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Synopsis 49 

We have identified a novel neuroimmune mechanism, by which gut microbiota regulates 50 

intestinal motility that can lead to development of new treatments, including microbial 51 

therapeutics, targeting small intestinal VIP to treat chronic constipation and diarrhea. 52 
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Abstract 62 

Background and Aims: Although chronic diarrhea and constipation are common, the treatment 63 

is symptomatic as their pathophysiology is poorly understood. Accumulating evidence suggests 64 

that the microbiota modulates gut function but the underlying mechanisms are unknown. We 65 

therefore investigated the pathways by which microbiota modulates gastrointestinal motility in 66 

different sections of the alimentary tract. 67 

Methods: Gastric emptying, intestinal transit, muscle contractility, acetylcholine release, gene 68 

expression and vasoactive intestinal polypeptide (VIP) immunoreactivity were assessed in wild-69 

type and Myd88-/-Trif-/- mice in germ-free, gnotobiotic and SPF conditions. Effects of transient 70 

colonization and antimicrobials, as well as immune cell blockade were investigated. VIP levels 71 

were assessed in human full thickness biopsies by Western blot. 72 

Results: Germ-free mice had similar gastric emptying but slower intestinal transit compared with 73 

SPF mice, or mice monocolonized with Lactobacillus rhamnosus or Escherichia coli, the latter 74 

having stronger effects. While muscle contractility was unaffected, its neural control was 75 

modulated by microbiota by upregulating jejunal VIP, which co-localized with and controlled 76 

cholinergic nerve function. This process was responsive to changes in the microbial composition 77 

and load, and mediated through TLR signaling, with enteric glia cells playing a key role. Jejunal 78 

VIP was lower in patients with chronic intestinal pseudo-obstruction compared with control 79 

subjects. 80 

Conclusion: Microbial control of gastrointestinal motility is both region- and bacteria-specific, it 81 

reacts to environmental changes, and is mediated by innate immunity-neural system interactions. 82 

Small intestinal VIP, by regulating cholinergic nerves, plays a key role in this process, thus 83 

providing a new therapeutic target for patients with motility disorders. 84 

85 
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Introduction 86 

Although functional diarrhea and constipation are very common, their treatment is symptomatic, 87 

as the pathophysiology is not well understood[1]. This is in part due to our limited understanding 88 

of basic mechanisms governing gastrointestinal motility, including complex neuro-immune 89 

networks and microbial-host interactions[2]. 90 

The role of microbiome in determining gut function has emerged during the last decades. It is now 91 

well established that the microbiome shapes the mucosal immune system, regulates intestinal 92 

barrier, and affects visceral sensitivity and gastrointestinal motility[3-5]. Early studies 93 

demonstrated that germ-free rats have slower gastrointestinal transit compared to conventional 94 

rats[6]. Developmental studies then showed that during gestation bowel movements are weak but 95 

begin to normalize after birth[7], accompanying microbial colonization and consequent 96 

maturation of the enteric nervous system (ENS). Gut microbiota affects the ENS and colonic 97 

motility by signaling through toll like receptors (TLRs)[8, 9], which are expressed by neurons and 98 

glial cells[10], as well as by maturation of colonic serotonin-containing cells and neural 99 

networks[11, 12].  100 

Although the accumulated data suggest that microbial-neuro-immune interactions play a key role 101 

in the gastrointestinal motility, the precise mechanisms are incompletely understood. Most 102 

previous work focused on the colon, as the site of the highest bacterial biomass, while the small 103 

intestine with the highest density of immune cells in the digestive tract[13] has received relatively 104 

little attention [14]. Furthermore, microbial-neuro-immune mechanisms controlling motility 105 

likely differ between different sections of the digestive tract, reflecting different functions in 106 

sequential food processing, digestion, storage, and waste elimination.  107 

Here we show that small intestinal motility, but not gastric emptying or colonic motility, is 108 
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regulated by the microbiome through modulation of vasoactive intestinal polypeptide (VIP) that 109 

controls cholinergic nerve function. We demonstrate that this process is dynamic, dependent on 110 

TLR signaling and likely mediated by enteric glial cells.  111 

  112 
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Results: 113 

Gut microbiota modulates intestinal transit but not gastric emptying 114 

There was no difference in gastric emptying between specific pathogen-free (SPF) mice, germ-115 

free mice, mice monocolonized with non-pathogenic Escherichia coli JM83 or Lactobacillus 116 

rhamnosus X-32.2 (Fig. 1A). However, intestinal transit was slower in germ-free mice, with most 117 

metallic beads found in the small intestine, compared to SPF mice or mice monocolonized with 118 

E. coli or L. rhamnosus, in which the beads were mainly localized in the cecum or colon (Fig 1B). 119 

Even though both groups of mono-colonized mice showed faster intestinal transit than germ-free 120 

mice, it was more pronounced in E. coli-monocolonized mice (Fig. 1B), suggesting a differential 121 

modulation of gut function by specific bacterial strains.  122 

 123 

Gut microbiota regulates intestinal contractility through cholinergic nerves 124 

To investigate underlying mechanisms, we studied jejunal and colonic tissue contractility in vitro. 125 

Equivalent KCl- or carbachol (CCh)-stimulated muscle contractility in all groups indicated that 126 

myogenic function was unaffected by the gut microbiota (Fig. 1C,D). To assess neural regulation, 127 

we used electric field stimulation (EFS)[15], in the presence or absence of tetrodotoxin or atropine. 128 

In SPF mice, EFS induced both jejunal and colonic contractility; this was preceded by strong 129 

relaxation in the colon, and minor relaxation in the jejunum (Fig. 1E,F). Tetrodotoxin blocked 130 

EFS-induced responses, confirming a neurogenic origin. Atropine administration decreased 131 

contractions both in the jejunum and colon, and magnified the initial relaxation in the jejunum 132 

