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Abstract
The majority of tornado fatalities occur during severe thunderstorm occurrences that produce a large number of tornadoes, 
termed tornado outbreaks. This study used extreme value theory to estimate the impact of tornado outbreaks on fatalities 
while accounting for climate and demographic factors. The findings indicate that the number of fatalities increases with the 
increase of tornado outbreaks. Additionally, this study undertook a counterfactual analysis to determine what would have been 
the probability of a tornado outbreak under various climatic and demographic scenarios. The results of the counterfactual 
study indicate that the likelihood of increased mortality increases as the population forecast grows. Intensified El Niño events, 
on the other hand, reduce the likelihood of further fatalities. La Niña events are expected to increase probability of fatalities.
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1 Introduction

In the United States, tornadoes threaten human health and 
property constantly. Nowhere else in the world has more 
tornadoes than the United States (U.S.), which account for 
about one-fifth of all natural hazard fatalities and nearly 20% 
of U.S. billion-dollar disasters between 1973 and early 2007 
(Swienton et al. 2021). Most tornado deaths happen when 
there are a lot of tornadoes at the same time, which is called 
a tornado outbreak. A tornado outbreak is a series of many 
tornadoes that happen close together in time (Tippett et al. 
2016; Fricker and Allen 2022).

Numerous studies have combined fatalities, injuries, and 
property damage statistics to give a comprehensive analy-
sis of tornado hazards. For instance, Anderson-Frey and 
Brooks (2019) studied the impact of tornadoes on fatali-
ties using machine learning domains and discovered that 
deadly tornadoes are more likely to have high Enhanced 

Fujita Scale (EF-scale) ratings (which indicate the intensity 
of the tornado impact) and occur in the winter and spring. 
Around 87% of tornadoes resulting in deaths were warned 
of in advance, and nearly 95% of tornado deaths happened 
during an active warning.

Biddle et al. (2020) examined the regional differences in 
the risk of mortality from tornadoes in the United States. 
Their findings revealed that southern states have seen con-
siderable increases in the probability of mortality and injury 
when compared to northern states. Fricker and Allen (2022) 
investigated the risk variables for tornado fatalities on a 
community level by conducting a place-based analysis of 
tornado fatalities in Louisiana to assess the potential impact 
of many physical and social systems on the area’s tornado 
fatality rates. They argued that smoother, lower-lying ter-
rain is more susceptible to tornadoes and tornado fatalities, 
and that residents of mobile homes are more vulnerable to 
becoming tornado casualties than residents of permanent 
residences.

In contrast to the studies treating tornadoes as inde-
pendent events, there are few that have examined how 
fatalities are affected by a tornado outbreak (Swienton 
et al. 2021). Fuhrmann et al. (2014) showed that the great 
majority of tornado-related fatalities occurred during out-
breaks by developing two comparable measures for deter-
mining the physical size, or intensity, of tornado outbreaks 
in the Rocky Mountains. Heather (2019) examined the 
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association between tornado severity (as measured by the 
Fujita Scale), tornado frequency, and morbidity and mor-
tality trends over time using geographic information sys-
tem (GIS) technology and statistical analysis of historical 
data in Texas. They showed that there was a statistically 
significant relationship between tornado severity and asso-
ciated morbidity and death during “tornado outbreaks” in 
a 30-year period. The authors also noted changes in the 
regional and temporal distributions of outbreak and non-
outbreak tornadoes due to climatological factors.

Most recently, Swienton et al. (2021) explored the asso-
ciations between tornado severity, number, and geography 
of occurrence as they relate to direct injuries and fatalities 
in severe weather events using nonparametric statistical 
and spatial analyses for a 35-year period in Texas. The 
findings revealed that tornado severity exacerbates cau-
sality, but tornado outbreaks also have an influence on 
the fatality rate. Although tornadoes are arguably extreme 
events much of the analysis of the current literature has 
used standard statistical techniques to analyze these. An 
exception in this regard is Tippett et al. (2016), who used 
extreme value methods to analyze tornado outbreaks in the 
United States during 50 years. They found no significant 
trend in the annual number of tornadoes but an increase 
in the number of more extreme outbreaks over time. How-
ever, the authors did not relate these extreme outbreaks to 
the number of induced fatalities.

