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Abstract 
Motivation: Understanding the population genetics of complex polygenic traits during adaptation is challenging.

Results: Here, we implement a forward-in-time population-genetic simulator (STUN) based on Wright-Fisher dynamics. STUN is a flexible and user- 
friendly software package for simulating the polygenic adaptation of recombining haploid populations using either new mutations or standing genetic 
variation. STUN assumes that populations adapt to sudden environmental changes by undergoing selection on a new fitness landscape. With pre- 
implemented fitness landscape models like Rough Mount Fuji, NK, Block, additive, and House-of-Cards, users can explore the effect of different lev-
els of epistasis (ruggedness of the fitness landscape). Custom fitness landscapes and recombination maps can also be defined. STUN empowers 
both experimentalists and advanced programmers to study the evolution of complex polygenic traits and to dissect the adaptation process.
Availability and implementation: STUN is implemented in Rust. Its source code is available at https://github.com/banklab/STUN and archived 
on Zenodo under doi: 10.5281/zenodo.10246377. The repository includes a link to the software’s manual and binary files for Linux, macOS 
and Windows.

1 Introduction
Understanding the genetic basis and dynamics of complex traits 
poses a significant challenge in population and quantitative ge-
netics (Walsh and Lynch 2018). When a population encounters 
a sudden environmental change, adaptation often occurs 
through changes in polygenic traits. Both empirical and theoreti-
cal studies have been conducted to investigate the genetic basis 
of such traits. However, identifying the specific genes responsible 
and understanding their adaptive consequences is challenging 
due to the vastness of the underlying genotype space. The unpre-
dictable nature of evolution within this space makes it difficult 
to disentangle and reconstruct the exact adaptive path. In this 
context, computational approaches play a crucial role in explor-
ing potential scenarios of adaptation. They provide a means to 
simulate and study the dynamics of complex genetic systems un-
der new environmental conditions. However, there is a scarcity 
of simulators that efficiently and flexibly incorporate recombin-
ing populations adapting on complex fitness landscapes.

Existing simulators, such as simuPOP (Peng and Kimmel 
2005), SLiM (Haller and Messer 2019), and QuantiNemo 
(Neuenschwander et al. 2019), primarily focus on direct, non- 
epistatic selection and dominance at a single locus, without 
straightforward options for consideration of the underlying ge-
netic architecture that arises from epistatic interactions. 
Although QuantiNemo and SLiM provide the option to assign 
an arbitrary fitness value to a genotype and thus, in principle, 

allow for an association between genotypes and fitness, they 
do not provide a large-scale (or probabilistic) means to define 
or characterize the ruggedness of the fitness landscape in terms 
of the relative contributions of non-additive and additive ge-
netic effects. Furthermore, when we consider non-additive 
effects (epistasis and dominance) on a fitness landscape, their 
interplay requires complicated assumptions and entails a large 
computational burden. Although epistasis is expected to be 
ubiquitous and potentially complex in nature (Bank 2022), we 
are not aware of any existing software package to comprehen-
sively perform evolutionary simulations on fitness landscapes 
with varying levels of epistasis (tunable ruggedness). To bridge 
this gap, we present STUN, an easy-to-use and open-source 
simulator that enables customization of fitness landscapes, re-
combination, new mutations and standing genetic variation 
(SGV) in the model and that captures the resulting complex 
adaptive process. Importantly, STUN goes beyond solely re-
cording the population genotype composition by offering a 
range of statistics on population features. To support users in 
applying STUN effectively, STUN is accompanied by a com-
prehensive manual, which includes detailed explanations of fit-
ness landscape models and hands-on tutorials to guide users 
through the practical use of the software package.

2 Overview of STUN
STUN takes advantage of a diverse range of fitness landscape 
models, as described in Fragata et al. (2019), to simulate the 
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adaptation of haploid populations with recombination on ar-
bitrary fitness landscapes (Fig. 1). The genetic variants in the 
simulated populations are derived either through mutations 
or SGV initialized based on a neutral site frequency spectrum. 
STUN follows a Wright-Fisher model, assuming non- 
overlapping and discrete generations. In each generation, 
individuals in the population are randomly paired, and re-
combination is performed to generate a pool of gametes, 
which undergo mutation if specified. Subsequently, haploid 
offspring are sampled from this gamete pool with probabili-
ties proportional to their fitness values. These offspring then 
form the new generation. This process continues until either 
all loci in the population become monomorphic (in the ab-
sence of mutation) or a custom-defined stopping generation 
is met (in the presence of mutation). By following this model, 
STUN allows for the simulation of adaptive processes, incor-
porating recombination and the complex selection effects of 
fitness landscapes. This enables researchers to study 
population-genetic dynamics in the context of complex ge-
netic architectures and rugged fitness landscapes.