(Fig. 1E,F), suggesting it is under cholinergic control.  133 

The initial EFS-induced jejunal relaxation was much stronger in germ-free compared with SPF 134 
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mice, or mice colonized with E. coli, whereas these microbiotas promoted EFS-stimulated 135 

contraction in the colon (Fig. 1G,H), indicating that cholinergic nerves are regulated by the 136 

microbiota in a region-specific manner. Unlike E. coli-monocolonized animals, responses in L. 137 

rhamnosus-monocolonized mice were not different from those of germ-free mice (Fig. 1G,H), 138 

indicating that specific bacterial species exert different effects on the host. EFS-induced [3H]-139 

acetylcholine release[16] in the jejunum was lower in germ-free mice compared to SPF and E. 140 

coli-monocolonized mice, but similar to L. rhamnosus-monocolonized mice (Fig. 1I). We 141 

observed a similar pattern in the colon but differences with selectively colonized mice did not 142 

reach statistical significance. Altogether, these data suggest that the presence of specific gut 143 

microbiota distinctly affect functional responses driven by the cholinergic system in the small 144 

intestine and the colon.  145 

 146 

Gut microbiota regulates VIP control of cholinergic nerves 147 

To identify putative mediators, we analyzed whole tissue gene expression in the jejunum and 148 

colon using a custom-designed Nanostring Codeset, that included genes related to regulation of 149 

muscle contractility, such as choline acetyltransferase (ChAT), substance P (Sp), Vip and nitric 150 

oxide synthase (Nos) (Fig. 2 A,B). Whilst there were no significant differences in ChAT, Sp or 151 

Nos gene expression, Vip expression was lower in GF compared to SPF mice (Fig. 3A,B). To 152 

verify the role of VIP in contractility, we pre-treated intestinal tissues from SPF mice by 153 

combining VIP receptor 1 and 2 antagonists and then stimulated them with EFS. Pretreated jejunal 154 

tissues displayed increased relaxation and decreased contraction, while no significant effect was 155 

observed in the colon (Fig. 3C), confirming that VIP regulates the activity of small intestinal 156 
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cholinergic neurons as suggested by a previous study[17]. To explore in vivo effects of VIP, we 157 

administered a VIP analogue or saline to SPF mice using osmotic pumps. Mice that received the 158 

VIP analogue had faster intestinal transit (Fig. 3D), further supporting the stimulatory role of VIP 159 

in intestinal motility. 160 

To validate the expression of VIP and ChAT in the myenteric plexus, we performed 161 

immunofluorescence staining with anti-VIP, anti-ChAT and anti-Hu antibodies. VIP-162 

immunoreactive neurons and ChAT-immunoreactive neurons co-localized in the myenteric plexus 163 

of the jejunum of SPF mice (Fig. 3E). While the ChAT immunoreactivity levels were similar 164 

between SPF and germ-free mice (Fig. 3F), in agreement with our gene expression data, VIP 165 

levels differed between GF, SPF, and E. coli-monocolonized mice (Fig. 3G), mirroring the 166 

intestinal transit results.  167 

Although VIP gene expression in full thickness colonic tissues was higher in SPF mice compared 168 

to germ-free mice (Fig. 2B), VIP immunoreactivity in colonic myenteric plexus was similar 169 

between germ-free and SPF mice (Fig. 3H), likely reflecting changes in the mucosal or 170 

submucosal layers, ostensibly not related to the motility control. 171 

 172 

The innate immune system modulates intestinal VIP expression  173 

As neuroimmune interactions play a key role in gut function[18, 19], and MYD88-TRIF signaling 174 

is critical for TLR-mediated immune responses to bacteria[20, 21], we analyzed these gene 175 

expression in GF and SPF mice. Jejunal Tollip and Myd88 expression differed between GF and 176 

SPF mice (Fig. 2A), therefore we assessed motility in Myd88-/-Trif-/- and wild type (WT) mice.  177 

Although intestinal transit and jejunal EFS-induced contractility were similar between knockout 178 
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and wild type mice in the absence of microbiota, they differed between WT and Myd88-/-179 

Trif-/- colonized mice (Fig. 4A,B). VIP expression in jejunal myenteric plexus mirrored these 180 

results, with similar levels in germ-free conditions and higher levels in SPF WT mice (Fig. 4C).  181 

To validate these results, we assessed motility and contractility in GF Myd88-/-Trif-/- and WT mice, 182 

before and after monocolonization with E. coli. While there were no differences between the two 183 

strains in germ-free condition, E. coli-monocolonization increased intestinal transit and EFS-184 

induced jejunal contractility in WT mice (Fig. 4E,F), with no changes in Myd88-/-Trif-/- mice. In 185 

parallel, E. coli-monocolonization increased VIP immunoreactivity in WT, but not in Myd88-/-186 

Trif-/- mice (Fig. 4G,H), suggesting that the microbiota regulates small intestinal motility by 187 

modulating myenteric VIP expression through TLR-dependent pathways. 188 

 189 

Microbial modulation of glial cells underlies changes in VIP expression 190 

To investigate the role of innate immune cells in this process, we used fingolimod, a sphingosine-191 

1-phosphate receptor modulator that inhibits activation and migration of immune cells, including 192 

dendritic and enteric glial cells, and cosalane that blocks activation of dendritic cells through 193 

CCR7[22-24]. Fingolimod, but not cosalane, decreased myenteric VIP levels in E. coli-194 

monocolonized mice (Fig. 5B).  195 

We then investigated presence of glial cells, identified by S100 calcium binding protein B (S100β) 196 

and glial fibrillary acidic protein (GFAP) immunoreactivity, and found they were co-localized 197 

with VIP nerves in SPF mice (Fig. 5A). Similar to VIP expression, fingolimod, but not cosalane, 198 

attenuated the expression of myenteric S100β in E. coli-monocolonized mice (Fig. 5C). 199 

Furthermore, mirroring the results of intestinal transit and VIP expression, SPF and E. coli-200 
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monocolonized mice had higher S100β levels than germ-free mice (Fig. 5D).  201 