This study contributes to the current tornado literature on 
two fronts. First, it utilizes extreme value statistics to esti-
mate the risk of fatalities during tornado outbreaks, defined 
as sequences of six or more tornadoes that occur with no 
more than six hours between consecutive tornadoes covering 
the period of 1950 to 2018. Extreme value theory is an alter-
native and superior approach to quantifying the stochastic 
behavior of tornado outbreaks since it provides the statistical 
framework to make inferences about the probability of these 
very rare and extreme events. This study is interested in the 
tails of the tornado distribution (that is, tornado fatalities in 
outbreaks). The utilized dataset comes from the aforemen-
tioned study of Tippett et al. (2016). Importantly, in this 
regard the approach utilized allows for the distribution of 
fatalities to have changed over time due to housing density 
and climate factors.

Second, in addition to Tippett et al. (2016), who discov-
ered that the frequency of U.S. tornado outbreaks has been 
increasing, this analysis contributes to the tornado-outbreak-
fatality complex by examining the impact of fatality risk 
due to tornado outbreaks under several climate change and 
demographic counterfactual scenarios. As such it might 
help in formulating policies and warning systems that could 
prevent more losses, not just in terms of health (Chiu et al. 
2013; Swienton et al. 2021), but also in terms of the many 
layers that result from the loss of community services and 

resources (Simmons and Sutter 2007; Carbone and Echols 
2017; Danielson et al. 2017).

2  Methods

This section describes the extreme value theory, the key 
equations and the data sources of key variables, depend-
ency, stationarity, and the counterfactual implementation.

2.1  Extreme Value Theory

Extreme value theory (EVT) is a probabilistic area of statis-
tics that deals with so-called rare or extreme events. Three 
classical approaches—the block maxima, threshold excess, 
and point process—are usually considered. This study 
focused on the latter because the point process (PP) allows 
us to define events in time or space and can be used to simu-
late time-dependent threshold excesses, which is particularly 
to the case of tornado outbreaks. The PP model is origi-
nally attributed to Pickands (1971), which considers excess 
limits as events over time to model the occurrence of these 
events. Following Gilleland and Katz (2016) and Towler 
et al. (2020), the non-homogeneous Poisson point process 
with intensity measure, Λ , on the set A =

(
t1, t2

)
× (x,∞) 

is given by:

where −∞ < 𝜇, 𝜉 < ∞, and 𝜎 > 0 are location, shape, and 
scale parameters, respectively, and I(⋅) is an indicator func-
tion that is zero if the argument is not true and one other-
wise. Substituting 

[
t1, t2

]
= [0, 1] to represent 1 year, and if 

the indicator function is equal to 1, the Poisson rate param-
eter, � , can be calculated to obtain the frequency of exceed-
ing a particular threshold, u:

The threshold value u is frequently selected as a compro-
mise between having a sufficient number of observations to 
lower the variance of the estimates and guaranteeing that the 
remaining data do indeed follow an extreme value distribu-
tion. To determine the best threshold, the mean value of the 
excesses over u is plotted against u via a mean residual life 
(MRL) plot. More precisely, for a given threshold û , the 
MRL for any threshold u > �u is:

which is linear in u with gradient �

1−�
 and intercept �û

1−�
 . This 

study used the Northrop et al. (2017) method, which involves 

(1)Λ(A) =
(
t
2
− t

1

)
⋅

[
1 + �

x − �

�

]−1∕�
⋅ I(1 + � ⋅ (x − �)∕� ≥ 0)

(2)� =
[
1 + �

u − �

�

]−1∕�

(3)E((X − u)|(X > u)) =
𝜎�u + 𝜉u
1 − 𝜉
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Bayesian leave-one-out cross-validation to compare the 
extreme value predicting performance of a set of thresholds. 
The approach evaluates the trade-off between model mis-
specification bias caused by an excessively low threshold 
and the loss of estimate accuracy caused by an unduly high 
threshold. The threshold selection is further examined by the 
mean residual life plot. The mean residual life plot aids the 
selection of a threshold for the point process models.

