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K+ channel-mediated retarded 
maturation of interneurons and 
its role in neurodevelopmental 
disorders

De novo mutations in genes encoding K+ channels 
are implicated in many severe neurodevelopmental 
disorders. Specifically, mutations in KCNA2, 
encoding the Shaker-type voltage-gated K+ 
channel Kv1.2, and KCNJ2, encoding the inwardly 
rectifying K+ channel Kir2.1, associate with focal 
and generalized epilepsies, brain atrophy, autism, 
ataxia and hereditary spastic paraplegia (Syrbe 
et al., 2015; Masnada et al., 2017; Cheng et al., 
2021). Complicated forms of the disease often 
include other neurological manifestations, such 
as cognitive impairment/intellectual disability, 
aggressiveness, irritability, dysarthria, cerebellar 
atrophy, polyneuropathy, or amyotrophy (Helbig 
et al., 2016; Masnada et al., 2017). Strikingly, the 
gain-of-function mutations of Kv1.2 channels, 
which are supposed to promote neuronal 
repolarization and termination of neuronal 
firing, caused more severe symptoms in terms of 
epilepsy, ataxia, and intellectual disability than the 
loss-of-function mutations, which are supposed 
to promote neuronal hyperactivity (Syrbe et al., 
2015; Allen et al., 2020). Likewise, gain-of-function 
mutations in a Kir2.1 channel were shown to be 
associated with autism spectrum disorder (Cheng 
et al., 2021). Moreover, a recent study has shown 
that Kir2.1 is highly expressed in medulloblastoma, 
one of the most common childhood malignant 
brain tumors (Wang et al., 2022). In these cells, 
Kir2.1 promoted tumor cell invasion, metastasis, 
as well as epithelial-mesenchymal transitions, and 
higher levels of Kir2.1 expression were associated 
with the significantly shorter lifespan of the 
patients. 

The overexpression of Kv1.2/Kir2.1 K+ channels, 
which in humans and mice are present in both 
excitatory and inhibitory neurons (https://www.
proteinatlas.org; http://mousebrain.org), mimics 
their gain of function. Using the mouse olfactory 
bulb as a model system, we have recently 
shown that overexpression of Kv1.2 or Kir2.1 
channels in the two different types of adult-born 
GABAergic interneurons (juxtaglomerular and 
granule cells) dramatically impairs their migration, 
differentiation, morphogenesis (Figure 1A–D) and 
survival as well as their ability to integrate into the 
existent neuronal circuitry (Li et al., 2023). The in 
vivo two-photon imaging of the juxtaglomerular 
neurons and the RNA sequencing data suggest that 
this developmental retardation was caused by a 
reduced Ca2+ entry via voltage-gated Ca2+ channels 
and the NMDA receptor channels, reduced 
cytosolic fluctuations of the intracellular free Ca2+ 

concentration, reduced activation of the Ca2+/
calmodulin kinase pathway and phosphorylation 
of CREB as well as a specific downregulation of 
the CREB-mediated gene expression (see Figures 
5–7 in Li et al., 2023). At the mRNA level, a 
concomitant decrease in the expression of anti-
apoptotic and an increase in the expression of pro-
apoptotic genes suggested a plausible molecular 
mechanism for a decreased survival rate of adult-
born interneurons. 

In contrast to the dramatic changes in neuronal 
development described above, our experimental 
paradigm had a surprisingly small effect on the 
membrane properties of adult-born cells, including 
their input resistance, the threshold for firing 
action potentials, or the action potential amplitude 
and duration. Moreover, the overexpression of 
the non-conducting dominant-negative mutant 
of the Kir2.1 channel had little effect on dendritic 
morphogenesis (Li et al., 2023), thus supporting 
the notion that the membrane excitability per 
se is not a key determinant of interneuronal 
maturation. Interestingly, a recent study analyzing 
a loss-of-function mutation in another voltage-
gated potassium channel (Kv2.1 encoded by 
the KCNB1 gene) lends support to this idea by 
showing that Kv2.1 channels form macromolecular 
complexes with integrins, and these complexes 
can regulate migration, proliferation and survival 
of cortical excitatory (pyramidal) neurons via 
metabotropic pathways (see Figure S7 in Bortolami 
et al., 2023).