To further explore the role of enteric glial cells in motility control, we used gliotoxin to inhibit 202 

their function. One-week intraperitoneal administration of gliotoxin in SPF mice resulted in a 203 

prolonged intestinal transit time accompanied by a decrease in VIP expression in the jejunal 204 

myenteric plexus (Fig. 5E,F). All together, these data suggest that microbiota-glial cells 205 

interactions underlie changes in VIP expression and intestinal motility. 206 

 207 

Presence of microbiota is essential for normal intestinal motility  208 

To study whether the continuous presence of microbiota is required for regular intestinal VIP 209 

levels and gut motility, we used the transient bacterial colonizer E. coli HA107[25] or treatment 210 

with non-absorbable antibiotics. Ex-germ-free mice gavaged with E. coli HA107 (Fig. 6B) 211 

displayed faster intestinal transit and higher VIP levels at day 14 post-colonization, when bacteria 212 

were present in the gut. However, at day 42, after reverting to the germ-free status, the intestinal 213 

transit and VIP expression decreased (Fig. 6B). In contrast, mice mono-colonized with E. coli 214 

JM83 (wild type) displayed faster intestinal transit and higher VIP levels both at day 14 and 42 215 

post-colonization compared to germ-free mice (Fig. 6A).  216 

Administration of broad spectrum antibiotics to SPF mice (Fig. 6C), resulted in slower intestinal 217 

transit and lower jejunal myenteric VIP-immunoreactivity, both of which normalized two weeks 218 

later (Fig. 6C). Antibiotics, as shown previously[26], altered microbial profiles and reduced total 219 

bacterial counts (Fig. 6D,E), which normalized 2 weeks later. This suggests that continuous 220 

presence of bacteria is required for normal motility, and that changes in the microbial load and 221 

profiles are dynamically reflected by changes in intestinal transit and myenteric VIP. 222 
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 223 

Small intestinal VIP is decreased in patients with severe constipation  224 

To illustrate the clinical relevance of our findings, we examined VIP expression in full thickness 225 

biopsy samples of small intestinal tissues from patients with established chronic intestinal pseudo-226 

obstruction (CIPO), which is characterized by intractable constipation. Compared with small 227 

intestinal samples from control subjects, VIP expression was lower in CIPO specimens (Fig. 6F), 228 

providing further support for its role in the regulation of gastrointestinal motility.  229 

  230 
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Discussion 231 

While the key role of microbiota in regulating gastrointestinal motility is well established, the 232 

precise mechanisms are poorly understood. We show that gastric emptying is not affected by the 233 

microbiota, while intestinal transit differs between germ-free and colonized mice. The changes in 234 

transit are determined by the altered function of the small intestine, as most metallic beads were 235 

found in the jejunum and ileum. This was not due to the changes in myogenic function, as KCl-236 

stimulated muscle contractility was similar between germ-free and colonized mice, but due to 237 

changes in its neural control. EFS-induced contraction and relaxation patterns were affected by 238 

the microbiota, with more pronounced relaxation and weaker contraction in germ-free mice, 239 

paralleled by acetylcholine release. Microbial influence differs between bacterial strains, as 240 

intestinal transit, acetylcholine release and contractility were lower in L. rhamnosus-241 

monocolonized mice compared to those with E. coli or complex SPF microbiota.  242 

When investigating underlying mechanisms, there was no difference in ChAT expression between 243 

germ-free and SPF mice, suggesting that cholinergic nerves are not affected per se, but we found 244 

major differences in VIP gene expression. VIP acts on receptors located on smooth muscle to 245 

mediate relaxation[27] but it also serves as a co-transmitter at cholinergic synapses in the small 246 

intestinal myenteric plexus[17], activating jejunal cholinergic neurons[28]. Accordingly, VIP-247 

deficient mice display decreased jejunal motility[29], while VIP administration enhances motility 248 

as demonstrated previously[30] and in our study, supporting its role in excitatory pathways. We 249 

observed co-localization of jejunal myenteric VIP- and ChAT-immunoreactive neurons and found 250 

that pretreatment with VIP receptor antagonists increased relaxation and decreased contraction of 251 

jejunal tissues, demonstrating that VIP controls cholinergic nerves in the small intestine. 252 
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VIP is mainly expressed in the myenteric plexus, but it is also abundant in mucosal and 253 

submucosal layers[28, 31]. Colonic myenteric VIP immunoreactivity was not altered by the gut 254 

microbiota, but VIP gene expression was affected in whole thickness colon tissues. This is in 255 

agreement with studies demonstrating that microbiota does not alter colonic myenteric VIP 256 

expression[12], that colonic VIP receptors mainly localize at the mucosa[32] and that VIP gene 257 

mutation is associated with minimal changes in the colon function[29]. Thus, while the effect of 258 

the microbiota on VIP expression in the colon is exerted in the mucosal layer, promoting colonic 259 

barrier homeostasis[33], in the small intestine the VIP is linked to motility and cholinergic nerve 260 

control.  261 

To further investigate the mechanisms underlying changes in intestinal motility, we colonized 262 

germ-free mice with a single Gram-negative (E. coli) or Gram-positive (Lactobacillus rhamnosus) 263 

bacterial strain. Though more significant in E. coli-colonized group, both increased small 264 

intestinal motility and VIP expression, confirming that both TLR4 and TLR2 pathways are 265 

involved in microbial control of gut motility and neural function[8, 9]. MYD88/TRIF signaling 266 

pathways are downstream from both TLR 2 and 4 receptors, playing key roles in host innate 267 

immune responses to bacteria[21, 34, 35]. We found that Myd88 gene expression differed between 268 

GF and SPF mice in wild type mice, and that intestinal transit, jejunal contractility and myenteric 269 

plexus VIP immunoreactivity were similar in germ-free and SPF Myd88-/-Trif-/- mice. Furthermore, 270 

E. coli- monocolonization of germ-free Myd88-/-Trif-/- mice did not alter these parameters, 271 

demonstrating that TLR-signaling mediates the microbial control of intestinal motility. 272 