To estimate the parameters of the PP model for a given 
choice of threshold, u, the PP log− likelihood, � , is estimated 
via maximum likelihood (MLE) as:

where ny indicates the number of years of data and 
[⋅]xi>u is the indicator function as shown in Gilleland and 
Katz (2016, Eq. 10).1 The n-observation return level xn is 
the level exceeded on average once every n years (Coles 
et al. 2001; Lipika 2018) in a subset of k-dimensional 
space, k . It can be written by first defining pi , when 
1 + 𝜉i

(
xn−𝜇i

𝜎i

)
> 0

and when 
(

xn−𝜇i

𝜎i

)
< 0 then pi = 1 . It follows that xn 

satisfies,

thus using a log form of equation (6) gives

Diagnostic tools for the PP-approach include graphical 
techniques such as the Z-plot and the QQ plots (Finkenstadt 
and Rootzén 2003). The Z-plot is a diagnostic quantile-quan-
tile graphic in which the mean duration between occurrences 
should follow an exponential distribution (Smith 1989). The 
QQ plots may be used to evaluate and analyze the model’s 
fit when the parameters are transformed to those of the gen-
eralized Pareto distribution and the quantiles are the data’s 
threshold excesses.

(4)

�
�
𝜇, 𝜎, 𝜉;x

1
… xn

�
= −kln𝜎 −

�
1

𝜉
+ 1

�∑n

i=1

�
1 +

𝜉

𝜎

�
xi − u

��

xi>u

−ny

�
1 +

𝜉

𝜎
(u − 𝜇)

� −1
𝜉

(5)pi = 1 −
1

n

[
1 + �i

(
xn − �i

�i

)] 1

�i

(6)1 −
1

n
= Pr

{
m
(
X1,X2,… ,Xm ≤ xn

)}
≈

m∏

i=1

pi

(7)
m∑

i=1

logpi = log
(
1 −

1

n

)

2.2  Data

The tornado dataset was obtained from the study of Tippett 
et al. (2016).2 The rich dataset consists of information about 
the number of injured people and fatalities, which are a great 
factor to capture the impact of tornadoes on society. The 
data also contain the intensity of tornado impact (Enhanced 
Fujita Scale and Fujita Scale). The Fujita Scale (F-Scale) 
was originally developed in 1971, by Theodore Fujita to 
assess the wind speed of a tornado based on the damage 
to buildings, structures, and trees. The greatest degree of 
destruction in a tornado’s path was given an F-scale rating 
(see Table 1). The EF-Scale was devised to account for vari-
ous elements impacting wind pressures on structures. The 
dataset contains information of both indices and information 
before 1971 has been gathered retroactively utilizing news-
paper accounts and images of tornadoes that happened prior 
to this period following Tippett and Cohen (2016).

Following Caldera et  al. (2018) only tornadoes that 
occurred in the outbreak are included in the analysis, where 
a tornado outbreak is defined as consisting of 6 or more 
F1+ tornadoes, which occur within no more than six hours 
in succession as stated previously. To identify tornadoes 
that are part of an outbreak, the storms were first sorted 
in chronological order, and later the rule of definition of 
tornado outbreak was applied. The definition allows tornado 
outbreaks to be located across states and possibly longer 
than 1 day. The period 2015 to 2018 from the NOAA Storm 
Prediction Center (SPC) (NOAA 2020) was included in the 

Table 1  Enhanced Fujita Scale (EF-Scale) wind speed ranges derived 
from Fujita scale wind speed ranges extracted from Mehta (2013)

a 1 mph = 0.447 m/sec
b No upper bound for EF5

Fujita Scale Enhanced Fujita Scale

F-Scale Fastest 1/4-mile 3-Second Gust EF-Scale 3-Second Gust

Wind Speed, 
mph

Speed, mph Speed,  mpha

F0 40−72 45−78 EF0 65−85
F1 73−112 79−117 EF1 86−110
F2 113−157 118−161 EF2 111−135
F3 158−207 162−209 EF3 136−165
F4 208−260 210−261 EF4 166−200
F5 261−318 262−317 EF5 >  200b

1 For a detailed description and derivation of the point process, see 
Coles et al. (2001, pp. 124141).

2 The tornado dataset from Tippet et  al. (2016) presents the record 
of tornado outbreak activities in the United States and includes tor-
nadoes reported in 19502014. The tornado dataset for the remaining 
years (20152018) was obtained from NOAA Storm Prediction Center 
(SPC) at https:// www. spc. noaa. gov/ produ cts/. All code for data clean-
ing and analysis associated with the current submission is available 
upon request with the required permissions.

https://www.spc.noaa.gov/products/
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analysis in accordance with the methods of Tippett et al. 
(2016), as the authors only analyzed until 2014.

