2 (for η > 0).

We find that more evaluating members dramatically im-
prove the group’s robustness to noise compared to only one
evaluating member. This motivates us to compare with the
dictatorship case where the limit cohesion is also above 1/2.
Our results show that while cohesion for m = 1 is always
lower than for the dictatorship case, a noise range exists for
m > 1 where cohesion is higher than for the dictatorship case.
Figure 1(f) shows the regions of the parameter space (η, N )
where the unanimous decision of at least m group members
(up to m = 4) is needed to have greater cohesion than in the
dictatorship case. Note that this region shrinks rapidly as m
increases. We thus see that with respect to group cohesion,
relying on the consensus of several evaluating members is
better than relying on a single dictator.

It is straightforward to show that when the choice of the m
evaluating members is driven by preferential attachment, the
expected cohesion in the limit N → ∞ coincides with that of
the uniform case derived above. However, the PA mechanism
makes convergence to the solution of Eq. (16) slower, as the
weight of the founder members in Eq. (13) is larger. This is
analogous to Eq. (11) converging to 1/2 slower than Eq. (7)
for m = 1.

C. Less (or more) fit candidates

So far we have assumed that fit and unfit candidates
are equally likely. In the real world, however, there can be
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FIG. 2. Analytical and numerical results when fit and unfit candidates are not equally likely ( f �= 1/2). (a) Mean cohesion, C, for various
ways (UC, PA, DS) of choosing one evaluating member vs evaluation noise η (N0 = 1, N = 103, and f = 1/4). (b) Mean cohesion, C, in the
UC case with m = 2 evaluating members vs evaluation noise η (N0 = m, N = 109, and f = 1/4, 1/2, 3/4). (c) The phase diagram of mean
cohesion, C, in the (m, η) plane for the UC case ( f = 1/4, N0 = m, and N = 106). (d) Mean cohesion, C, in the UC case with m = 2 evaluating
members vs fraction of fit candidates f (η = 0.1 < ηc = 1/4, N0 = m, and N = 103, 106, 109). (e) The phase diagram of mean cohesion, C,
in the ( f , η) plane for the UC case (N = 106 and N0 = m = 2). (f) A phase diagram in the ( f , η) space, comparing multiple evaluators with a
dictator. Each point is colored by the smallest number of evaluators that are needed to outperform a single dictator (up to m = 4). In all panels,
each data point is an average over 500 model realizations (error bars representing twice the SEM are mostly too small to be visible). The solid
lines represent numerical solutions of Eq. (18) which is valid for N → ∞.

a marked asymmetry between the number of fit and unfit
group’s candidates. The fraction of fit candidates can be ex-
pected to be small, for example, for an attractive company or
a top-rated university.

To account for this, we introduce a new parameter, f ∈
[0, 1], which represents the (prior) probability that a candidate
is fit for the group. When f �= 1/2, obtaining an exact solution
for group cohesion is difficult even when m = 1. We thus
treat only the case N → ∞. In this limit, the steps leading
to Eq. (16) can be repeated, this time explicitly reflecting
the probability f that a candidate is fit when computing the
probability that an admitted member is fit. In this limit, the
UC and PA cases have the same behavior for the reasons
discussed at the end of the previous section. In particular,
Eq. (16) becomes

P = f W m

f W m + (1 − f )(1 − W )m
, (18)

which reduces to Eq. (16) when f = 1/2. As before, this
equation has two solutions, of which the higher one represents
the studied case of fit founder nodes. Figs. 2(a) and 2(b) show
the results for m = 1 and m = 2, respectively. When η = 1/2,
evaluations are uncorrelated with node types and admissions
become random; the fraction of fit nodes in the group then
approaches the fraction of fit nodes among the candidates and
limN→∞ C = f .

When f > 1/2, the solution of Eq. (18) is a continuous
monotonically decreasing function of η. When f < 1/2, we

observe a first-order phase transition at a critical noise level
ηc that depends on m and f [Fig. 2(c)]. At η = ηc, the limit
expected cohesion drops from a value close to one to a value
less than 1/2. The size of the jump reduces to zero for
f = 1/2, where the nature of the phase transition changes
from first to second order. Above ηc, cohesion grows until it
reaches C = f in η = 1/2. In the extreme case of m = 1, we
have ηc = 0 for any f < 1/2, so cohesion always grows with
noise (excluding the point η = 0), as shown in Fig. 2(a). The
increase of mean cohesion with η for η > ηc can be explained
as follows. When f < 1/2 and η > ηc, the high number of
unfit candidates causes them to be gradually admitted more
often than fit candidates due to evaluation errors. Once this
happens, a group mostly composed of unfit members emerges
and cohesion drops below 1/2. Since this occurs already in
the early stages of group formation, the system behaves as
if there were unfit founder members and a majority of unfit
candidates, which is the same (up to replacing C with 1 − C)
as fit founder members and a majority of fit candidates [cf. the
results for f = 1/4 and f = 3/4 at η > ηc in Fig. 2(b)]. Thus,
for any f < 1/2 and η > ηc, the group reverses its initial
composition.

