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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• EM-DAT data is used to identify and 
classify multi-hazard events from 1900 
to 2023. 

• About 19 % of 16,535 disaster records 
are classified as multi-hazard events. 

• Multi-hazard events caused 59 % of 
global economic losses. 

• Most multi-hazard events have pre-
conditioned/triggering and multivariate 
characteristics. 

• Asia and North America have a higher 
prevalence of multi-hazard events.  

A R T I C L E  I N F O   

Editor: Fernando A.L. Pacheco  

Keywords: 
Multi-hazards 
EM-DAT 
Impacts 

A B S T R A C T   

Multi-hazard events, characterized by the simultaneous, cascading, or cumulative occurrence of multiple natural 
hazards, pose a significant threat to human lives and assets. This is primarily due to the cumulative and cascading 
effects arising from the interplay of various natural hazards across space and time. However, their identification 
is challenging, which is attributable to the complex nature of natural hazard interactions and the limited 
availability of multi-hazard observations. This study presents an approach for identifying multi-hazard events 
during the past 123 years (1900–2023) using the EM-DAT global disaster database. Leveraging the ‘associated 
hazard’ information in EM-DAT, multi-hazard events are detected and assessed in relation to their frequency, 
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Natural hazard 
Compound events 

impact on human lives and assets, and reporting trends. The interactions between various combinations of 
natural hazard pairs are explored, reclassifying them into four categories: preconditioned/triggering, multivar-
iate, temporally compounding, and spatially compounding multi-hazard events. The results show, globally, 
approximately 19 % of the 16,535 disasters recorded in EM-DAT can be classified as multi-hazard events. 
However, the multi-hazard events recorded in EM-DAT are disproportionately responsible for nearly 59 % of the 
estimated global economic losses. Conversely, single hazard events resulted in higher fatalities compared to 
multi-hazard events. The largest proportion of multi-hazard events are associated with floods, storms, and 
earthquakes. Landslides emerge as the predominant secondary hazards within multi-hazard pairs, primarily 
triggered by floods, storms, and earthquakes, with the majority of multi-hazard events exhibiting precondi-
tioned/triggering and multivariate characteristics. There is a higher prevalence of multi-hazard events in Asia 
and North America, whilst temporal overlaps of multiple hazards predominate in Europe. These results can be 
used to increase the integration of multi-hazard thinking in risk assessments, emergency management response 
plans and mitigation policies at both national and international levels.   

1. Introduction 

The incidence of natural hazards affecting populations is on the rise 
across various regions due to factors such as population growth, ur-
banization, and the impact of climate change (IPCC, 2018; Shi et al., 
2016; Siri et al., 2016). Different parts of the world are confronted with 
the simultaneous or sequential occurrence of multiple types of natural 
hazards. For instance, the World Bank estimates that approximately 3.8 
million square kilometers of land and 790 million people globally face 
significant exposure to at least two distinct hazards, while 0.5 million 
square kilometers of land and 105 million individuals contend with 
exposure to three or more hazards (Dilley, 2005). To devise effective risk 
reduction measures, studying all relevant hazards affecting a particular 
location or region is required (Bell and Glade, 2012; Choine et al., 2015; 
Gallina et al., 2016; Girgin et al., 2019). 

The conventional approach to risk assessments typically examines 
each hazard in isolation (Kappes et al., 2012; Ward et al., 2022). How-
ever, natural hazards often manifest in tandem or in rapid succession 
(Bathrellos et al., 2017; Gill and Malamud, 2014). Disregarding the in-
teractions among these hazards within risk assessments, as well as their 
interplay with factors like exposure and vulnerability, can lead to the 
underestimation or overestimation of risks (Araya-Muñoz et al., 2017; 
He and Weng, 2021; Hillier et al., 2020; Johnson et al., 2016; Leonard 
et al., 2014). Consequently, various studies have underscored the ne-
cessity of developing frameworks for understanding multi-hazard in-
teractions (Gill and Malamud, 2014; Gill and Malamud, 2016; 
Pourghasemi et al., 2019; Tilloy et al., 2019). In recent decades, the 
recognition of multi-hazard events has grown within academic literature 
and international organizations, including the IPCC, UNDRR, and WHO, 
acknowledging them as a “pressing concern” that should be incorpo-
rated into disaster risk management (Gill and Malamud, 2014; IPCC, 
2021; UNDRR and WMO, 2022; van den Hurk et al., 2023; Zscheischler 
et al., 2020). The Sendai Framework for Disaster Risk Reduction defines 
multi-hazards as: “(1) the selection of multiple major hazards that the 
country faces, and (2) the specific contexts where hazardous events may 
occur simultaneously, cascadingly or cumulatively over time, and the 
potential interrelated effects” (UNDRR, 2017). The midterm review of 
the Sendai Framework in 2023 has emphasized the need to incorporate 
multi-hazard risk assessment into disaster risk reduction policies. This 
underlines the call to promote science and technology for developing 
models of integrated risk management that encompass multi-risk events 
and their impacts. Such models have the potential to improve commu-
nity resilience to multi-hazard events, ensuring progress towards 
achieving the United Nations' Sustainable Development Goals (Docherty 
et al., 2020). 

Multi-hazard events are typically the result of combinations of 
multiple climate drivers and/or hazards contributing to societal or 
environmental risk (Tilloy et al., 2019; Zscheischler et al., 2018). 
Compared to single hazards, multi-hazard events can lead to more sig-
nificant impacts, including greater economic losses and loss of life 
(Kappes et al., 2012; Ridder et al., 2020; Zscheischler et al., 2020). These 

multiple hazardous events can profoundly affect the resilience of assets, 
asset systems, and societies (Argyroudis et al., 2020; Gehl and D'ayala, 
2016). The COVID-19 pandemic has further emphasized the importance 
of considering multi-hazard interactions when formulating risk man-
agement plans, as such incidents can exacerbate the already adverse 
effects of catastrophic events (De Angeli et al., 2022; Phillips et al., 
2020). 