3 Features
3.1 Pre-defined and custom fitness landscapes
STUN includes a fitness landscape generator that offers out- 
of-the-box implementations of five commonly used fitness 
landscape models: the Rough Mount Fuji (Aita et al. 2000), 
NK (Kauffman and Levin 1987), Block (Perelson and 
Macken 1995), additive, and House-of-Cards models 
[reviewed in Fragata et al. (2019)]. The first three models al-
low for the generation of tunable fitness landscapes. The 

ruggedness of a fitness landscape refers to the relative contri-
bution of epistasis (genetic interactions between loci for fit-
ness) compared to additive single-locus selection. The 
additive model assumes no epistasis, resulting in a ruggedness 
of zero of the fitness landscape. This model serves as the no- 
epistasis limiting case for the Rough Mount Fuji model (by 
setting the epistatic parameter to zero), NK model (by setting 
the number of interacting loci K to zero), and Block model 
(by setting the number of blocks equal to the number of loci). 
On the other hand, the House-of-Cards model assigns statis-
tically independent fitness values to each genotype, represent-
ing the maximum ruggedness limit of the Rough Mount Fuji 
model (by setting the additive contribution to zero), NK 
model (by setting the number of interacting loci K to N � 1), 
or Block model (by setting the number of blocks to 1). In ad-
dition to these pre-defined models, STUN also supports the 
specification of user-defined fitness landscapes, e.g. allowing 
for the simulation of adaptation on experimentally inferred 
fitness landscapes.

3.2 Standing genetic variation and de 
novo mutations
STUN offers two sources of genetic variants: initial SGV and 
new mutations. In the case of SGV, a population with speci-
fied allele frequencies is generated initially. The alleles at each 
locus are biallelic and generated independently across loci, 
which means that there is no linkage disequilibrium initially. 
The allele frequencies at each locus can be equal or drawn 
from a folded neutral site frequency spectrum (SFS, Hudson 
2015). To avoid the generation of low-frequency alleles that 
are not subject to significant selection during the early 

Figure 1. Overview of STUN. STUN is a population-genetic simulation package designed for studying complex trait adaptation. It employs Wright-Fisher 
dynamics and incorporates rugged fitness landscapes. STUN also offers a range of statistics on population features. The schematic example in the 
bottom right illustrates that replicates from a starting population with SGV may reach three different monomorphic positions on a rugged 
fitness landscape.
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generations, a genetic drift threshold can be set for the neu-
tral SFS (for details, see Li et al. 2023). This threshold consid-
ers the probability of an allele being lost in the first 
generation after initializing, which is calculated as e� i, 
where i represents the number of copies of an allele of inter-
est in the initial population. To ensure a low probability of 
initial random loss of an allele (<0.05), it is recommended to 
have at least three copies of each allele in a population of rel-
atively large size (>100 individuals).

In addition, STUN allows for new mutations by assigning 
a per-site mutation rate. Mutations are assumed to occur 
with the same probability given by the mutation rate at all 
loci after recombination, contributing to the formation of the 
new gamete pool. With a low mutation rate, the classical as-
sumption of strong-selection-weak-mutation is met (SSWM, 
Gillespie 1984), whereas high mutation rates result in multi-
ple mutations segregating simultaneously, providing the op-
portunity to capture interference effects that violate the 
assumption of SSWM and potentially alter the outcome of 
adaptation. Since the fitness landscape comprises only bial-
lelic loci, mutation occurs bidirectionally and recurrently.

3.3 Recombination
The interference of selection and recombination is of great in-
terest when studying quantitative traits, even in the absence 
of epistasis, as observed in phenomena such as Hill- 
Robertson interference (Hill and Robertson 1966). It has 
been recognized that recombination can confer an advantage 
during the early stages of adaptation because epistasis relies 
on the linkage of mutations, thereby suggesting a temporary 
advantage of sexual reproduction (Nowak et al. 2014). This 
highlights the significance of individual-based simulations, 
such as those implemented in STUN, in providing valuable 
insights and predictions for complex traits that cannot be ad-
equately addressed through analytical approaches alone.

Unlike the approach described in Nowak et al. (2014), 
which replaces a fraction of individuals with recombinants of 
two randomly chosen parents, STUN offers two realistic 
options for defining recombination. The recombination rate 
specifies the probability of recombination between any pair 
of consecutive loci. The first option is a uniform recombina-
tion map, where the recombination probability is assumed to 
be constant between neighboring loci. The second option 
allows for the specification of a custom recombination map. 
This gives users the flexibility to define their own recombina-
tion patterns according to specific genetic landscapes or ex-
perimental setups. This feature enables more realistic and 
tailored simulations that reflect the specific recombination 
patterns observed or desired in a study system.

