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A B S T R A C T   

Tropical deforestation is a recent phenomenon that started in the second part of the twentieth century. One may 
argue that the Brazilian state of Maranhão is an excellent case study for ex-amining deforestation trends and the 
effects of environmental policies. A man-made line sepa-rates Maranhão into two sections. Due to the admin
istrative divide between the Legal Amazon Maranhão (LM) and the Cerrado Maranhão (CM), one may hypoth
esize about differences in deforestation between the two regions. This research employs a nonlinear modelling 
approach based on Generalized Additive Models (GAMs) with a quasi-Poisson distribution and a logarith-mic 
function to detect deforestation patterns in these areas. Deforestation is linked to the year and a variety of cli
matic variables. These covariates differ substantially across seasons (rainy and dry) and regions. During times of 
above-average precipitation, including in the dry and wet seasons, deforestation occurred in the LM area. 
However, in the non-enforced region, this regime was not followed. According to the statistics, deforestation 
decreased in the LM region when precipitation levels were below average.   

1. Introduction 

Tropical deforestation is a relatively recent phenomenon that gained 
traction in the second half of the twentieth century and was almost 
entirely confined to tropical regions (Culas, 2014).Tropical dry forests, 
such as savannas, are among the most endangered and underappreciated 
forest types on the planet (Bianchi and Haig, 2013). In this regard, the 
Brazilian Savanna Cerrado is arguably the biome that has been most 
affected by human occupation over the last three decades, owing to 
increasing pressures for opening up new areas for the production of 
meat, grains, and ethanol, mostly at the expense of forested areas (MMA, 
2018a; Bayma and Sano, 2015). According to the National Institute for 
Space Research (INPE, 2020), the Cerrado biome lost 6657 km2 in 2018, 
a rate equivalent to that observed in the Legal Amazon, a biome twice 
the size of the Cerrado. This underscores the urgency of the problem, 
given that the Cerrado habitat is a global hotspot for biodiversity and the 
birthplace of Brazil’s waters.1 

Almost half of its natural vegetation has been removed (approxi
mately 2 million km), primarily as a result of agricultural expansion. 
Specifically, between 1990 and 2010, the Cerrado lost 0.6 percent of its 
natural vegetation every year, owing largely to cattle and large-scale 

intensive agriculture. This pace of habitat loss equates to over 1700 ha 
each day, dispersed throughout the Cerrado and the main concern with 
the progress of deforestation remains in the northern portion of the 
biome, in states such as Tocantins, Piaui, Bahia, and Maranhão, where 
the last and largest fragments of natural vegetation remain (Bianchi and 
Haig, 2013; Francoso et al., 2020). 

One could argue that the Brazilian state of Maranhão provides an 
especially interesting context for studying defor-estation trends and the 
potential role of environmental policy as observed in Sales et al. (2022). 
Maranhão is divided into two distinct areas by a man-made line: the 
Legal Amazon Maranhão (LM) and the Cerrado Maranhão (CM). This 
division, located approximately 44 west of the meridian, was formed in 
1953 to plan the region’s economic develop-ment. This scenario pro
vides a unique natural experiment in deforestation in the Legal Amazon 
Maranhão (LM) and Cerrado Maranhão (CM), because the former has 
been subject to fundamentally different environmental policies than the 
latter. More precisely, the tropical forest in the Legal Amazon Maranhão 
(LM) is subject to a surveillance environ-ment policy called DETER, 
which uses satellite data to detect deforestation or fire incidents in the 
region and alerts the environmental agents (IBAMA in Portuguese) to 
fine responsible individuals (IBAMA, 2017). The surveillance 
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environment policy, on the other hand, was inapplicable to the 
Maranhão state’s other biomes until 2018. 

Using this spatial division, one can speculate on the deforestation 
variations between the Legal Amazon Maranhão and the Cerrado 
Maranhão. To form deforestation patterns, this article uses a nonlinear 
modelling approach based on Generalized Additive Models (GAMs) with 
a quasi-Poisson distribution and logarithmic relation function. The de
cision to use non-linear modelling for this task is based on prior research 
indicating that the majority of ecological and climatic data reflect 
complex relationships and that non-linear models, such as GAMs, may 
be especially well suited to capture confounding effects in trends (Bio 
et al., 1998; Bell et al., 2015; Auderset Joye and Rey-Boissezon, 2015; 
Lusk et al., 2016; Pourtaghi et al., 2016; Halperin et al., 2016, de Souza 
et al., 2017; Antunez et al., 2017; Liu et al., 2018; Moreno-Fernandez 
et al., 2018). 