The mathematical properties of the studied model allow us
to interpret f from a physicist’s perspective. The model has
no critical behavior for f > 1/2 and exhibits a second-order
phase transition at f = 1/2, similarly to what the infinite-
range Ising model does when the external magnetic field is
reduced to zero [49]. In this sense, f is analogous to the
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external magnetic field and f = 1/2 corresponds to zero field.
Cohesion and the evaluation noise are, in turn, analogous to
magnetization and temperature in the Ising model, respec-
tively. When f < 1/2, a first-order phase transition emerges
in our model that is absent in the standard Ising model. This is
due to the symmetry breaking of the system caused by the ini-
tial conditions, i.e., the type of founder nodes. When η < ηc,
cohesion is larger than 1/2 even when f < 1/2, analogous
to a material initially magnetized in one direction which, for
temperatures not too high, remains magnetized in the same
direction even if the external magnetic field points in the op-
posite direction. If we fix evaluation noise at η < ηc( f = 1/2)
and vary f , cohesion undergoes a first-order phase transition
at some critical value fc which depends on η and m [see
Figs. 2(d) and 2(e)].

Finally, we study the dictatorship case when f �= 1/2. It
is straightforward to show that in this case cohesion is no
longer linear in η, but for N → ∞, it is given by f (1 −
η)/( f − 2 f η + η), as shown in Fig. 2(a). We compare this
result with the solution of Eq. (18) in the ( f , η)-phase diagram
of Fig. 2(f). Again, the area in this parameter space where
at least m evaluating members are needed to outperform the
dictator decreases with m. In particular, when m is sufficiently
large, there exists a value of f > 1/2 such that m evaluating
members are better than the dictator for any η. These findings
again suggest that when external conditions (i.e., noise and the
fraction of unfit candidates) are not too adverse, it is preferable
to rely on the consensus of several evaluating members rather
than the judgments of a single dictator.

IV. CONCLUSION AND DISCUSSION

We introduced a simple, yet not trivial, model of group
formation to study the dynamics of group cohesion. We show
that the number of members involved in the evaluation of new
candidates is crucial to determine cohesion in large groups. As
the level of randomness in the admission process increases,
the system undergoes a phase transition. Above a critical
noise level, large groups cannot remain cohesive. However,
the more members evaluate each candidate, the higher the
critical noise level. In the extreme case of only one eval-
uating member, the critical noise is zero. Growing groups
then gradually lose their cohesion regardless of how small the
evaluation noise is. This not only agrees with empirical studies
on the relation between group size and cohesion [34,35] but
also suggests an alternative and complementary mechanism
for the observed group fragmentation in the society [50,51].
This fragmentation is observed in groups that form sponta-
neously, corresponding to the case m = 1 in our model where
a single group member can decide (see [17] for an analysis
of groups of friends and online communities without an es-
tablished admission process). More formal groups where the
admission of new applicants follows a rigorous process can
be modeled by increasing the number of evaluating group
members.

We further considered the case where one fixed group
member (dictator) decides all admissions. Although the dic-
tator always performs better than one evaluator chosen at
random, requiring a consensus on new admissions between
several members is a better strategy if the evaluation noise is

not too high. Finally, we investigated the situation where the
fractions of fit and unfit candidates are different. When unfit
candidates are more frequent than fit candidates, the system
undergoes a discontinuous transition at a critical noise above
which the group becomes mostly composed of unfit members.
Note that such a group is in principle also cohesive. However,
this is still not a desirable outcome, as the unfit members
may be unable to fulfill the group’s original purpose. The
unfit majority is furthermore in conflict with the fit founding
members which can cause tensions and eventually lead to the
group’s disintegration. This transition can correspond to, for
example, a significant party policy shift. An example of this
is the five-star movement, an Italian political party that, in
the course of its evolution and growth, changed from being
a euroskeptic party to a pro-European one [52]. This is an
interesting feature of our model and we argue that it could
advance the understanding of group opinion change phenom-
ena, such as parties’ position shifts (several examples of this
are analyzed, for instance, in [53,54]).

In reality, the factors that contribute to the loss of cohesion
of a growing group are multifaceted and not easily identi-
fiable (e.g., psychological factors). Nonetheless, our model
focuses on the most-essential group growth mechanism
and suggests that group size, randomness, and the admis-
sion processes jointly affect group cohesion in a nontrivial
way.

Among possible extensions of our work are different ad-
mission rules (e.g., majority voting) and the introduction of
node-type dynamics as a result of peer influence. An example
of how the latter can be implemented in our model comes from
[55], a pioneering paper that has inspired many subsequent
models in the field of social physics [56]. In this paper, the
authors introduce a nonergodic theory of social collective phe-
nomena, postulating that the dynamics of opinions in a system
of interacting individuals evolves toward a configuration that
maximizes the sum of conformity (analogous to cohesion in
our model) and group entropy (representing the potential for
innovation given by the number of possible configurations
with a certain value of conformity). Similar to our findings,
they showed that, by varying what they call the divergence
parameter (analogous to noise in our model), there is a thresh-
old value below which the group becomes biased toward an
opinion (in our language, cohesion is positive). They also
show that the larger the group size, the less the tendency
to group polarization. However, here (and in the other sub-
sequent works) the authors do not consider how the group
grows, but only what are its equilibrium properties given
its size. Hence, by integrating these well-established results
with our group growth mechanism based on the admission
process of new candidates, we believe our work can be further
enriched and set a basis for a new research direction in the
interdisciplinary field of social physics.

From a different perspective, fit and unfit nodes can be
interpreted as individuals with different characteristics, while
the evaluation noise then represents a tolerance to diversity.
Our approach can then be used to study the relationship be-
tween group size, cohesion, and diversity. In addition, one can
introduce the concept of the growth cost given by the time
and total effort required to form a group with the desired size.
Finally, as our model is closely related to a recent model of
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opinion formation [46], our results can show how to prevent
the formation of unreliable opinions or erroneous inference
from complex network data [57].
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