While existing studies have primarily aimed to enhance the under-
standing of multi-hazard interactions and to identify methods for 
assessing their impacts (Gill and Malamud, 2014; Tilloy et al., 2019), 
some have focused on investigating the co-occurrence of specific haz-
ards at local or regional scales (Bell and Glade, 2012; Bevacqua et al., 
2021; Camus et al., 2021; Gao et al., 2023; Ghanbari et al., 2021). 
However, classifying different types of multi-hazard events remains a 
challenging endeavor due to several factors: (1) unclear definitions of 
these events (Zscheischler et al., 2020); (2) the complex physical in-
teractions between hazards, particularly when one hazard triggers 
another (Gill and Malamud, 2014); (3) potential spatial and temporal 
overlap between hazards (Kappes et al., 2012); and (4) a lack of long 
historical record of multi-hazard events (Chen et al., 2016; Main et al., 
2022). Notably, there is a dearth of studies focusing on the classification 
of past multi-hazard events and their global-scale impacts. Some con-
ceptual frameworks have been proposed for investigating multi-hazard 
interactions (De Angeli et al., 2022; Gill and Malamud, 2014; Gill and 
Malamud, 2017; Hochrainer-Stigler et al., 2023; Tilloy et al., 2019; 
Zscheischler et al., 2020). Claassen et al. (2023) recently introduced the 
Hazard Event Sets Algorithm (MYRIAD-HESA) to identify multi-hazard 
events using data on hazard frequency, duration, and extent. MYRIAD- 
HESA utilizes a range of historical global datasets encompassing 
various geophysical (geological), meteorological, hydrological, and 
climatological hazards. While the results of this study indicated global 
hotspots of hazard pairs under current conditions, the understanding of 
historical trends in multi-hazard events and their ranking in terms of 
frequency of occurrence and potential damage to human lives and assets 
remains nascent. 

The lack of reliable databases poses a significant challenge in iden-
tifying global-scale multi-hazard occurrences (Chen et al., 2016; 
Mahecha et al., 2020; Main et al., 2022). Currently, three global/ 
regional multi-hazard databases exist: EM-DAT, Munich Re and DesIn-
ventar (Formetta and Feyen, 2019; Wirtz et al., 2014), alongside 
numerous national, regional, and local databases worldwide. These 
databases typically record disasters through a single-hazard lens, with 
limited or no consideration of the interactions between hazards and 
their impacts (Kappes et al., 2012). The current approach to multi- 
hazard risk assessment primarily relies on a spatial methodology, 
which involves overlaying multiple layers of all potential single hazards 
within a region (Kappes et al., 2012; Simpson et al., 2021). However, 
this spatial superimposition or aggregation of hazards fails to illustrate 
their interactions and exacerbations resulting from various combina-
tions of hazards (Ciurean et al., 2018; Marzocchi et al., 2012). 
Furthermore, a global multi-hazard database does not exist (Tschumi 
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and Zscheischler, 2020) and there are no established methods for how to 
reclassify global single hazard datasets as multi-hazard events. Although 
EM-DAT includes some associated hazard information, it does not pro-
vide information on hazard interactions or convert them into hazard 
pairings or impacts (Simpson et al., 2021; Sutanto et al., 2020). 

To address the challenges associated with identifying and classifying 
multi-hazard events, this study aims to present a framework for identi-
fying multi-hazard events from a global disaster database and reclassi-
fying them into different categories. To achieve this goal, two primary 
objectives are formulated: (1) to develop and present a framework for 
identifying multi-hazard events spanning the past 123 years 
(1900–2023) using the global disaster database EM-DAT, and (2) to 
classify multi-hazard events and analyze their spatial distribution 
globally. While some studies have considered multi-hazard events 
ambiguously, using approaches that involve the spatial overlapping of 
multiple natural hazards—referred to as “multi-layer single-hazard” 
approaches (Gill and Malamud, 2014; Gill and Malamud, 2016)— this 
study defines multi-hazard events as simultaneous, cascading, or cu-
mulative occurrence of multiple natural hazards. 

2. Methods and data 

2.1. Overview 

An overview of the methodological framework employed in this 
study is shown in Fig. 1. To provide an overview of the approach, firstly, 
this study utilized the global disaster database EM-DAT to identify multi- 
hazard events. A comparative evaluation was then conducted, encom-
passing single and multi-hazard events, considering factors such as their 
occurrences, economic losses, fatalities, and reporting trends. The study 
then explored the various interactions among different hazards within 
the identified multi-hazard events. Moreover, multi-hazard events were 
categorized into four groups — preconditioned/triggering, multivariate, 
temporally compounding, and spatially compounding — in alignment 
with the categorization framework proposed by Zscheischler et al. 
(2020). 

2.2. Database selection 

EM-DAT (Guha-Sapir et al., 2023) was employed in this study to 
identify multi-hazard events. Recent studies in the field of natural haz-
ards have made use of this database (Barredo, 2007; Panwar and Sen, 
2020; Shen and Hwang, 2019; Simpson et al., 2021). Although other 
global/regional disaster databases such as Munich Re (NatCatSERVICE) 
and DesInventar (Wirtz et al., 2014) exist, EM-DAT was chosen pri-
marily due to its extensive information pertaining to natural hazards and 
their consequences in a consistent format (Panwar and Sen, 2020). Also, 
EM-DAT is a freely available database, unlike Munich Re, which is not 
available as an open-access resource. Notably, EM-DAT includes sub-
categories labelled as ‘associated disaster’ and ‘associated disaster 2’ 
(referred to as the ‘associated hazard’ subcategory hereafter), which 
contains data about hazard chains. In this study, the information about 
associated hazards was leveraged to identify and classify multi-hazard 
events. 