3.4 Documentation
STUN is designed for a wide range of users, including those 
with little programming expertise, as well as advanced pro-
grammers interested in developing new fitness landscape 
models or statistics of quantitative genetics. To ensure a user- 
friendly experience, STUN provides a comprehensive manual 
within the package (Supplementary material). The manual 
offers detailed explanations and guidance on all basic aspects 
and settings of the program. For users who wish to further 
explore the underlying model, implementation, and inner 
workings of STUN, code documentation is available. By run-
ning the command “cargo doc –open” in the terminal, the 
code documentation can be accessed and viewed in the 

default browser. This documentation provides additional 
details and explanations related to the code structure and 
functionality. The code documentation is recommended for 
users who intend to modify the code, require detailed infor-
mation, or seek a deeper understanding of how the pro-
gram operates.

3.5 Detailed output
One strength of STUN is that it can provide highly detailed 
information about the population and adaptation process. In 
addition to recording the genotype composition of the popu-
lation in each generation or at defined time points, STUN 
offers a customizable suite of statistics that capture various 
aspects of the adaptive process, e.g. mean population fitness, 
haplotype diversity, fixation time of each allele, and popula-
tion fitness distance to the global peak. By means of configu-
ration files, users can examine the focal statistics at their 
discretion, thereby minimizing output files and saving efforts 
of later data processing. The frequency at which population 
information is recorded can be adjusted by setting the param-
eter n. For instance, if n ¼ 1, population information will be 
collected and stored in every generation throughout the entire 
adaptive trajectory. Alternatively, users can choose a larger 
value of n to record data at regular intervals, providing a 
more aggregated view of the population dynamics. This 
allows users to strike a balance between data resolution and 
storage requirements. Evidently, users can output the full 
population data at any given generation of interest. This fea-
ture allows for a detailed examination of population features, 
individual genotypes and allele frequencies at specific time 
points. Additionally, at the end of each adaptive process, 
summary statistics are saved, which offer a concise overview 
of the evolutionary outcome. We refer to the user manual for 
further guidance on data collection, available statistics, and 
using the simulator effectively.

4 Performance
The performance of STUN is significantly influenced by the 
sizes of the fitness landscapes and the evolving populations. 
As both the fitness landscape and population increase in size, 
the mean computation time increases. To assess this relation-
ship, we calculated the mean real time (wall clock time) for 
each simulation run, where 10 replicate populations sequen-
tially adapted on a single fitness landscape using either SGV 
or new mutations (Fig. 2). Remarkably, even with large sizes, 
such as a fitness landscape with 10 loci and a population of 
104 individuals, the computation time for 10 simulations 
remains relatively short. For instance, simulations involving 
SGV mostly require less than 2 seconds per simulation run, 
with adaptation occurring within a range of 100–2000 gener-
ations (see also Li et al. 2023). These results demonstrate 
STUN’s efficient handling of simulations, which makes it ca-
pable of managing large-scale simulations effectively.

The performance of STUN depends differently on the num-
ber of loci for SGV and new mutations. Regarding SGV, the 
computation time per generation scales linearly with the 
number of loci, despite the exponential growth of the number 
of genotypes of the greater underlying fitness landscape 
(Fig. 2A–C). With new mutations, as the number of loci 
increases, the mean wall-time dramatically increases (Fig. 2B 
and C). This is explained by the increasing polymorphism 
resulting from new mutations, which leads to a large number 
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of genotypes that segregate in the population at any time. 
Unlike the size of the fitness landscape, the population size 
influences computation time similarly for SGV and new 
mutations (Fig. 2D and E), except for the variance. At high 
recombination rates and large population sizes (Fig. 2D), the 
variance of wall time is considerable because, in some simula-
tions, several genotypes of similar fitness segregate for a long 
time (see Section 5; Fig. 3). Overall, we hope that our presen-
tation of the performance of STUN under different scenarios 
aids researchers in optimizing simulation settings for efficient 
and accurate simulations of complex trait adaptation.

5 Example analyses
In a previous study (Li et al. 2023), we used STUN to investi-
gate how the interplay between recombination and epistasis 
affects adaptation. We found that the population follows a 
smoother-than-average adaptive path due to a higher mar-
ginal fitness of common genotypes. To further exemplify the 
practical utility of our program, we present an additional il-
lustrative example (Fig. 3). Specifically, we conducted simula-
tions in which populations adapted to Rough Mount Fuji 
fitness landscapes with three levels of epistasis. Adaptation is 
assumed to happen from SGV. By tracing the variance in 

population fitness across generations, Figure 3 demonstrates 
that a high level of epistasis results in the rapid fixation of 
many alleles, which is followed by prolonged segregation of 
few genotypes, especially for intermediate ruggedness. The 
first observation aligns with Fisher’s fundamental theorem of 
natural selection, as the presence of substantial fitness vari-
ance induced by epistasis amplifies the rate of adaptation, 
leading to shorter fixation times. On the other hand, it is 
noteworthy that some of our simulations exhibited a long- 
term non-zero variance in the population, indicating that 
multiple advantageous genotypes coexist within the popula-
tion. This suggests that epistatic interactions among loci may 
contribute to the maintenance of polymorphism.