A recent research indicated that GAMs have been successfully used to 
explore climate and fire relationships which is an indicative of defor
estation/degradation episode (Abatzoglou et al., 2018). However, 
non-linear models were found to be used sparingly to examine defor
estation. For instance, Chaves et al. (2008) demonstrated that defores
tation affected disease incidence in Cuba. Additionally, a binomial GAM 
model was used to represent both forest and habitat destruction in 
Tanzania’s Eastern Arc Mountains protected areas Green et al. (2013). 
Bebber and Butt (2017) examined the impact of protected areas on 
global carbon emissions in America, Africa, and Asia in 2017. And, 
Mendes and Junior (2012) studied deforestation, corruption, and eco
nomic growth in the Legal Amazon region of Brazil. To date, this paper is 
the first to attempt to examine deforestation patterns for the ecological 
tension zone in the state of Maranhão (CM and LM) using generalized 
additive models. 

2. Materials and methods 

2.1. Study area 

Maranhão, whose indigenous name translates as ’flowing river’ 
(Girardi, 2015), is one of the ten largest states in Brazil, covering an area 
of more than 330 thousand square kilometres. A contact region of nearly 
21,228 km2 resides in the centre of Maranhão, where a mosaic of 
savanna physiognomies sits alongside ombrophilous woodland forma
tions (open and dense forest). This region is known as the Maranhão 
Ecological Tension Zone (ETZ), and it is characterised by a convergence 
zone with a mix of open and closed formations, each of which supports 
unique and numerous organisms, resulting in a high level of biodiversity 
(Rossatto et al., 2013). Additionally, the artificial line runs across the 
centre of Maranhão’s Ecological Tension Zone. This paper’s research 
area spans a buffer of 50k km2 to the west and east of the political line 
and comprises approximately 21 municipalities. The study includes only 
municipalities divided by the 1953 line of demarcation (approximately 
44 west of the meridian). Importantly, the agencies, rules, legislation, 
and practises at the state level are the same for both areas. Fig. 1 depicts 
the delineation. According to the geographical characteristics and 
vegetation cover of the state of Maranhão, the ETZ has two distinct 
seasons: between November and April, the rainy season is described by 
partly cloudy to cloudy skies and an increase in air humidity, which 
dampens the thermal sensation and peaks in March, and the dry season, 
which starts in May and runs until the end of October with its peak 
around August. The area is characterised by a humid-dry or savanna 
climate that is warm and tropical (Aw). Temperatures are high, with 
yearly averages above 25 ◦C, and reaching 28 ◦C in the examined re
gion’s southeast. Annual precipitation ranges from 1000 mm peaking at 
1700 mm on the plateaus. Average levels of the climatic variable for 
both areas can be found in the Supplementary Information file S1. 

Fig. 1. Map of Maranhão Study Area The map indicates the location of the state of Maranhao and the institutional delimitation. The vertical line express the 
institutional division of the Legal Amazon in the State and the light yellow demarcation shows the studied region which is equivalent to 50 km buffer east (CM) and 
west (LM). Map created by author with data from MMA (2018b); NUGEO (2018); EMBRAPA (2018). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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The national environmental policy provides policies specific to 
different regions of Brazil creating programs and action plans. In order 
to control for degradation of the forest by selective logging and forest 
fires, the government uses the DETER program which is part of the 
Action Plan for the Prevention and Control of Deforestation in the Legal 
Amazon (PPCDAm in Portuguese). The DETER (the Legal Amazon forest 
Change survey) program has been conducted by the National Institute of 
Spatial Research (INPE in Portuguese) using data from Terra’s MODIS 
sensor since May 2004 with a spatial resolution of 250 m. DETER was 
established to assist environmental officers in combatting illegal defor
estation. This device can detect changes in forest cover larger than 25 
ha. Detection cannot account for cloud cover. The lower sensor resolu
tion is offset by the system’s regular observation capability, making 
DETER an ideal tool for notifying inspection bodies of new changes. 
DETER is a regular process that creates five-day deforestation warning 
maps after the MODIS picture is acquired. (INPE-DETER, 2018; Diniz 
et al., 2015). There was an interesting note in the DETER alerts: The 
notifications were only applied to the part of Maranhão within the Legal 
Amazon boundaries, leaving the rest of the state outside of the evalua
tion and range. 