EM-DAT compiles global hazard and impact data from 1900 to 
2023,1 drawing from a wide array of sources, including UN agencies, 
non-governmental organizations, insurance companies, research in-
stitutes, and press agencies (Panwar and Sen, 2020; Shen and Hwang, 
2019; Sutanto et al., 2020). Each entry within EM-DAT includes attri-
butes such as hazard groups, sub-groups, types of hazards/impacts, 
associated hazards, as well as hazard impacts—encompassing fatalities 
and losses—categorized spatially (region, continent, country) and 
temporally (year and duration of occurrence). The present study focused 

on a total of eight geophysical, meteorological, hydrological, climato-
logical, and biological hazards (referred to as ‘disaster main types’ in 
EM-DAT). Since epidemics were not associated with any multi-hazard 
events, this hazard was not considered. The hazard categories ‘Mass 
movement (dry)’ and ‘landslide (mass movement)’ were combined 
under the term ‘mass movement’. A comprehensive classification of 
hazards as per EM-DAT is detailed in Table 1. Antarctica was not 
included as EM-DAT does not contain disaster data for the continent. 

2.3. Identifying multi-hazard events 

The identification of multi-hazard events was carried out by utilizing 
the associated hazard information within EM-DAT. Initially, this study 
concentrated on events for which associated hazard information was 
available. It is essential to clarify that this associated hazard information 
could encompass both the occurrence of secondary hazards (e.g., land-
slides, floods) and the consequential effects or outcomes of a primary 
hazard (e.g., structural collapse, famine, dam breakage) (Guha-Sapir 
et al., 2023). Within this study, only events in which both primary 
(identified in the ‘hazard type’ field of EM-DAT) and secondary hazard 
information (found in the associated hazard field of EM-DAT) were 
present, were labelled as “multi-hazard events”. All other events con-
tained in EM-DAT were classified as single hazard events (see Fig. 1). 
Following the identification of multi-hazard events, this study delved 
into potential interactions between primary and secondary hazards. 
Furthermore, comparative assessments were conducted between single 
and multi-hazard events, exploring aspects such as their reporting pat-
terns, hazard occurrences, economic losses, and fatalities. 

2.4. Analyzing reporting trends of multi-hazard events 

The present study investigated how the reporting patterns of both 
single and multi-hazard event occurrences have changed over time. To 
achieve this, a prominent nonparametric regression technique known as 
the local polynomial regression (LPR) model was employed across 
various hazard types. The model aims to predict the pattern of the 
number of single and multi-hazard events (yi) reported, utilizing the 
explanatory variable of time (year, denoted as x): 

yi = m(xi)+ εi (1)  

where i represents the hazard type, εi stands for independent random 
variables with a mean zero and variance v(xi), m(xi) constitutes a 
smooth function of x, and v(x) is a smooth and strictly positive function 
(Breidt and Opsomer, 2000). It is recognized that EM-DAT is subject to 
substantial reporting bias, particularly for records predating 1970 
(Barredo, 2009), therefore for this analysis the focus was directed to-
wards single and multi-hazard events occurring from 1970 to 2023. 

2.5. Classifying multi-hazard events 

One of the primary objectives of this study was to classify multi- 
hazard events. The identified multi-hazard events (as discussed in Sec-
tion 2.3) were reclassified into four distinct categories: (1) precondi-
tioned/triggering events, (2) multivariate, (3) temporally compounding, 
and (4) spatially compounding. These multi-hazard categories were 
largely adopted from the typology presented in Zscheischler et al. (2020) 
that categorized compound events into preconditioned, multivariate, 
temporally compounding and spatially compounding. Table 2 provides 
the definitions of these four categories of multi-hazard events. However, 
Zscheischler et al. (2020) limited their classification to interactions 
among climate-driven hazards. EM-DAT, on the other hand, encom-
passes a range of geophysical hazards, such as earthquakes and land-
slides, which can be involved in triggering events or hazard cascades. In 
these situations, a primary hazard might trigger zero, one, or multiple 
secondary hazards (Gill and Malamud, 2014; Tilloy et al., 2019). 1 Data used in this study was from 1900 to May 2023. 
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Considering the addition of geophysical triggering hazards and the 
analogous mechanisms behind the formation of multi-hazard events, 
these events were incorporated with preconditioned events. 

To assign each selected multi-hazard event to a specific typology, 
criteria based on factors like the driving forces of hazards, timeframe, 
primary hazard, and associated hazards (as outlined in Table 3) were 
used. For example, a Category IV tropical cyclone Sidr struck the coastal 
region of Bangladesh on November 15, 2007. The storm caused multiple 
types of flooding, including coastal, riverine, and pluvial flooding 
(Adnan et al., 2019). EM-DAT recorded the event as a storm (in the 
‘hazard main type’ field) and flood (in the associated hazard field). In 
the present study, this event was classified as a multivariate event 
because multiple related hazards (i.e., storms and floods) occurred 
concurrently within a short timeframe, such as within a day. Other 
multi-hazard events were similarly classified based on the defined 
criteria. 