To identify innate immune cells involved in this process we used cosalane, which specifically 273 

inhibits dendritic cell activation[24, 36], and fingolimod that inhibits activation and migration of 274 

immune cells, including dendritic and enteric glial cells[37-39]. We found that fingolimod, but 275 
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not cosalane, blocked increase in VIP expression after bacterial colonization, suggesting that 276 

enteric glial cells, rather than dendritic cells, are involved in this process. Enteric glial cells 277 

contribute to gut function maintenance, including motility, synaptic transmission and 278 

neurogenesis, via dynamic interactions with immune cells and neurons[40, 41]. Indeed, we found 279 

that glial cells shared the same localization and changes in density as VIP positive neurons, 280 

suggesting that they mediate the bacterial control of intestinal motility. Furthermore, specific 281 

inhibition of glial cell function with gliotoxin decreased VIP expression and prolonged intestinal 282 

transit time, further supporting the key role of glial cells. A denser immune cell network in the 283 

small intestine [42] and possibly different functional phenotypes of enteric glial cells in the small 284 

intestine compared to the colon [43], might be the reason why the microbial-immune crosstalk 285 

governs gastrointestinal motility mainly in the small intestine and not in the colon.  286 

Immune responses can be long-lived in transiently colonized mice[25], but it is unknown whether 287 

they are sufficient to maintain normal motility. We used E. coli HA107, a triple auxotrophic mutant 288 

that colonizes the mouse intestine only transiently and is not detectable 48 hours after its last 289 

gavage[25], to monocolonize germ-free mice. While intestinal transit and VIP expression 290 

increased during colonization, both returned to values observed in germ-free mice four weeks 291 

later, suggesting that the immune priming associated with the microbial colonization is not 292 

sufficient, and that bacterial presence is needed to maintain normal intestinal motility.  293 

The microbiota is involved in the maturation of enteric nervous system[11] and maintenance of 294 

its homeostasis[44]. In our experiments, administration of non-absorbable antimicrobials to SPF 295 

mice decreased jejunal VIP levels and intestinal transit, which then normalized two weeks later, 296 

in parallel with microbiota profiles. This demonstrates that VIP expression in adult, 297 

conventionally raised mice, is continuously and dynamically modulated by the gut microbiota.  298 
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To validate our findings clinically, we investigated levels of small intestinal VIP in a small set of 299 

patients with chronic intestinal pseudo-obstruction (CIPO). CIPO is the ‘tip of the iceberg’ of a 300 

wide spectrum of gastrointestinal motility disorders, and CIPO-affected patients suffer from 301 

intractable constipation[45]. We found that compared with control subjects, jejunal VIP levels are 302 

lower in patients with CIPO, thus extending our findings from mouse models into humans. These 303 

results are in agreement with multiple reports demonstrating that intestinal VIP is lower in patients 304 

with chronic constipation and higher in those with chronic diarrhea[46, 47]. Interestingly, recent 305 

studies suggested that fecal microbiota transplantation improves symptoms in patients with 306 

intestinal dysmotility, including those with Irritable Bowel Syndrome and CIPO[48, 49], and we 307 

hypothesize that these beneficial effects, might be, at least in part, due to the microbial regulation 308 

of intestinal VIP. 309 

In summary, we show that gut microbiota regulates gastrointestinal motility in a region-specific 310 

manner, with maximum effects seen in the small intestine. Specific bacterial strains exert 311 

differential effects, with major changes seen with E. coli and minimum ones with L. rhamnosus. 312 

Gut microbiota affects the function and structure of the jejunal ENS by modulating myenteric VIP, 313 

which in turn controls cholinergic nerves. This regulation is dependent on microbiota-innate 314 

immune system crosstalk, critically involving MYD88/TRIF-dependent pathways and enteric glia 315 

cells. Both the presence and stability of microbiota are essential to maintain myenteric VIP level 316 

and normal intestinal motility. Finally, we show that jejunal VIP levels are altered in patients with 317 

severe constipation, thus providing clinical relevance to our murine experiments. 318 

Our data suggest that deeper understanding of microbiota-neuroimmune interactions in the small 319 

bowel could lead to better therapies to manage motility disorders. These could include 320 

identification and development of microbial therapeutics that modulate small intestinal VIP to 321 
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treat chronic constipation and diarrhea. 322 

  323 
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Methods  324 

All animal experiments were approved by the McMaster University Animal Care Committee 325 

(AUP 18-08-35). The clinical study was approved by the Ethics Committee of St. Orsola-Malpighi 326 

Hospital of Bologna, Italy (Protocol No. 50/2012/O/Sper (EM/146/2014/O)). All patients and 327 

healthy controls provided written informed consent to participate. 328 

 329 

Gnotobiotic mice  330 

MyD88−/−; Ticam1−/− mice on a C57BL/6 background were kindly provided by B. A. Beutler (La 331 

Jolla, CA, USA). SPF C57BL/6 mice were purchased from Taconic. Germ-free C57BL/6 and 332 

MyD88−/−; Ticam1−/− mice were rederived at the Farncombe Family University Axenic 333 

Gnotobiotic Unit (AGU) of the Central Animal Facility, McMaster University, and maintained 334 

axenic in sterile isolators. To ensure sterility, handling of GF mice was carried out under axenic 335 

conditions, as described previously[50]. All mice were maintained on a 12-hour day/night cycle 336 

with free access to food and water. GF and mono-colonization status was assessed regularly by 337 

direct bacteriology, immunofluorescence and 16S PCR testing for culturable and unculturable 338 

organisms. 339 

 340 

Bacterial colonization of germ-free mice 341 

Germ-free mice (both sexes) were monocolonized with 109 CFU of E. coli JM83, Lactobacillus 342 

rhamnosus X-32.2 or E. coli HA107 via intragastric gavage (200 μl/mouse). E. coli HA107 strain 343 

is a mutant form of the parental strain E. coli JM83, which is not able to synthesize meso-344 
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diaminopimelic acid (m-DAP, Sigma-Aldrich) or D-isomer of alanine (D-Ala, Sigma-Aldrich) 345 

required in the peptidoglycan crosslink of the cell wall and thus only transiently colonizes (12-48 346 

hours) mouse intestine[25]. The transient colonizer E. coli HA107 was gavaged three times 347 

weekly for two weeks (Fig. 6B). The permanent colonizer E. coli JM83 (Fig. 6A) and 348 