Considering common molecular  pathways 
shared by the adult and neonatal neurogenesis 
(Spitzer, 2006; Bando et al., 2014), we tested 
whether findings, similar to that obtained by 
(Li et al., 2023) in adult-born GABAergic cells of 
the olfactory bulb, also hold true for neonatal 
cortical interneurons. Indeed, GABAergic cortical 
interneurons, overexpressing Kv1.2 channels 
by means of in utero viral transduction, had a 
significantly reduced (i) dendritic complexity 
and (ii) a total dendritic branch length, as well as 
a significantly smaller number of dendritic (iii) 
branches, (iv) branch points and (v) endings (Figure 
1E–L). Together, these data identify the retarded 
morphogenesis, synaptic wiring, and survival of 
GABAergic interneurons as a robust consequence 
of the increased K+ channel function and as a 
possible cause of neural network hyperactivity, 
seizure susceptibility, brain atrophy, and ataxia in 
carriers of Kv1.2/Kir2.1 gain-of-function variants.
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Based on these new and unexpected findings we 
propose the retarded interneuron development as 
a key mechanism underlying the aforementioned 
developmental pathologies. These pathologies 
are likely further exacerbated by increased 
apoptosis of the interneuronal population (Li et 
al., 2023), which can be either promoted by the 
enhanced transmembrane K+ efflux (Shah and 
Aizenman, 2014) or represent a consequence of 
dysfunctional ongoing Ca2+ signaling (Spitzer, 2006) 
in these cells. The heightened apoptosis, in turn, 
likely causes neuroinflammation by excessively 
activating microglia, the immune cells of the 
brain, thus providing a mechanistic connection 
between the Kv1.2/Kir2.1 channel dysfunction 
and autism spectrum disorder. Interestingly, 
autism was recently associated with excitatory 
to inhibitory imbalance, caused by the aberrant 
synaptic pruning by microglia and resulting in 
increased levels of excitatory synaptic inputs and 
impaired social behavior (Xiong et al., 2023). 
Further pathways by which the activated microglia 
can increase or modulate the excitation/inhibition 
ratio include (i) impaired glutamate uptake, (ii) 
heightened release of excitatory neurotransmitters 
(e.g., glutamate, D-serine or ATP), and (ii i) 
potentiation of the gliotransmitter release 
from astrocytes (Xiong et al., 2023). Microglia-
mediated pruning of GABAergic synapses might 
also contribute to the excitatory to inhibitory 
imbalance, but it remains unclear whether and 
when such pruning becomes dysfunctional.

In conclusion, our perspective offers a different 
mechanistic view on the repeatedly experimentally 
documented association between the gain-of-
function of Kv1.2/Kir2.1 potassium channels and 
severe neurodevelopmental disorders like epilepsy, 
autism, ataxia, and intellectual disability. We draw 
the reader’s attention to the retarded growth, 
morphogenesis, wiring, and survival of local 
GABAergic interneurons as well as accompanying 
microgl ia-mediated neuroinflammation as 
important mechanistic causes of these diseases. 
This hypothesis is new to the neurodevelopmental 
field, which in the case of Kv1.2/Kir2.1 channel 
dysfunction as well as in the case of developmental 
and epileptic encephalopathies, is still thinking in 
the neurocentric categories of impaired neuronal 
firing (Masnada et al., 2017; Allen et al., 2020). 
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Figure 1 ｜ Kv1.2 channel overexpression impairs the morphogenesis of interneurons. 
(A) Sample in vivo maximum projection images (0-24 μm below the dura) of adult-born GABAergic juxtaglomerular 
neurons in the olfactory bulb transduced by virus encoding either a green fluorescing Ca2+ indicator Twitch-2B (Control) 
or a Twitch-2B-T2A-Kv1.2 construct (Kv1.2), both expressed under the ubiquitin promoter. (B) Sholl analysis, showing the 
number of intersections of centered Sholl spheres (here and below 10 µm step size) with the dendritic trees of adult-
born juxtaglomerular neurons belonging to either Control or Kv1.2 groups. (C, D) Box plots showing the median (per cell) 
total dendritic branch length (TDBL, C) and the number of dendritic branches (D) of adult-born juxtaglomerular neurons (n 
= 33/7 and 36/6 cells/mice for control and Kv1.2 groups, respectively). The data shown in A–D belong to the same data 
set as the one published in Li et al. (2023) and are reproduced under the CC BY 4.0 license. (E) Sample images of cortical 
neurons transduced in utero either with viruses encoding Twitch-2B (Control) or the Twitch-2B-T2A-Kv1.2 construct 
(Kv1.2) and labeled in the tissue fixed at DPI 28 with antibodies against GFP (recognizes Twitch-2B, green) and GABA (red). 
(F) Sample reconstruction of the cell’s morphology. (G) Sholl analysis, showing the number of intersections of centered 
Sholl spheres with the dendritic trees of prenatally born GABAergic cortical interneurons belonging to either control 
or Kv1.2 groups. (H) Box plot showing the maximum (per cell) cell radius. Here and below n = 18/4 and 38/3 cells/mice 
for control and Kv1.2 groups, respectively. (I–L) Box plots showing the median (per cell) total dendritic branch length 
(I) and the number of dendritic branches (J), branch points (K), and endings (L) of prenatally born GABAergic cortical 
interneurons. A generalized linear mixed effect model was used for Sholl analysis statistics and the Mann-Whitney test 
for box plots. **P < 0.01, ***P < 0.001. (E–L) Unpublished data, sourced from the authors’ laboratory. DPI: Days post 
injection; GABA: γ-aminobutyric acid; GFP: green fluorescent protein; TDBL: total dendritic branch length.
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