Importantly, multi-hazard classes are not mutually exclusive as 
different combinations of hazards can fit into one or more categories of 
multi-hazard events. For example, the drought and heatwave event in 
China in 2022 (ID: 2022–9524-CHN) could potentially be classified 
either a spatially or temporally compounding event. Therefore, in 
certain cases, expert judgment was employed when assigning a multi- 
hazard event to a particular category. Events with insufficient data (e. 
g., gaps in the set of attributes) or those that did not align with any of the 
defined criteria were grouped under a separate ‘no category’ classifi-
cation. Following the classification of multi-hazard events, their 
geographical distribution at the continent scale was evaluated. 

3. Results 

3.1. Multi-hazard events and impacts 

Between 1900 and 2023, a total of 16,535 disasters resulting from 
natural hazards were recorded in EM-DAT globally. Within this dataset, 
the present study identified 3158 multi-hazard events, comprising 
approximately 19 % (or about one fifth) of all recorded events. The 
prevalence of multi-hazard events, however, varies across different 
types of hazards. Fig. 2 shows a comparison of single and multi-hazard 
events, considering occurrences, economic losses, and fatalities. Overall, 
floods accounted for the highest proportion of natural hazard events 
(including both single and multi-hazard events), comprising 35 % of the 
total 16,535 records, followed by storms at 28 %. However, when 
focusing on multi-hazard events specifically, storms were associated 
with the largest proportion of such events, accounting for 42 % of the 
3158 multi-hazard events identified in this study. Floods were con-
nected to 40 % of the total multi-hazard events, followed by earthquakes 
at 11 % (see Fig. S1 in supplementary document). When comparing 
multi-hazard events with their respective primary hazard categories, 
storms represented the largest portion, constituting 28 % of all storm 
events. Floods followed closely, making up 22 % of the total flood 
events, while earthquakes accounted for 21 % of all earthquake events 
(Fig. 2). 

Multi-hazard events were found to result in significantly higher 
economic losses than single hazard events (Fig. 2, central column). Be-
tween 1900 and 2023, these events were disproportionately responsible 

Fig. 1. Methodology flow diagram of this study.  
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for 59 % of the total economic losses attributable to natural hazards 
worldwide. Among the 3158 multi-hazard events, those including 
storms, earthquakes, and floods as one of the hazard pairs collectively 
accounted for almost all (approximately 95 %) of the economic losses 
incurred during such events (see Fig. S1 in supplementary document). In 
comparison to respective single hazard events, multi-hazard events 
including storms, earthquakes and extreme temperatures were found to 
constitute a larger proportion of economic losses, amounting to 70 %, 
67 % and 66 %, respectively. Flood-related multi-hazard events were 
responsible for 43 % of the overall flood-related losses. However, for 
wildfire-related events, only a relatively minor 8 % of the total wildfire- 
related losses were associated with corresponding multi-hazard events 
(as shown in Fig. 2). Nevertheless, this study observed wildfires as 
associated hazards within several multi-hazard chains, particularly in 
conjunction with droughts and extreme temperatures, which contrib-
uted to significant losses. 

Between 1900 and 2023, natural hazards (both single and multi- 
hazard events) claimed the lives of approximately 33 million people. 
Drought accounted for the largest share of fatalities, representing 36 % 
of the total number of deaths caused by natural hazards (during both 
single and multi-hazard events). Generally, single hazard events 
exhibited a notably higher number of fatalities when compared to multi- 
hazard events (see Fig. S1 in supplementary document), with approxi-
mately 93 % of all global fatalities attributed to single hazard events. 
Among the 1.7 million fatalities reported during multi-hazard events, 
earthquakes were linked to the largest proportion, accounting for 66 %, 
followed by storms (23 %), floods (5 %), and extreme temperatures (5 
%). In comparison to respective single hazard events, earthquake- 
related multi-hazard events constituted 46 % of all earthquake-related 

Table 1 
General classification of hazards in EM-DAT (adapted from (Below et al. (2009) 
and Guha-Sapir et al. (2023)).  

Hazard group Hazard main 
type 

Hazard sub-type Hazard sub-sub-type 

Geophysical Earthquake Ground movement N/A 
Tsunami 

Mass Movement 
(dry) 

Rock fall 
Landslide 

Volcanic 
activity 

Ash fall 
Lahar 
Pyroclastic flow 
Lava flow 

Meteorological Storm Extra-tropical 
storm 

N/A 

Tropical storm 
Convective Storm Derecho (i.e., 

downburst and 
straight-line winds) 
Hail 
Lightning/ 
thunderstorm 
Rain 
Tornado 
Sand/dust storm 
Winter storm/blizzard 
Storm/surge 
Wind 
Severe storm 

Extreme 
temperature 

Cold wave N/A 
Heat wave 
Severe winter 
conditions 

Snow/ice 
Frost/freeze 

Hydrological Flood Coastal flood N/A 
Riverine flood 
Flash flood 
Ice jam flood 

Landslide (Mass 
Movement) 

Avalanche (snow, 
debris, mudflow, 
rockfall) 

Climatological Drought N/A N/A 
Wildfire 

Biological Epidemic Viral Disease N/A 
Bacterial Disease 
Parasitic Disease 
Fungal Disease 
Prion Disease  

Table 2 
Categories of multi-hazard events used in this study.  

Multi-hazard 
category 

Definition Source 

Preconditioned/ 
triggering 

Preconditioned: One or more hazards 
causing an impact/ amplifying an 
impact because of a pre-existing, 
climate-driven condition. 

(Zscheischler 
et al., 2020) 

Triggering: One hazard causing another 
hazard to occur. Any natural hazard 
might trigger zero, one, or more 
secondary natural hazards, with these 
being either the same or different from 
the primary hazard. Related concepts 
include domino or cascades, chains, 
causation and consecutive hazards. 

(Gill and 
Malamud, 2014) 

Multivariate The co-occurrence of multiple climactic 
drivers and/or hazards in the same 
geographical region causing an impact. 