Lactobacillus rhamnosus X-32.2 were gavaged once. All mono-colonized mice were maintained 349 

in sterile isolators within the Axenic Gnotobiotic Unit.  350 

E. coli JM83 was grown in Luria Bertani (LB) broth (Sigma-Aldrich) and E. coli HA107 was 351 

grown in LB broth supplemented with D-Ala (200μg/ml)/m-DAP (50μg/ml), and incubated with 352 

shaking at 160 rpm at 37°C for 12 hours. Lactobacillus rhamnosus X-32.2 was grown in deMan, 353 

Rogosa and Sharpe (MRS) broth, anaerobically, at 37°C for 18 hours. Bacteria were harvested by 354 

centrifugation (15 min, 3500X g) in a 400 ml sterile flask, washed in sterile PBS and concentrated, 355 

all under a sterile laminar flow hood. The bacterial suspensions were sealed in sterile tubes, with 356 

the outside surface kept sterile, and imported into sterile isolators. 357 

To assess colonization or de novo GF status after transient colonization, cecal contents were plated 358 

on LB agar plates (with or without supplementation with m-DAP and D-Ala), or on MRS agar 359 

plates and incubated for 48 hours.  360 

To confirm the colonization efficiency of E. coli JM83 and L. rhamnosus, the ceca from 5 mice 361 

per group were thawed and the contents diluted 10 times (w/v) with sterile PBS, then serially 362 

diluted again (10-fold) with PBS until 10-9. Diluted samples (100 ul; diluted to 10-9, 10-7 and 10-363 

5) were then plated onto MRS (for L. rhamnosus) or BHI (for E. coli JM83) plates and incubated 364 

aerobically or anaerobically during 48 hours. After 48 hours the colonies that grew on the plates 365 

were counted and CFU/mL calculated. We saw no differences in the colonization levels between 366 
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the two bacterial strains (4.82×109 ± 3.71×109 for E. coli JM83; 3.44×1010 ± 4.58×1010 for L. 367 

rhamnosus). 368 

 369 

Gnotobiotic husbandry 370 

Isolators that housed GF mice underwent strict protocols to prevent contamination of microbes 371 

from animal handlers or environment. Samples of the imported materials were taken for aerobic 372 

and anaerobic bacterial culture regularly. Feces and bedding were taken from the isolator for direct 373 

bacteriology, microscopy and 16S PCR testing of intestinal contents to test for culturable and 374 

unculturable organisms. Cecal contents from mono-colonized mice were suspended and serially 375 

diluted in sterile 1X PBS and plated on LB or MRS agar plates for 48 hours. Cecal contents from 376 

mice treated with E. coli HA107 strain were incubated on LB plates supplemented with m-DAP 377 

and D-Ala. To confirm de novo GF status after colonizing with E. coli HA107, cecal contents were 378 

plated on supplemented LB agar plate 2 and 4 weeks after the last gavage. 379 

 380 

Antibiotics administration 381 

Neomycin (Sigma-Aldrich) and bacitracin (Sigma-Aldrich) were dissolved in distilled water (both 382 

at 5 mg/mL), pimaricin (Sigma-Aldrich) added (5 µL/mL) and the solution filtered sterile. 383 

Antibiotics were administered for 1 week and changed every 48 hours. 384 

 385 

Gastric emptying 386 

Gastroduodenal motility was assessed using video image analysis as described previously[51]. 387 
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Briefly, mice were gavaged with 0.2 ml of 40% barium solution, placed in custom Plexiglas 388 

restrainers and videofluoroscoped for 4 min. Video images were analyzed using ImageJ. Gastric 389 

emptying was assessed in single images by manually outlining the border of stomach and 390 

measuring gastric area and its mean optical density. The amount of barium at 0 and 4 minutes was 391 

assessed by multiplying the gastric area by the mean optical density in each image Gastric 392 

emptying was expressed as a percentage of barium expelled from the stomach in 4 min.  393 

 394 

Gastrointestinal transit  395 

Gastrointestinal transit was assessed using videofluoroscopy as described previously[52]. Briefly, 396 

five steel beads (0.79 mm diameter; Bal-tec.) with 40% barium solution (0.1 ml) were gavaged 397 

into each mouse. A second barium gavage (0.2 ml) was performed 170 min later. Ten minutes 398 

later, the mouse was placed in a custom-built Plexiglas restrainer and videofluoroscoped. Video 399 

images were analyzed using ImageJ. Each bead was assigned a score depending on its location 400 

within the gastrointestinal tract and their scores added together to calculate a total transit score. 401 

 402 

Gene expression  403 

RNA was extracted by RNeasy Mini Kit (Qiagen, Toronto, Canada), DNase digestion was 404 

performed by RNase-free DNase (Qiagen). A custom Nanostring codeset ran according to 405 

manufacturer’s instructions was analyzed by nSolver 4.0 (NanoString Technologies, Seattle, WA) 406 

and by Ingenuity Pathway software (Qiagen).  407 

 408 
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Muscle contractility 409 

Muscle contractility was assessed as previously described[53], after stimulation with KCl, 410 

carbachol, electric field stimulation and VIP receptor antagonist 1 (Acetyl-(D-411 

Phe²,Lys¹⁵,Arg¹⁶,Leu²⁷)-VIP(1-7)-GRF(8-27)trifluoroacetate, 10 µM) and 2 (VPAC2):Myristoyl-412 

(Lys¹²·²⁷·²⁸)-VIP-Gly-Gly-Thr-trifluoroacetate, 10 µM; Bachem, CA, USA), using multichannel 413 

transducer system (MLT0201, Panlab s.l, Spain). 414 

Muscle contractility was measured as previously described[53]. Briefly, tissue of the jejunum and 415 

mid colon were kept in oxygenated (95% O2, 5% CO2) Krebs solution containing (in mM) 120.9 416 