2.2. Remote sensing data 

Two remotely sensed datasets were used – Vegetation Indices 16-Day 
L3 Global 250 m MODIS13Q1 and Land Cover Type Yearly L3 Global 
500 m MODIS12Q1. This paper utilised the MODIS Land Cover Type 
Product (MCD12Q1) with the classification scheme of the University of 
Maryland (UMD). A complete list of the classes and their defini-tions can 
be found in Setiawan et al. (2014); Sulla-Menashe and Friedl (2018a). 
The MODIS Vegetation Indices (VI) (MOD13Q1) product consists of time 
series comparisons of global vegetation conditions that can be used to 
monitor the Earth’s terrestrial change detection. The two vegetation 
indices derived from the product are the Normalized Dif-ference Vege
tation Index (NDVI) (Rouse et al., 1974) and the Enhanced Vegetation 
Index (EVI) (Huete et al., 1994, 1997). To optimise the vegetation signal 
and minimise atmospheric effect and soil background noise, the EVI 
index has been reported to be more responsive to canopy structural 
variations including canopy type: 

EVI =
ρNIR − ρred

ρNIR + C1ρred − C2ρblue + L
(G) (1) 

where pred and pNIR and pblue are the reflectance in the bands 1,2 and 3 
from MODIS sensor, C1 and C2 are atmospheric resistance coefficients, 
and L and G are the canopy background adjustment and the gain factor, 
respec-tively. The coefficients adopted for the MODIS EVI algorithm are, 
L = 1, C1 = 6, C2 = 7.5 and G = 2.5 (Huete et al., 1997). Ratana et al. 
(2005) note that this index is sufficiently stable to permit meaningful 
comparisons of seasonal, inter-annual, and long-term variations of 
vegetation structure, phenology, and biophysical parameters. 

From January 2001 to December 2016, a total of 368 images of the 
Vegetation Index (EVI) product MOD13Q1 and 16 images of the Land 
Cover product MCD12Q1 were downloaded, along with their respective 
auxiliary data such as quality check (QC) and quality assurance (QA), 
which provide a summary of the pixel quality. The images were 
smoothed in the TIMESAT programme which is useful for presenting 
noise generated by the presence of clouds during the satellite’s transit 
(Jönsson and Eklundh, 2004). The programme implements three 
smoothing algorithms: dual logistics, Savitzky-Golay, and asymmetric 
Gaussian. Borges et al. (2014) observed that double logistics worked 
better for MODIS EVI data from Brazilian Cerrado. Double logistics is a 
function that is both harmonic and polynomial. Equation (2) expresses it 
mathematically  

g(t; x1, ...., x4)=
1

1 + exp
(

x1 − t
x2

) −
1

1 + exp
(

x3 − t
x4

) (2) 

where x1 denotes the direction of the left inflection point and x2 
denotes the rate of transition. The parameter x3 specifies the location of 
the right-side inflection point, while x4 specifies the rate of change at 
that point (Bayma and Sano, 2015). The double logistics filter was used 
to smooth the initial average values of EVI for each formation per pixel 
from 2001 to 2016. 

In order to perform the analysis, the smoothed EVI images were 
imported onto MATLAB and scaled to the valid range of − 0.2 to 1. Two 
images per month for each year were uploaded - excluding October and 
November during leap years because they had only one image within the 
month. According to the VI User Guide, the VI Quality Assessment band 
for each scene was converted to unsigned16bit and used to create a 
Goodness mask to exclude pixels with clouds and not produced for other 
reasons than clouds (Didan et al., 2015). Before filtering the EVI scenes 
with the Goodness mask, it was necessary to condition EVI starting 
values to a specific threshold so to avoid values not related to the 
denominated transitional forest. The criterion was taken following 
Geerken (2009) parameters to characterise forest in a transitional 
biome. Following that, the EVI index scenes were selected based on 
threshold values and only EVI values with good quality according to the 
Goodness mask were maintained after cloud coverage was removed. 