(Zscheischler 
et al., 2020) 

Temporally 
compounding 

A succession of hazards that affect a 
given geographical region, leading to or 
amplifying an impact when compared to 
a single hazard. 

(Zscheischler 
et al., 2020) 

Spatially 
compounding 

When multiple connected locations are 
affected by the same or different hazards 
within a limited time frame, thereby 
causing an impact. 

(Zscheischler 
et al., 2020)  

Table 3 
Criteria for classifying multi-hazard events into four distinct categories.  

Multi-hazard 
category 

Criteria EM-DAT example 
sequences(s): 

Preconditioned / 
triggering 

Prolonged driver/hazard 
creating antecedent conditions 
which exacerbate following 
hazard events. 

ID: 1997–0008-USA 
Year: 1997 
Driver: Heavy rain 
Location(s): USA 
Time frame: 38 days 
Hazard: Flood 
Associated hazard: 
Landslide 

Multivariate Multiple hazards, related to each 
other co-occurring within 
immediate timeframe (days). 

ID: 2007–0556-BGD 
Year: 2007 
Driver: Low-pressure 
system 
Location(s): Bangladesh 
Time frame: 1 day 
Hazard: Storm 
Associated hazard: Flood 

Temporally 
compounding 

Multiple drivers/hazards 
occurring within a short time 
frame (less than 2 months), 
amplifying the effects of the 
underlying events/hazards. 

ID: 2006–0124-FRA 
Year: 2006 
Driver: Low temperature 
Location(s): France 
Time frame: 30 days 
Hazard: Storm 
Associated hazard: Cold 
wave 

Spatially 
compounding 

Multiple ‘unrelated’ events 
within EM-DAT with identical 
drivers (e.g., El Niño) occurring at 
similar times, across different 
locations. 

ID: 2005–0655-BEL, 
2005–0655-DEU, 
2005–0655-FRA 
Driver: El Niño 
influenced Atlantic 
storms 
Location(s): Belgium, 
Germany, France 
Time frame: 4 days 
Hazard: Extreme 
Temperature 
Associated hazard: 
Snow/Ice  

R. Lee et al.                                                                                                                                                                                                                                      



Science of the Total Environment 912 (2024) 169120

6

fatalities (encompassing both single and multi-hazard earthquake 
events). Notably, flood-related multi-hazard events were associated with 
only 1 % of all flood-related fatalities. This low figure may be attributed 
to improved reporting of flood-related associated hazards in recent 
years. While the first flood-related multi-hazard event was observed in 
1988, most flood-related fatalities were reported between 1900 and 
1988. 

3.2. Patterns of multi-hazard interactions 

Within the 3158 multi-hazard events identified in this study, a 
diverse range of multi-hazard interactions were detected (Fig. 3). A total 
of 58 distinct types of multi-hazard interactions emerged from this 
analysis. As reported in Section 3.1, storms were the primary hazard 
most frequently found within multi-hazard chains, followed by floods 
and earthquakes. Both storms and floods interacted with 12 different 
types of associated hazards, while earthquakes interacted with six 
distinct associated hazards. Notably, landslides were the most common 
secondary hazards, appearing in approximately 43 % of all multi-hazard 
events. 

The most prevalent form of multi-hazard interaction was the flood- 
landslide combination, detected in 33 % of all multi-hazard events. 
Furthermore, floods were found as associated hazards within a large 
proportion of multi-hazard events, primarily interacted with storms. The 
storm-flood interaction was observed in 25 % of all multi-hazard events. 
Other noteworthy hazard combinations encompassed earthquake- 
landslide, storm-hail, and earthquake-tsunami, each constituting 5 % 
of the overall multi-hazard events. Geophysical hazards such as earth-
quakes predominantly acted as primary hazards within multi-hazard 
chains, primarily interacting with landslides and tsunamis. 

3.3. Reporting trends of multi-hazard events over time 

Fig. 4 illustrates the outcomes derived from LPR models (refer to 
Section 2.4), providing a comparative analysis of the reporting patterns 
of single hazard and multi-hazard events in EM-DAT between 1970 and 
2023. In most instances, both single and multi-hazard events exhibit an 
upward trend in reported cases over time, with some demonstrating a 
relatively steady linear increase. Concerning single hazard events, an 
upward reporting trend was observed for droughts, earthquakes, mass 
movements, and wildfires. However, single flood, storm, and extreme 
temperature events reached their peak reporting years in 2005, 1995, 
and 2010, respectively. Conversely, the reporting of single hazard events 
for these three categories experienced a slight decrease over the past 
decade. In contrast, the reporting of multi-hazard events saw an upward 
trajectory for floods, storms, mass movements, and wildfires, with sig-
nificant peaks notably visible in multi-hazard events associated with 
floods and storms. Particularly noteworthy is the fact that during the last 
decade, the reported number of multi-hazard events related to storms 
has exceeded that of their single hazard counterparts (Fig. 4f). This shift 
could potentially be attributed to improved reporting of associated 
hazards and an increasing number of secondary hazards related to flood 
events in recent years. 

3.4. Multi-hazard event categories 

The identified multi-hazard events from Sections 3.1 and 3.2 were 
separated into four categories: preconditioned/triggering, multivariate, 
temporally compounding, and spatially compounding. This categoriza-
tion aimed to shed light on the distribution and drivers of various types 
of multi-hazard events occurring globally over the past 123 years 
(1900–2023). In cases where the events did not meet any of the criteria 
outlined in Table 3, they were labelled as ‘no category’. Fig. 5 shows the 
proportion of different types of multi-hazard events according to each 
primary hazard. 