6 Limitations
In the current version of STUN, we focus on haploid recom-
bining populations, which allows us to capture the relative 
effects of epistasis and additivity on the dynamics of adapta-
tion on rugged fitness landscapes. Another type of non- 
additive genetic interaction, dominance in diploid popula-
tions, is not explicitly considered in STUN. In this context, it 
was proposed that dominance in diploid populations presum-
ably could arise from epistatic interactions between alleles at 

A B C

D E F

Figure 2. STUN performance indicated by wall-clock time in seconds for increasing numbers of loci (A–C) and population size (D–F). We simulated 
adaptation on 100 landscapes and 10 populations for each fitness landscape. We recorded the real time for 10 simulations of a population adapting on a 
single landscape either using standing genetic variation (SGV) or using new mutations at a mutation rate of 1� 10� 5 per locus per generation (A, B, D and 
E), and further calculated time per generation in seconds (C and F). In panels A–C, the population size was 1000 individuals. In panels D–F, the number of 
loci was 10. With standing genetic variation, the genetic drift threshold was set to 3. For new mutations, the maximum generation number was 2000. 
Dots represent the mean of the real time, and bars represent one standard deviation of the real time. All simulations were performed on Rough Mount 
Fuji fitness landscapes, with additive and epistatic effects drawn from normal distributions Nð0; 0:01Þ. Performance was measured in two conditions, 
either including the complete set of statistics available in the package (dashed lines) or none (solid lines). The average wall-clock time in seconds per 
generation is presented in panels C and F. All simulations were run on a 3.8 GHz Intel Core i7 CPU.
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the focal locus and other alleles at dominance modifier loci 
(e.g. Fisher 1928, Wright 1934, Kacser and Burns 1981, 
Wade 2001), but we are not aware of clear expectations or 
resulting fitness landscape models. Once the dominance dis-
tribution and its impact on the ruggedness of fitness land-
scapes has been documented empirically or proposed 
theoretically, incorporating dominance and diploid popula-
tions into STUN should be a worthy addition.

Moreover, we assume that the initial population is in link-
age equilibrium, and population structure is not considered. 
In addition, STUN does currently not support adaptation in 
changing environments, which means that it does not allow 
adaptation to dynamic fitness landscapes or so-called sea-
scapes (Mustonen and L€assig 2010, Bank 2022). These are 
important considerations for potential future developments 
of STUN.

7 Conclusion
STUN enables the efficient simulation of rapid adaptation on 
rugged fitness landscapes, offering a comprehensive under-
standing of the complex dynamics involved in the adaptation 
of recombining organisms. By incorporating recombination 
and SGV, STUN captures the intricate interplay of genetic 
processes during the adaptive process. Moreover, STUN 
facilitates the utilization of existing empirical and theoretical 
fitness landscapes in simulations, allowing users to generate 
expectations regarding the complex evolutionary dynamics at 
play. One notable application of STUN is for the design of 
evolve-and-resequence experiments, where researchers aim to 
understand the genetic basis of adaptation by subjecting pop-
ulations to controlled selection pressures. Using STUN, 
researchers could simulate and predict the dynamics of ge-
netic variation, allele frequencies, and fitness trajectories in 
response to different environmental conditions. This informa-
tion could help optimize experimental design, such as deter-
mining the appropriate selection strengths, population sizes, 
and sampling times to achieve specific research objectives. 
Furthermore, STUN can provide a comprehensive under-
standing of the maintenance, elimination, or fixation of dif-
ferent types of mutations in evolving populations. By 
simulating the adaptive process, users can examine how dif-
ferent genetic factors, such as mutation rates, additive selec-
tion coefficients, and epistatic interactions, contribute to the 
rate and outcome of adaptation.
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Figure 3. Dynamics of population fitness variance at different ruggedness levels. We simulated recombining populations adapting on Rough Mount Fuji 
fitness landscapes. The additive effect is constant (0.01), and epistasis is drawn from a normal distribution Nð0; r2Þ. The ratio of the standard deviation (r) 
of the epistasis parameter and the additive effect quantifies the ruggedness of the fitness landscape. Three ruggedness levels were considered in this 
example, 0, 1, and 10, where r was 0, 0.01, and 0.1. We generated 10 fitness landscapes with 15 loci for each ruggedness level and let one population of 
size 5000 adapt to each landscape. The recombination rate is 0.1. The figure shows that epistasis can maintain segregating polymorphism for a 
long time.
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