NaCl, 1.2 NaH2PO4, 15.5 NaHCO3, 5.9 KCl, 2.5 CaCl2, 1.2 MgCl2, and 11.1 glucose, at pH 7.4. 417 

One centimeter sections of the gut were removed from the jejunum, beginning at the ligament of 418 

Treitz and proceeding distally, and mid colon. The lumen of each segment was flushed gently with 419 

Krebs buffer before the insertion of short Silastic tubing (0.065 in. OD, 0.030 in. ID; Dow Corning, 420 

Midland, MI) into each end. The tubing was then tied in position with surgical silk. Segments 421 

were hung in the longitudinal axis and attached to a force transducer (MLT0201, 5mg-25g, Panlab 422 

s.l, Spain). Tissues were equilibrated for 30 min in oxygenated Kreb’s solution and then stretched 423 

with 1 mg force before the experiment was started. Muscle strips were then stimulated with 50 424 

mM KCl, carbachol, VIP receptor antagonists and electric field stimulation (EFS, 30 V, 5 Hz, 425 

0.5 mS) and responses were recorded. VIP receptor antagonists of type 1 (VPAC1), Acetyl-(D-426 

Phe², Lys¹⁵, Arg¹⁶, Leu²⁷)-VIP(1-7)-GRF(8-27) trifluoroacetate salt and antagonists of type 2 427 

(VPAC2): Myristoyl-(Lys¹²·²⁷·²⁸)-VIP-Gly-Gly-Thr(free acid) trifluoroacetate salt were 428 

purchased from Bachem Inc (CA, USA). The force was expressed in percent, assigning the levels 429 

obtained at rest and at peak of KCl-induced contraction as 0% and 100%, respectively.  430 
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 431 

[3H]-choline release measurement  432 

Small intestine and colon were removed and cut in half. Longitudinal muscle–myenteric plexus 433 

preparations were dissected, placed in oxygenated Krebs’ solution and pre-incubated with 434 

0.5 μmol/l of [3H]-choline for 40 min at 37 °C as previously described[16, 52]. Tissues were then 435 

transferred to the superfusion chambers and perfused with Krebs’ solution with 5 mM 436 

hemicholinium-3 at a rate of 1 ml-1 min. Aliquots were collected every 2 min for 80 min using 437 

Spectrum™ Spectra/Chrom™ CF-1 Fraction Collector (FL, USA). [3H]-Acetylcholine release 438 

was induced by EFS (30 V, 10 Hz, 0.5 mS) for 1 min (S48 stimulator; Grass, Quincy, MA) or by 439 

adding 50 mmol/l KCl to the superfusate for 6 min, and then measured using a Beckman 440 

scintillation counter (LS5801; Beckman Instruments, Fullerton, CA) at a counting efficiency of 441 

35% and expressed as a fraction of the total [3H] in the tissue. Acetylcholine release was expressed 442 

in %, assigning the levels of choline release at baseline and at peak level induced by KCl as 0% 443 

and 100%, respectively. 444 

 445 

VIP analogue in vivo application 446 

VIP analogue[54], [Ala2,8,9,11,19,22,24,25,27,28]-VIP (BioCrick BioTech, Chengdu, China), 447 

5μg/day or vehicle (PBS) was administered by continuous subcutaneous infusion at 1 μl/h, for 3 448 

days via osmotic pumps (Alzet Model 2001; Durect Corporation, Palo Alto, CA, USA). The 449 

osmotic pump was incubated in PBS for 24 h at 37°C prior to implantation and was implanted 450 

dorsally using isoflurane anesthesia. Transit time was measured on day 3. 451 

 452 
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Gliotoxin in vivo application 453 

Gliotoxin fluorocitrate solution was prepared as described before[55]. D,L-fluorocitric acid, Ba, 454 

salt (Sigma-Aldrich) 8 mg of was dissolved in 1 ml of 0.1 mmol/L HCL. Two to three drops of 455 

0.1 mmol/L Na2SO4 were added to precipitate the Ba2+. Two milliliters of 0.1 mmol/L Na2HPO4 456 

was added, and the suspension was centrifuged at 1,000 g for 5 mins. The supernatant was diluted 457 

with PBS to the final concentration, and the pH was adjusted to 7.4. The Gliotoxin fluorocitrate 458 

solution (20μmol/Kg/day) or PBS was injected intraperitoneally daily for 7 days. Gastrointestinal 459 

transit time was measured on days 0 (prior to first injection) and 7. 460 

 461 

Immunohistochemistry assessment 462 

Whole mounts of intestine were collected immediately following sacrifice, cut open 463 

longitudinally and pinned serosal side down on Petri dishes. The tissues were fixed for 2 hours at 464 

room temperature in 4% phosphate-buffered formaldehyde (pH 7.4), then washed in phosphate 465 

buffered saline (PBS). Laminar preparations of longitudinal muscle with adherent myenteric 466 

plexus were obtained by dissections. Tissues were then permeabilized and blocked by incubation 467 

in PBS containing 0.4% Triton X-100 and 5% normal bovine serum. Primary antibodies including 468 

rabbit polyclonal IgG antibodies to Vasoactive Intestinal Peptide (VIP: dilution 1:5000; 469 

Immunostar), biotinylated mouse monoclonal antibodies to human neuronal protein HuC/HuD 470 

(HuC/D: dilution 1:100; Molecular Probes, Invitrogen), goat polyclonal Choline 471 

Acetyltransferase antibodies (ChAT, dilution 1:100; Invitrogen), S100 beta antibody (S100β, 472 

dilution 1:500, GeneTex) were applied overnight at 4°C. Antibody binding was detected with 473 

donkey anti-rabbit antibodies labeled with Alexa 555 (1:1000; Molecular Probes), streptavidin 474 
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labeled with Alexa 488 (1:200; Molecular Probes), donkey anti-goat antibodies labeled with Alexa 475 