Socioeconomic and climatic variables are included in the 
analysis. Data on the housing unit density from the U.S. 
Census Bureau (2020) are included since it is expected 
to influence the number of tornado fatalities. Because the 
covariate is based on census data, the housing density 
variable was created via linear interpolation method. 
In terms of the climatic factor, the covariate was created 
combining the atmospheric component of the El Niño-
Southern Oscillation (ENSO) and the oceanic component 
Surface Sea Temperature (Niño 3.4 SST) as described 
in Smith and Sardeshmukh (2000). The seasonality was 
removed from the combined time series and the values were 
standardized by month so that each month has a mean of 
0 and a standard deviation of 1.0. The combined climatic 
measures named BestENSO is active during two phases, El 
Niño/La Niña, and inactive during so-called neutral years, 
when climatic conditions in the equatorial Pacific tend to 
be near their long-term average (Power and Delage 2018). 
El Niño/La Niña events can be taken from the positive/
negative values of the BestENSO index. The assumption 
that ENSO may influence the frequency and location of 
tornadoes and other severe storm systems is not new. It is 
already known to have a significant impact on temperature 
and rainfall in the United States, as well as the location 
of the jet stream. According to Allen et al. (2015), ENSO 
influences the large-scale environment, and the large-scale 
environment influences tornado occurrence. Tippett and 
Lepore (2021) also acknowledged that ENSO modulates 
severe thunderstorm activity (tornadoes, big hail, and 
damaging straight-line winds) in the United States.

2.3  Dependency

By and large, there is evidence that tornado outbreaks 
depend on one another, and it is highly improbable that these 
occurrences are independent (Sparrow and Mercer 2016). As 
such, the data need to be tested for dependence and declus-
tered if necessary. Coles et al. (2001) outlined ways to diag-
nose the dependence, for instance, using visual inspection, 
such as the auto-tail dependence function (atdf) plot and 
the extremal index. The extremal index ranges between 0 
and 1, with values closer to 1 indicating less dependence. 
Coles et al. (2001) also described ways to break up clusters 
(declustering).3

2.4  Nonstationarity

Additionally, Coles et al. (2001) showed that covariates 
can be used to overcome the existence of trends or cycles 
by modeling the parameters. In this study, the location 
parameter was modeled as a linear function of a covariate, 
Int , which represents the wind speeds considering the 
nature and extent of the destruction the tornadoes cause. 
The intensity of the tornado outbreak was included as part of 
the location parameter since changes in location parameters 
correspond to shifts in typical or average tornado-related 
deaths. The location parameter can be expressed as:

It is also possible to add a covariate to the shape 
parameter, � . Addressing nonstationarity, the analysis 
incorporated climatic and demographic covariates in contrast 
to Tippett et al. (2016). The climatic covariate was included 
in the analysis assuming that El Niño/La Niña events will 
influence linearly the number of fatalities as the BestENSO 
variable is standardized. Also, the simplest functional form 
was adopted as a precautionary approach. The housing unit 
density variable was also linearly included in the shape 
parameter.4 The shape parameter takes the following form:

To test covariate significance, a likelihood-ratio test was 
used. Citing Coles et al. (2001) and Towler et al. (2020), if 
a model M0 is a nested model of M1 , the deviance statistic, 
D , can be calculated from the maximized log-likelihoods 
for the models:

If D > c𝛼 , then M0 can be rejected for M1 , where c� is 
the (1 − �) quantile of the �2

k
 distribution. The level of 

significance is � , and the �2
k
 distribution is the large sample 

approximation with degrees of freedom, k . The results 
from the likelihood-ratio test can be provided upon request. 
Models are compared based on the Akaike Information 
Criterion (AIC) (Adams and Comrie 1997), which can be 
calculated as:

where l is the likelihood function estimate, and K is the 
number of parameters being estimated.

(8)� = �0 + �1Int

(9)� = �0 + �1BestENSO + �2HousingDensity

(10)D = 2
[
l1
(
M1

)
− l0

(
M0

)]

(11)AIC = −2(l) + 2K

3 Declustering following Coles et al. (2001) can be easily done with 
the extRemes package in R (Gilleland and Katz 2016).