Preconditioned/triggering events comprised the largest share of 

Fig. 2. Comparison between single and multi-hazard events between 1900 and 
2023 in relation to their proportion of occurrence, losses, and fatalities. Each 
row shows the percentage of single and multi-hazard occurrences, damages, 
and fatalities for each of the eight primary hazards. Epidemics are excluded as 
they were not associated with any multi-hazard events. 
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multi-hazard events at 60 %, followed by multivariate events (25 %), 
spatially compounding events (2 %), and temporally compounding 
events (2 %). Approximately 11 % of all multi-hazard instances were 
designated as ‘no category’. Most of the multi-hazard events associated 
with droughts, earthquakes, floods, mass movements, volcanic activ-
ities, and wildfires were preconditioned/triggering events. In these 
events, primary hazards either altered environmental conditions or 
directly triggered secondary hazards. For instance, heavy rainfall 
causing floods could saturate soil, leading to landslides. Among all 

preconditioned/triggering events, floods were associated with 1085 
events, accounting for approximately 58 % of this category. The ma-
jority of these events involved interactions between floods and land-
slides. Storm-related multi-hazard events comprised of 19 % of all 
preconditioned/triggering events, primarily interacting with floods and 
landslides. Earthquakes, often associated with landslides and tsunamis, 
were responsible for about 17 % of all preconditioned/triggering events. 

In contrast, storms were predominantly linked to multivariate 
events, representing 87 % of such type of multi-hazard events, with 

Fig. 3. Multi-hazard Circos plot illustrates proportional and directional relationship between different combinations of eight primary hazard and seventeen asso-
ciated hazard pairs. Each colored arc segment corresponds to a specific hazard type. The connections between colored segments denote hazard interactions, with line 
thickness indicating the relative frequency of multi-hazard occurrences. Within multi-hazard chains, matching colors between links and arc segments denote primary 
hazards, while associated hazards are represented by arc segments that differ in color from the links. 
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Fig. 4. Reporting trends of single hazard (sky blue lines) and multi-hazard (dark blue lines) events from 1970 to 2023. Grey shading indicates the 95 % confi-
dence intervals. 
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primary interactions involving floods. These interactions could include 
compound flood events during storms. Storms were frequently caused by 
low-pressure systems, resulting in heavy rainfall. The combination of 
multiple climatic drivers, such as heavy rainfall and low-pressure sys-
tems, led to events like compound coastal (induced by surge) and 
riverine (caused by heavy discharge upstream) floods. Storms also 

exhibited the highest proportions of temporally compounding events 
(56 %) and spatially compounding events (46 %). Extreme temperatures 
were likewise primarily associated with temporally and spatially com-
pounding events (refer to Fig. 5). Extreme temperatures, such as heat-
waves and cold waves, typically impacted multiple interconnected 
locations within a limited timeframe, resulting in a significant impact. 

Fig. 5. Distribution of multi-hazard events from 1900 to 2023 across the four categories. Instances that did not fall within any of the four categories are denoted as 
‘no category’. 

Fig. 6. Geographical distribution of multi-hazard events from 1900 to 2023 per multi-hazard category. Shading shows numbers of multi-hazard events per continent. 
Pie charts indicate the proportions of the four categories of multi-hazard events in each continent. Instances that did not fall within any of the four categories are 
denoted as ‘no category’. 
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For instance, drought was linked to a considerable number of extreme 
temperature-related spatially and temporally compounding events. 

3.5. Geographical distribution of multi-hazard events 

To identify the most multi-hazard prone region in the world, this 
study analyzed the geographical distribution of multi-hazard events 
(categorized by multi-hazard types) experienced across different conti-
nents between 1900 and 2023 (Fig. 6). Overall, Asia accounted for the 
largest share of multi-hazard events, comprising 44 % of all such events, 
followed by North America (22 %), Europe (11 %), South America (10 
%), Africa (9 %), and Oceania (4 %). The differing numbers of multi- 
hazard events can be attributed to continent size and the diverse topo-
graphical, hydrological, and climatic conditions they encompass. Across 
all seven continents, preconditioned/triggering events constituted the 
majority of multi-hazard events, followed by multivariate events. 

Globally, the highest prevalence of recorded preconditioned/trig-
gering events was in Asia and North America, accounting for 49 % and 
16 % of all such events, respectively. In these two continents, multi-
variate and temporally compounding hazards also exhibited a notable 
presence. These three types of multi-hazard events (preconditioned, 
triggering, and multivariate) in Asia and North America were most 
commonly linked to storms, floods, earthquakes, and mass movements. 
North America also exhibited the highest concentration of temporally 
compounding events, representing 52 % of all such events. Europe, in 
contrast, displayed the highest percentage of reported spatially com-
pounding multi-hazard events, particularly related to extreme temper-
atures such as heatwaves and cold waves, accounting for 58 % of these 
events. 

4. Discussion 

While multi-hazard events are gaining global recognition for their 
potential detrimental effects on human lives and the economy (Gill and 
Malamud, 2014; Gill and Malamud, 2016; Tilloy et al., 2019), no 
framework exists for identifying such events, limiting the development 
of effective risk management strategies (Kappes et al., 2012). This study 
starts to address this gap by utilizing the ‘associated hazard’ information 
from the global disaster database EM-DAT for the first time to identify 
and reclassify multi-hazard events related to eight geophysical, meteo-
rological, hydrological, and climatological hazards spanning the past 
123 years (1900–2023). To the best of our knowledge, this study marks a 
pioneering effort to utilize such a database to identify and investigate 
the interactions between multiple interactive hazards, producing vital 
evidence of the impacts posed by multi-hazard events and providing the 
first steps towards establishing a comprehensive global multi-hazard 
record. 