555 (1:200; Molecular Probes) or with donkey anti-goat antibodies labeled with Alexa 647 (1:100; 476 

Molecular Probes) by incubation for 2 hours at room temperature. No immunostaining was 477 

observed when primary antibodies were omitted. Tissue sections were mounted with Vectashield 478 

medium (Vector Laboratories Canada Inc., Burlington, ON, Canada). Raw pictures in gray scale 479 

were loaded into FIJI ImageJ, signals were normalized by setting threshold as 0-1. Staining level 480 

was expressed in percentage, by the ratio of VIP-positive area in a 1 cm2 image. 481 

 482 

Microbiota analysis 483 

Total genomic DNA was extracted from cecal samples, and the V3 region of the 16S rRNA gene 484 

amplified and Illumina sequencing performed as previously described[56, 57]. The data was 485 

analyzed following the pipelines of dada2[58], QIIME2[59], and Phyloseq package (1.30) for R 486 

(3.6.3)[60]. Taxonomic assignments were performed using the RDP classifier with the 487 

Greengenes (2013) training set[61, 62]. Analyses were done using QIIME2, Phyloseq package 488 

(1.30), and SPSS software v.23. All results were corrected for multiple comparisons, allowing 5% 489 

of False Discovery Rate.  490 

Total bacterial load was measured by qPCR with the primers 926F 5’-491 

AAACTCAAAKGAATTGACGG-3’ and 1062R 5’-CTCACRRCACGAGCTGAC-3’ for the V6 492 

region of the 16S rRNA. The data was expressed as total bacterial load relative to the average of 493 

the control population (baseline water): E (Ct test- Ct calibrator), where E was the efficiency of 494 

each PCR (1.97-2), and the calibrator was the average of the Ct of all baseline controls. 495 

 496 
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Patient samples 497 

Full-thickness jejunal samples were collected from well-characterized CIPO patients with 498 

degenerative neuropathy (total n= 6, female=3, age range: 30-73 years) investigated at St. Orsola-499 

Malpighi Hospital, Bologna, Italy. Control samples were obtained from patients undergoing 500 

resection due to non-complicated intestinal tumors (total n= 8, female=3; age range: 48-68 years). 501 

Proteins were extracted, separated and transferred onto nitrocellulose membrane (Thermo Fisher 502 

Scientific). Rabbit polyclonal anti-VIP antibody (Abcam, Cambridge UK) was used as primary 503 

and anti-rabbit HRP-conjugated antibody (Sigma) as secondary. Visualization was performed by 504 

ECL Western Blotting Substrate (Thermo Fisher Scientific) on iBrigh FL1500 Imaging System 505 

(Invitrogen). 506 

 507 

Human VIP protein assessment  508 

Proteins were extracted from 0.5 g of each jejunal sample using TPER tissue protein extraction 509 

reagent with protease inhibitor cocktail (Thermo Fisher Scientific). Total protein was quantified 510 

using a Nano Drop 2000 spectrophotometer (Thermo Fisher Scientific). Proteins were separated 511 

using 12% acrylamide SDS-PAGE in reducing conditions and transferred onto nitrocellulose 512 

membrane (Thermo Fisher Scientific) overnight at 12 mV. Membranes were blocked with a buffer 513 

containing 5% fat-free milk and then incubated overnight at 4°C with rabbit polyclonal anti-VIP 514 

antibody (ab227850; Abcam, Cambridge UK). Anti-rabbit HRP-conjugated secondary antibody 515 

(Sigma) was applied 2 hours at room temperature. Immunoreactive bands were visualized by ECL 516 

Western Blotting Substrate (Thermo Fisher Scientific) on iBrigh FL1500 Imaging System 517 

(Invitrogen). The iBright software was used also to quantify the total protein signal in each lane, 518 
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stained with Ponceau S, used as reference. 519 

Statistical analysis 520 

Data analyses were performed using Graphpad Prism 6.0, nSolver 4.0 and Microsoft Excel 2016. 521 

Data are presented as medians (IQR) or means±SD, statistical testing was performed using 522 

parametric or non-parametric tests, as appropriate.  523 

  524 
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Figure legends  525 

Figure 1.  Gastrointestinal motility in germ-free and colonized mice. 526 

A. Representative photographs of mouse stomach (left) immediately after barium gavage and 3 527 

minutes later. Gastric emptying results (right) in conventional (SPF, n=10), germ-free (GF, n=11), 528 

E. coli-monocolonized (EC, n=8) and L. rhamnosus-monocolonized (LR, n=8) mice.  529 

B. Representative photographs (left) show only 1 bead in the ileum of a SPF mouse, and 5 beads 530 

in the jejunum of a GF mouse. Intestinal transit scores (right) in GF (n=11), SPF (n=10), EC (n=8) 531 

and LR (n=8) mice.  532 

C,D. KCl- and CCh-induced contractility of tissues from SPF (n=10), GF (n=11), EC (n=8) and 533 

LR (n=8) mice. In D, force is expressed as a ratio to KCl-induced contraction in the same tissue.  534 

E, F. Representative recordings of EFS-induced responses in tissues from a SPF mouse, with and 535 

without the presence of atropine.  536 

G,H. EFS-induced relaxation and contraction of tissues from SPF (n=10), GF (n=11), , EC (n=8) 537 

and LR (n=8) mice.  538 

I. EFS-induced acetylcholine released from tissues of SPF (n=13), GF (n=10), EC (n=12) and LR 539 

(n=14) mice, expressed as a ratio to KCl-released acetylcholine in the same tissue.  540 
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Figure 2. Neuroimmune genes affected by microbial colonization.   542 

A, B. Heat map of neuroimmune genes the expression of which differ in whole-thickness jejunum 543 

and colon tissues between SPF and GF mice (6 samples per group, each sample contains tissues 544 

from 2 mice). Red represents up-regulated genes, blue down-regulated genes, *p<0.05, **p<0.01. 545 

  546 
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Figure 3. Effect of bacterial colonization on myenteric VIP and ChAT. 547 