4 Different variables were tried to see whether they improved model 
performance and explanatory power such as population density and a 
nonlinear term of housing density. With these variables, no distinc-
tion or improvement was obtained. The results of these model compu-
tations may be requested from the corresponding author.
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2.5  Counterfactual Simulations

Different counterfactual scenarios were calculated to 
determine the effect of each covariate on the return levels. A 
counterfactual analysis compares the probability p1 of seeing 
the event (exceeding the threshold in terms of fatalities) in 
the present day with existing climatic and socioeconomic 
conditions (the baseline condition) to the probability p0 of 
seeing the event in an ever-changing demographic dynamics 
and changing climate (a counterfactual world) (Otto 2017; 
Yiou et al. 2020).

Güneralp et al. (2017) showed that the rise in expected 
floor space for North America is equivalent to that projected 
for emerging regions. By 2050, Güneralp et al. (2017) cal-
culated that North America would have a 60% increase in 
floor built area, reflected in habitation construction. In this 
setting, probabilities can be calculated from the fitted extreme 
value distributions. Considering different housing scenarios, 
the following were calculated: (1) the baseline scenario with 
the average of house unit density of 2018; (2) the scenario in 
which the housing system increases by 60% on the average 
terms of 2018, as predicted by Güneralp et al. (2017); and (3) 
the scenario in which the average housing density is stated 
in the first year of the studied period (1950). The climatic 
covariate was held constant on the average value of 2018.

For climatic schemes, according to the findings of Bon-
fils et al. (2015) and Power and Delage (2018), there will 
be an increase of at least 15% in La Niña/El Niño occur-
rences relative to the historical record. This corresponds to 
an increase in the second (50% of the ordered sample) and 
third (75% of the ordered sample) BestENSO quantiles. The 
counterfactual considered the following scenario: (1) the 
baseline scenario with the average value of the BestENSO 
index for 2018; and (2) the adjusted probability consider-
ing an increase of 15% on the quantiles of the BestENSO 
index. These are related to the frequency of El Niño/La Niña 
events. The housing density was held constant expressing the 
average value for the year 2018. The shape parameters for 
the counterfactual analyses are modeled identically to those 
stated in Eq. 9.5

3  Results

This section presents the results of the analysis of the 
estimated impact of tornado outbreaks on fatalities while 
accounting for climate and demographic factors using 
extreme value theory and counterfactual simulations.

3.1  Descriptive Statistics

Table 2 shows the summary of the dataset containing only 
tornadoes belonging to a tornado outbreak event. The death 
toll from tornadoes varied significantly. The maximum 
death toll in a tornado event was 158. The intensity of tor-
nado events was on average approximately one. A positive 
BestENSO index on average indicates that there were more 
El Niño events in the sample. Also, the average housing 
density was equal to 38.

A total of 4662 fatalities was registered throughout the 
study period. This equates to an average of 554 tornadoes 
and 68 fatalities every year. Tornado outbreaks and fatali-
ties, on the other hand, fluctuate significantly from year to 
year. In total, 2508 outbreaks have been found from 1950 
to 2018. Figure 1 shows this fluctuation in the number of 
tornado outbreaks and fatalities in the United States over 
the study period. The data cover the 51 states of the United 
States from 1950 to 2018. As can be seen, tornado outbreak 
incidence is not uniform across states over the period. Some 
states experienced much more tornadoes than others, such as 
Illinois, Oklahoma, and Texas, with 1817, 2756, and 5140 
events, respectively.

In addition, as seen in Fig. 2, we observed that some years 
were more extreme than others. For example, in 1965, there 
were 39 tornado outbreaks and 293 fatalities. This number 
almost doubled in 2004 with 64 events and 34 human losses.

3.2  Threshold Selection

The Bayesian leave-one-out cross-validation suggested three 
fatalities as the appropriate threshold of extremes. This 
threshold is supported by the mean residual life plot that 
shows three fatalities to be a reasonable choice.6 In addition, 
AIC and log-likelihood findings reveal that the best model 

Table 2  Descriptive statistics of 
the tornado outbreak events

Variable Mean St. Dev. Min Pctl(25) Pctl(75) Max

Fatalities 0.122 1.679 0 0 0 158
Enhanced Fujita Scale 0.821 1.045 0 0 1 5
Housing Density 38.252 51.329 1.1 14.959 45.209 5,118.22
BestENSO Index 0.035 0.965 − 3.07 − 0.56 0.64 3.08

5 The counterfactual analysis and the extreme value model estimation 
were conducted with the R programming language (R version 4.0.2, 
2020-06-22) using many packages such as the extRemes package 
developed by Gilleland and Katz (2016). 6 Results available on request from the corresponding author.
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fit is the model with a threshold of three fatalities, as can be 
seen in Table 3.