Around 19 % of the total 16,535 natural hazard records in EM-DAT 
were identified as multi-hazard events. Floods, storms, and earthquakes 
emerged as the most frequently reported natural hazards linked to the 
highest proportion of multi-hazard events. Landslides emerged as the 
dominant secondary hazards within multi-hazard chains, predominantly 
originating from floods, storms, and earthquakes. This type of multi- 
hazard interaction has been well documented in existing literature 
(Gao et al., 2023; Gill and Malamud, 2016; Gill and Malamud, 2017; 
Keefer, 2002). Furthermore, in comparison to their respective single 
hazard counterparts, storms constituted the largest percentage of multi- 
hazard events (i.e., 28 % of all storm events), closely followed by floods 
(i.e., 22 % of all flood events) and earthquakes (i.e., 21 % of all earth-
quake events). Storms generally promote extreme precipitation, winds, 
and waves, which could lead to flooding of different types (e.g., pluvial, 
fluvial, and coastal flooding) and wind hazards. Coastal megacities (e.g., 
New York) are particularly vulnerable to storm-induced multi-hazard 
events (Depietri et al., 2018). 

Multi-hazard events incurred significantly higher economic losses 
than single hazard events. Despite multi-hazard events accounting for 

almost a fifth of the total natural hazard events, their combined eco-
nomic impact exceeded that of single hazard events. In particular, multi- 
hazard events associated with storms, earthquakes, and floods caused 
substantially greater losses compared to others. This is consistent with 
several recent studies demonstrating that the combination of multiple 
hazardous events poses a greater risk than individual hazards (Chen 
et al., 2019; He and Weng, 2021; Kappes et al., 2012). He and Weng 
(2021) argued that multi-hazard risk is not merely a linear superposition 
of single-hazard impacts. During multi-hazard events, the compound or 
cascading effects of different hazards could exacerbate their impacts. 
However, in terms of fatalities, multi-hazard events related to earth-
quakes pose a more significant threat, responsible for 66 % of all multi- 
hazard-related fatalities, followed by storms at 23 %. According to 
Budimir et al. (2014), events where earthquakes trigger landslides result 
in more fatalities than earthquakes alone. In the current study, 
earthquake-landslide interactions were identified in the majority of 
earthquake-related multi-hazard events. 

The analysis of reporting patterns for single and multi-hazard events 
indicated a rising trend in reported events (both single and multi- 
hazard) over time. However, varying reporting trends were observed 
for different hazards. While the most frequent single flood events were 
observed in the 2000s, flood-related multi-hazard events have been 
more prevalent in recent years. Single storm events peaked in the 1990s, 
whereas most storm-related multi-hazard events were observed in the 
mid-2010s. Wang et al. (2010) reported a maximum number of storm 
days (i.e., 929) in 1996 when analyzing the temporal pattern of total 
annual tropical storm days between 1965 and 2008. Notably, there was 
a significant increase in the reporting of storm-related multi-hazard 
events in the last two decades. This could be attributed to improved 
reporting of associated hazards as well as an increased number of sec-
ondary hazards in recent years. Storms can trigger various secondary 
hazards, including torrential rainfall, floods, surges, and landslides. For 
instance, major storms in the UK in 2014 caused significant wind, floods, 
and avalanches, leading to substantial losses in Scotland (Tilloy et al., 
2019). An increase in reported multi-hazard events associated with 
floods was also observed. Floods have the potential to trigger landslides, 
especially in regions with unstable slopes or prone to erosion (Gill and 
Malamud, 2014). 

The multi-hazard events identified in this study were subsequently 
categorized into four classes: preconditioned/triggering events, multi-
variate events, temporally compounding events, and spatially com-
pounding multi-hazard events. The combination of preconditioned, 
triggering, and multivariate events constituted the largest proportion of 
multi-hazard events, amounting to 85 %. Preconditioned events, also 
known as “change conditions”, and multivariate events, often termed 
“compound hazards” in multi-hazard literature (Zscheischler et al., 
2020), were prevalent. Major river flooding in various regions, charac-
terized by heavy upstream river flow due to precipitation and/or 
snowmelt combined with saturated soil, has been responsible for sig-
nificant flood events in regions such as the USA (Berghuijs et al., 2016) 
and Europe (Berghuijs et al., 2019). Both geophysical and hydrological 
hazards were associated with triggering events, where floods and 
earthquakes triggered various types of slides (e.g., land, mud, snow, and 
rock). These types of multi-hazard interactions are well-documented in 
the literature (Gill and Malamud, 2014; Gill and Malamud, 2017; Tilloy 
et al., 2019). 

In the case of multivariate events, coastal flooding is a prevalent 
example. Such type of flooding can result from multiple drivers, 
including storm surges, high tides, upstream river flow, and surface run- 
off. Compound coastal flood events are frequently observed in regions 
such as the USA (Ghanbari et al., 2021), Europe (Camus et al., 2021), 
and South Asia, with Bangladesh being a notable example (Adnan et al., 
2019). This study found that most of the preconditioned/triggering 
multi-hazard events were reported from Asia and North America 
(Fig. 6). A notable proportion of preconditioned and multivariate flood 
events in Asia triggered landslides. In North America, 
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hydrometeorological hazards associated with hurricanes predominantly 
contribute to preconditioned and multivariate events. Coastal cities are 
particularly prone to coastal and inland flooding during hurricanes, such 
as Hurricane Sandy, a Category 3 hurricane that made landfall near 
Atlantic City, New Jersey, on October 29, 2012. Despite being approx-
imately 200 km away from the landfall site, New York City experienced 
severe impacts from multiple hazards, including flooding and extreme 
winds (Depietri et al., 2018). Future projections indicate an increasing 
multi-hazard climatic risk in North America, with coastal counties in the 
US Gulf states of Louisiana, Texas, Mississippi, and Alabama particularly 
facing high climate risk due to elevated exposure and hazard levels (KC 
et al., 2021). 