A, B. VIP and ChAT gene expression assessed by Nanostring in tissues from SPF and GF mice 548 

(each circle represents a pooled sample from 2 mice). 549 

C. Representative recordings and summary of EFS-induced responses of tissues from SPF mice 550 

(n=4), before and after treatment with combined VIP receptor 1 and 2 antagonists.  551 

D. In vivo intestinal transit scores of vehicle (n=4) and VIP analogue (n=4) treated SPF mice. 552 

E. VIP- and ChAT-immunoreactive nerves immunolabeled with antibodies to HuC/D (green), VIP 553 

(red) and ChAT (cyan) at the jejunal myenteric plexus of a SPF mouse.  554 

F. VIP- and ChAT-immunoreactive nerves visualized by double-immunolabeling with antibodies 555 

to VIP (green) and ChAT (red) in jejunal myenteric plexus of SPF (n=4) and GF (n=4) mice.  556 

G. Representative photographs (left) and results (right) of VIP immunoreactivity in the jejunal 557 

myenteric plexus of SPF (n=4), GF (n=4), EC (n=4) and LR (n=4) mice.  558 

H. Representative photographs (left) and results (right) of VIP immunoreactivity in the colon 559 

myenteric plexus of SPF (n=4) and GF (n=4) mice.  560 

  561 
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Figure 4.  The role of MYD88/TRIF pathways in intestinal motility and jejunal myenteric 562 

VIP.   563 

A. Intestinal transit scores of SPF C57BL/6 (n=10), SPF Myd88-/-Trif-/- (n=18), GF C57BL/6 (n=6), 564 

and GF Myd88-/-Trif-/- (n=10) mice.  565 

B. EFS-induced responses of jejunum tissues from SPF C57BL/6 (n=8), SPF Myd88-/-Trif-/- (n=6) 566 

mice GF C57BL/6 (n=11) and GF Myd88-/-Trif-/- (n=4) mice.  567 

C. VIP immunoreactivity in the jejunum myenteric plexus of SPF C57BL/6 (n=4), SPF Myd88-/-568 

Trif-/- (n=4), GF C57BL/6 (n=4) and GF Myd88-/-Trif-/- (n=4) mice.  569 

D. Representative photographs of VIP immunoreactivity. 570 

E. Intestinal transit scores of GF C57BL/6 and GF Myd88-/-Trif-/- mice, before and after 571 

monocolonization with E. coli (EC, n=6 per group). 572 

F. EFS-induced responses of jejunum tissues from GF C57BL/6 (n=11), GF Myd88-/-Trif-/- (n=6), 573 

EC C57BL/6 (n=8) and EC Myd88-/-Trif-/- (n=6) mice.  574 

G. VIP immunoreactivity of GF C57BL/6 (n=4), GF Myd88-/-Trif-/- (n=4), EC C57BL/6 (n=4) and 575 

EC Myd88-/-Trif-/- (n=6) mice.  576 

H. Representative photographs of VIP immunoreactivity.  577 
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Figure 5. Effect of immune blockade on jejunal myenteric plexus VIP and glial cells. 579 

A. VIP-immunoreactive nerves and glial cells visualized by double-immunolabeling with 580 

antibodies to VIP (green) and glial cells (red, S100β or GFAP) in jejunal myenteric plexus of a 581 

SPF mouse. 582 

B. Representative photographs and results of VIP immunoreactivity of E. coli-monocolonized 583 

mice treated with saline (n=6), fingolimod (n=6) or cosalane (n=6). 584 

C. Representative photographs and results of S100β immunoreactivity (green) of E. coli-585 

monocolonized mice treated with saline (n=6), fingolimod (n=6) and cosalane (n=6).  586 

D. Representative photographs and results of S100β immunoreactivity of SPF (n=6) and GF (n=6) 587 

and E. coli-monocolonized mice (n=6). 588 

E. In vivo transit scores of vehicle (n=4) and gliotoxin (n=10) treated SPF mice. 589 

F. Representative photographs and results of VIP immunoreactivity of vehicles (n=5) and 590 

gliotoxin applications (n=5) to SPF mice. 591 
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Figure 6. Gut microbiota is essential for normal intestinal transit and jejunal myenteric VIP 593 

levels.  594 

A. Experimental design for permanent colonization of GF mice with E. coli JM83 (left); intestinal 595 

transit scores for GF mice before (d0), and after colonization with E.coli JM83 at day 14 (d14) 596 

and day 42 (d42, n=6); VIP expression of GF mice before (d0, n=4), and after colonization with 597 

E.coli JM83 at day 14 (d14, n=5) and at day 42 (d42, n=6). 598 

B. Experimental design for transient colonization of GF mice with E. coli HA107 (left); intestinal 599 

transit scores of GF mice (n=11) before and after 2 week-monocolonization (d14) with the 600 

transient colonizer E. coli HA107, and 4 weeks later, when mice reverted to GF status (d42, n=7); 601 

VIP expression of GF mice (n=4), mice monocolonized with E. coli HA107 (d14, n=5) and after 602 

reverting to GF status (d42, n=8).  603 

C. Experimental design for antibiotic treatment of SPF mice (left); intestinal transit scores of SPF mice 604 

before (baseline) and after 1 week of antibiotics (ATB), and after 2 weeks wash-out (2 wks post-605 

ATB, n=8); VIP expression in SPF mice before (n=7) and after antibiotics (n=7) and after 2 weeks 606 

wash-out (n=8). 607 

D. Microbiota profiles in antibiotic treated mice. Shannon diversity index and weighted unifrac 608 

PCoA plot at baseline, after 1 week of ATB and after 2 weeks wash-out. 609 

E. Total bacterial load at baseline, after 1 week of ATB, and after 2 weeks wash-out period. 610 

F. VIP protein expression in full thickness biopsy jejunum tissues from controls (n=7) and CIPO 611 

patients (n=6).  612 

G. Schematic overview of the gut microbiota-neuroimmune interactions governing intestinal 613 
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transit. 614 
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