3.3  Stationary and Nonstationary Results

Assuming stationarity, Table 3 summarizes the results for 
the selected threshold. It can be observed that all parameters 
are significant, and the shape is positive, indicating a Fréchet 
distribution that decays slowly tending to infinity. Following 
the analysis, when plotting the auto-tail dependence function 
plot, some dependence can be seen. The dataset was 
subsequently declustered to address the dependence issue. 
In accordance with Coles et al. (2001) and Gilleland and 
Katz (2016), the dataset was declustered using groups of 
tornado outbreaks to indicate that the declustering technique 
was done to each tornado outbreak event.

A preference for the nonstationary model specification 
using the demographic and climatic covariates was con-
firmed by comparing the log-likelihood and Akaike’s infor-
mation criterion (AIC) compared from Tables 3 and 4. For 
the selected threshold, the shape, location, and scale param-
eters are significant. As with the stationary model, the loca-
tion and scale parameters are positive. Similarly, the scale 
parameter is positive and with a value 0.407 and in line with 

assuming stationarity, and suggests a heavy tailed distribu-
tion (Brooks and Doswell III 2001; Dotzek 2002).

The return periods of the nonstationary model were 
examined. Return level time series for 5, 10, 20, and 50-year 
return levels were plotted (see Fig. 3). It can be seen that 
return levels fluctuate and rise with time, with a longer 
return duration reflecting a larger return level. The number 
of fatalities was predicted to be about 25 every five years, 
and close to 38 every 10 years. Every 20 years, 53 people are 
expected to die, and every 30 years, 63 deaths from tornado 
outbreaks are expected.

Finally, based on the probability of exceedance, the results 
suggest that the chance that at least five people will die, 
which is less than the double of the chosen extreme thresh-
old, for 5, 10, 20, and 30-year return periods, decreases with 
longer return periods. For a 5-year return period, the chance 
is 76%, for a 10-year return period 43%, for a 20-year return 
period 18%, and around 10% for a 30-year return period.

3.4  Counterfactual Calculations

Following the counterfactual scenarios description in 
Sect. 2.5, Table 5 shows that an increase in housing den-
sity increases the probability of exceedance for 5, 10, and 

Fig. 1  Tornado outbreak activity by number of fatalities in the United 
States, 1950−2018. The point locations refer to the beginning path of 
the tornado outbreak and the size refers to the number of fatalities. 

Source Adapted from Tippett et al. (2016). Interactive version of the 
map is available at https:// dataw rapper. dwcdn. net/ W5JkZ/1/

https://datawrapper.dwcdn.net/W5JkZ/1/
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50 fatalities, respectively. The probability of exceedance 
increases marginally with an increase in the demographic 
scenario. Comparing 1950s probabilities to the 2018 world 
state, it appears that the fatality probability has increased 
over time. When it comes to climate change scenarios, it 
is possible to see that the probability of fatalities increases 
during El Niño episodes. When compared to the baseline 
model, the probability of at least 50 fatalities occurring in a 
tornado outbreak increases during episodes of La Niña. See 
Figs. 4 and 5 for a spatial distribution of the counterfactual 
simulations.

Fig. 2  Number of fatalities given the occurrence of tornado outbreaks in the United States, 1950−2018. Source Adapted from Tippett et  al. 
(2016). Interactive version of the map is available at https:// dataw rapper. dwcdn. net/ LVD08/5/

Table 3  Results of the estimated parameters for the point process 
(PP) stationary models with shape and location covariates

Bold indicates p value ≤ 0.05

AIC Akaike’s information criterion

Threshold
(Fatalities)

Shape Location Scale AIC Negative 
Log- Likeli-
hood

1 0.407 12.982 8.411 1794 894
2 0.406 13.276 9.098 1701 847
3 0.374 13.512 9.607 1530 762

Table 4  Results of the estimated parameters for the point process (PP) nonstationary models with shape and location covariates