In Europe, although a relatively smaller number of multi-hazard 
events were reported, the highest number of spatially compounding 
events occurred there, with most associated with extreme temperature 
events. For example, an extreme heat event was observed in Essex from 
June 1 to August 31, 2022 (ONS, 2022). A thunderstorm on August 18, 
2022, led to flash flooding (BBC, 2022). These events combined to create 
spatially and temporally compounding multi-hazard events. Similarly, 
extreme temperature-related spatially compounding multi-hazard 
events were also observed in France and Germany, posing a threat of 
synchronized crop failures across Europe (Bevacqua et al., 2021). 

5. Challenges and future research direction 

While EM-DAT served as the primary data source for identifying and 
assessing multi-hazard incidents in this study, it is essential to 
acknowledge certain limitations as well as recommending future di-
rections for further research. 

EM-DAT relies on specific criteria for a hazard event to be docu-
mented, including at least one of the following: (1) 10 or more fatalities; 
(2) 100 or more people affected; (3) a state of emergency declaration; 
and/or (4) a request for international assistance (Guha-Sapir et al., 
2023). However, the reliance on these criteria together with incomplete 
definitions for various hazards potentially leads to inaccuracies in 
reporting. For example, landslides often fall under a general category 
that includes “slide (mud, land, rock, snow)”, but it remains unclear how 
this differs from “mass movement” events. EM-DAT also exhibits biases 
towards single hazard events. The database's focus on single hazards 
means that recorded fatalities are attributed exclusively to one indi-
vidual hazard. For instance, Hurricane Harvey, a Category 4 hurricane 
made landfall in North America in 2017. EM-DAT classified this event as 
a “storm” and recorded fatalities against this hazard. However, most of 
the fatalities during this hurricane were caused by subsequent flooding 
(Zhang et al., 2018), which was not reflected in EM-DAT. Additionally, 
the cascading effects from the hurricane to the ensuing flood are not 
captured. Therefore, it is imperative to attribute fatalities and economic 
losses to both primary and secondary hazards (Gall et al., 2009; Koç and 
Thieken, 2016). Hazard sequencing issues are also evident in EM-DAT; 
for instance, floods are occasionally listed as the primary hazard with 
storms as secondary, revealing biases stemming from the database's 
single-hazard focus (Barnes and Dow, 2022). Due to the inclusion of data 
spanning over a century, temporal bias, particularly affecting monetary 
losses, is a concern. Moreover, the database exhibits inherent biases 
towards certain geographical areas, as well as economically catastrophic 
and deadly events due to its inclusion criteria. Geographic bias could 
also result from changes in pollical geography, impacting the reporting 
pattern of disaster events across different spaces and times. For instance, 
disaster data for Croatia before June 1991 includes information from 
Yugoslavia, which had a broader geographic extent (Gall et al., 2009). 
Evaluating losses across time, especially economic damage, is chal-
lenging due to inflation and less reliable data from earlier decades. This 
underscores the necessity for a more profound comprehension of hazard 
interactions and an up-to-date multi-hazard event database. 

Future research should explore the combinations of hazards and 
their impacts. Backtracking from these impacts to their sources could 

unveil commonalities within cascades or antecedent conditions, 
enhancing the understanding of these intricate processes. The associated 
hazard field in EM-DAT includes impacts such as famine and infra-
structure collapses, yet a comprehensive global bottom-up approach 
that considers multiple hazards and their consequences is lacking. 
Addressing these gaps in the literature would be feasible through the 
development of a multi-hazard database in conjunction with this study's 
framework. Additionally, a comparative analysis of the same events in 
two other global databases, such as DesInventar and Munich Re (Nat-
CatSERVICE), could shed light on how multi-hazard events have been 
historically recorded concerning occurrence and repercussions. More-
over, the typology employed in this study predominantly pertains to 
climatologically driven hazards, leaving approximately 11 % of multi- 
hazard events unclassified. These hazard types are not mutually exclu-
sive, and many hazards can fit into more than one category. Moreover, 
the adopted typology does not encompass all possible interactions 
(Bevacqua et al., 2021; Zscheischler et al., 2020). Therefore, there exists 
a need for further development in comprehending, classifying, and 
quantifying multi-hazard interactions. 

6. Conclusions 

This study presents a framework for classifying multi-hazard events 
spanning 123 years (1900–2023) using the global disaster database EM- 
DAT. The results reveal that approximately one in five reported hazards 
proved to be multi-hazard events on a global scale. Floods and storms 
emerged as the primary hazards most frequently associated with multi- 
hazard events. Furthermore, the results indicated a rising trend in the 
reporting of multi-hazard events, particularly in the past two decades. 
The study identified various types of multi-hazard interactions and 
pathways, further categorizing them into four distinct classes. It was 
observed that the majority of reported multi-hazard events exhibited 
characteristics of preconditioned, triggering, and multivariate events. 
These events were prominent in Asia and North America, while spatially 
compounding events were more frequently observed in Europe. 

The results, however, underscore the imperative need to create a 
dedicated multi-hazard database that integrates local and regional 
hazard observation data. The framework and findings of this study 
should contribute to an enhanced understanding of multi-hazard in-
teractions and their severity. The knowledge garnered herein can be 
instrumental in shaping the development of risk assessments, emergency 
management response plans and mitigation policies on both national 
and global scales. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.scitotenv.2023.169120. 
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