Bold indicates p value ≤ 0.05

AIC Akaike’s information criterion

Threshold
(fatalities)

Shape Shape (BestENSO) Shape (housing 
density)

Location Location (Enhanced 
Fujita Scale)

Scale AIC Negative 
Log-Likeli-
hood

1 0.415 − 0.036 − 0.001 8.338 1.074 7.232 1409 698
2 0.379 − 0.057 − 0.001 7.459 1.619 7.991 1238 613
3 0.501 − 0.089 − 0.005 8.192 1.401 8.57 1074 531

https://datawrapper.dwcdn.net/LVD08/5/
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4  Discussion

Tornadoes have a significant impact on the lives of many 
individuals in the United States. This study examined the 
impact of tornado outbreaks on human life, particularly 

fatalities, using extreme value theory while accounting for 
climatic and demographic factors. Using the point process 
technique, all parameter estimations are significant in the 
stationary and nonstationary models.

The positive shape parameter indicates that the 
underlying data have a Fréchet distribution. This implies 

Fig. 3  Diagnostic plots. The plots include: a the quantile and quantile 
(QQ) plot of the data quantiles against the fitted model quantiles; b a 
QQ plot of quantiles from model simulated data against the data; c a 

density plot of the data, along with the model fitted density; and d a 
return level plot

Table 5  Counterfactual (CF) calculations for different demographic and climatic scenarios

CF scenario—demographic 5 Fatalities in % 10 Fatalities in % 50 
Fatali-
ties in %

Factual scenario (2018) 79.57 44.58 0.26
Scenario in Güneralp et al. (2017) (2050) 79.74 44.95 0.3
Scenario of initial period of study (1950) 79.41 44.22 0.23

CF scenario—climate 5 Fatalities in % 10 Fatalities in % 50 
Fatali-
ties in %

Factual scenario (Average of BestENSO Index) 75.85 41.21 2.23
Scenario in Bonfils et al. (2015), Power and Delage (2018) (2nd Q—La Niña) 75.44 40.86 2.45
Scenario in Bonfils et al. (2015), Power and Delage (2018) (3rd Q—El Niño) 77.09 42.28 1.55
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a heavy tailed distribution in which underlies the effect 
of severe tornado outbreaks and higher number of 
tornadoes. This type of distribution was observed in 
studies by Brooks and Doswell III (2001) and Dotzek 
(2002), which modeled the distribution of tornadoes 
based on the F-scale. They suggested that the frequency 
of occurrence of severe tornado events is related to their 
severity, with the frequency of recurrence essentially 
following a logarithmic form with increasing intensity. 
This can also be seen in the way that fatalities are spread 
out. Also, Anderson-Frey and Brooks (2019) unearthed 
similar results in Texas but using a different approach. 
They observed a direct and positive relationship between 
tornado intensity and deaths, particularly during tornado 
outbreaks. Schroder and Elsner (2021) recently found 
that accumulated tornado power (ATP) is increasing in 
the United States. Convective available potential energy 
(CAPE), shallow-layer bulk shear (SLBS), and deep-
layer bulk shear (DLBS) all have a direct influence on 
tornado outbreaks (at least 10 tornadoes) and death counts, 
according to the research.

Counterfactual simulations indicate that the possibility 
of more fatalities increases with an ever increasing 
demographic projection. Arguably this is because more 
densely populated locations would tend to have a more 

crescent housing structure, which will result in greater 
tornado damage and, thus, more fatalities (See Fig. 4). 
This finding can be corroborated by Ashley and Strader 
(2016) who showed how the catastrophic components 
of tornadoes vary greatly across locations in the United 
States, but that the likelihood of catastrophe increases 
when demographic exposure and risk coincide. Also, 
Fricker et al. (2017) found a power-law relationship with 
respect to tornado fatalities and number of tornadoes 
within the most tornado-prone region of the United States, 
such as northern Mississippi and Alabama.

Although not detected in this investigation owing to a 
lack of data for analysis, Brooks and Doswell III (2002) 
and Ashley (2007) found significant results for the tornado-
fatalities relationship in mobile homes in the United States. 
Despite making up less than 10% of all dwellings, they 
claimed that around half of all tornado fatalities take place 
in mobile homes. Mobile home residents have a death rate 
that is 15−20 times higher than those who live in fixed 
residences. Therefore, counterfactual simulations for mobile 
homes, for example, would surpass the observed results for 
housing density calculations.

Holding housing status at 2018 average levels, the climatic 
counterfactual findings illustrate how the effect of El Niño/
La Niña on climate would have a detrimental impact on the 

Fig. 4  Counterfactual calculations of the probability of at least five 
fatalities occurring as a result of a tornado outbreak across U.S. states 
with different demographic scenarios. Panel a shows the expected 

probability using housing density at the beginning of the study period 
in 1950; Panel b shows a baseline model in 2018; Panel c shows the 
predicted probability using housing density of 2050
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number of deaths caused by tornado outbreaks. Because it 
is possible to observe the evolution of the El Niño/La Niña, 
starting during its development phase in boreal summer and 
continuing into its final mature phase in winter, seasonal 
climate prediction is possible in the United States, even with 
respect to weather extremes (McPhaden et al. 2020). The 
consequences of these occurrences on extreme rains and 
floods, particularly in the southeast region of the nation, may 
drive fortification of homes and, in the worst-case scenario, 
guard against tornado damage. This can be explained by the 
decreasing effect of the counterfactual calculation of tornado 
outbreaks on mortality with different climatic scenarios. 
It is noteworthy to draw attention that for La Niña events 
the probability increases for a large number of fatalities. 
Tippett and Lepore (2021) examined meteorological trends, 
including ENSO, that regularly follow tornadoes in Texas, 
Oklahoma, Arkansas, and Louisiana using 8,000 years of 
synthetic data using a computer model. In the computed 
model, they discovered that there is a strong relationship 
between ENSO and tornado meteorological conditions. 

However, the model suggests that more tornadoes than 
normal are expected during La Niña conditions but that the 
exact number is highly uncertain. This corroborates to the 
present findings since more tornadoes during La Niña events 
will increase the probability in the number of fatalities (see 
Fig. 5).

From the results, it is possible to infer that climate 
change will impact the frequency of tornado outbreaks in 
the country. However, caution is needed for this statement. 
Recent studies demonstrate limited consensus on climate 
change and ENSO-related sea surface temperature 
fluctuations during the next century (Arias et al. 2021).7 

Fig. 5  Counterfactual calculations of the probability of at least 50 
fatalities occurring as a result of a tornado outbreak across U.S. states 
with different climatic scenarios. Panel a shows a baseline model in 

2018; Panel b shows the predicted probability of 50 fatalities with an 
increase in El Niño events; Panel c shows the predicted probability of 
50 fatalities with an increase in La Niña events

7 For example, Callahan et  al. (2021) indicated that long-term  CO2 
forcing dampens ENSO. Using a high-resolution climate model, 
Wengel et al. (2021) predicted that under GHG-induced warming, El 
Niño activity decreases. On the other hand, Cai et al. (2021) demon-
strated that future ENSO sea surface temperature variability and, as a 
result, ENSO magnitude are predicted to increase as a result of green-
house warming. If anything, this supports the Arias et al. (2021) con-
clusion that ENSO will alter over time with minimal predictability.
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This evidences the unpredictable nature of El Niño/La Niña 
occurrences, as well as the need of researching the processes 
by which they affect society.

5  Conclusion

This study used extreme value theory to estimate the impact 
of tornado outbreaks on fatalities while accounting for cli-
mate and demographic factors. The findings indicate that 
the number of fatalities increases with the increase of tor-
nado outbreaks. Intensified El Niño events reduce the likeli-
hood of further fatalities, and La Niña events are expected 
to increase probability of fatalities. The current study is 
restricted by the fact that many more meteorological and 
social variables are required in order to strengthen the con-
clusions but they are not readily available, for example a 
detailed assessment on mobile homes or Global Climate 
Models (GCMs) thunderstorm ingredients (Tippett and 
Lepore 2021). Nonetheless, understanding the impact of 
tornado outbreaks in relation to fatalities and determining 
their effects are key to disaster mitigation policy making. 
The results presented might be used to validate policy design 
and preparedness, early warning, and public education for 
those who are at danger. Examining the frequency of tornado 
outbreaks given the demographic and climatic implications 
may thus help to reduce the number of tornado-related fatali-
ties across the country.
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bution 4.0 International License, which permits use, sharing, adapta-
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