With the Land Cover product MCD12Q1 it was required to resize and 
interpolate each image to the corresponding sizes of EVI images. The 
interpolation method utilised followed a deterministic method called 
Nearest Neighbourhood (NN) or Thiessen method. The nearest method 
was considered because there is no extrapolation of the data, which 
would not have been suitable for categorical data and because it showed 
to be the fastest computation method with modest memory re
quirements (Sluiter, 2012). After the interpolation a land cover mask 
was produced to select only pixels in the images presenting forest clas
sification according to the University of Maryland classification Sulla-
Menashe and Friedl (2018b).Forests with less than 40% tree cover were 
removed from the analysis because they do not accurately represent a 
transitional forest primarily associated with the Cerrado biome (Bayma 
and Sano, 2015). Finally, to ensure compliance within each month, 
values of EVI of the first image (16 first days of the month) were 
compared to the second image (16 remaining days of the month). In this 
sense, the final scene/image presents pixels assuming the highest quality 
and no cloud coverage. At the end of the process, pixels were selected 
within the 50 km buffer measured departing from the artificial Legal 
Amazon line to the west and east portions of the State. The approach 
above was undertaken for all the images corresponding and EVI values 
for each month of each year, giving 192 final image results. For the leap 
year, the process stopped at the land cover mask filtering process. 
Deforestation thresholds were established for each vegetation structure 
considered in the smoothed time series images according to Bayma and 
Sano (2015) methodology. The term "deforestation threshold" refers to 
the EVI values at which defor-estation/disturbance can be assumed. Due 
to the high degree of seasonality observed in Maranhao studied region, 
the EVI time series of natural areas follow a generally sinusoidal pattern; 
their lowest values roughly correspond to the height of the dry season, 
while their highest values roughly correspond to the peak of the rainy 
season. When a natural environment is deforested, the vegetation 
indices of subsequent MODIS sensor passages usually fall below the 
deforestation thresholds (Bayma and Sano, 2015). 

To determine whether pixels were deforested, the dataset was 
aggregated to the annual level, resampled, and com-pared to the Bra
zilian Annual Land Use and Land Cover Mapping Project (MapBiomas 
Collection 5) dataset. The MapBiomas dataset categorises deforestation 
according to the following criteria: 

Suppressiont =

⎧
⎪⎪⎨

⎪⎪⎩

Ft− 2
Ft− 1
At
At+1

(3) 

where F corresponds to Forest as a class of vegetation (Forest 
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Formation, Savanic Formation), A corresponds to any class of Anthropic 
use and t = 2000, …, 2016 taking 2000 as the base year. When a pixel 
was classified as “Forest” for at least two years and then “Anthropic” for 
at least two years, the algorithm considered it to be part of a defores
tation episode (Souza et al., 2020; MapBiomas, 2021). The final dataset 
consisted of sum of monthly EVI pixels signalled as deforested for 192 
images over 16 years. 

2.3. Climate covariates 

The climatic covariates used to examine deforestation patterns were 
collected from the National Meteorological Institute’s Meteorological 
Database for Teaching and Research (BDMEP – INMET in Portuguese), 
which contains historical series for many typical meteorological stations 
in the INMET station network (BDMEP, 2018). Each con-ventional 
weather station (see Table 1) is composed of several remote sensors 
that continuously record meteorological parameters (e.g., temperature, 
precipitation, humidity, and solar radiation), which are then annotated 
by an observer and sent to a collection centre. To derive the climate 
dataset, it was collected monthly average maximum temperature 
(maMxT), monthly average minimum temperature (maMinT), monthly 
average precipitation (maP), monthly average relative humidity (maRH) 
and number of hours of sunlight in a month as total solar radiation 
(maTS) from January 2001 to December 2016. 

A post-process analysis was carried to ensure that there were no gaps 
in the data for the climatic variables. The first step was to transform all 
of the data to a tabular format, which means that all variables were 
stored in one table and positions were defined as latitude, longitude, and 
elevation values. Following localising the x,y,z coordinates, each 
shapefile was developed. The shapefiles were picked and extracted by 
month. Next, an interpolation approach was applied to areas with no 
results. The method of choice was ordinary kriging, which has been 
argued as the best interpolation technique for sparse data (Sluiter, 
2012). Ordinary kriging is an example of a probabilistic approach that 
includes the principle of randomness. Kriging uses a linear combination 
of the calculated quantities and the spatial similarity between the data to 
compute the weights. Intrinsic stationary is assumed due to the uncer
tain mean. The climatic data set are rarely stationary, so this assumption 
might fail. To overcome this issue it was used different sizes and shapes 
of neighbourhood to adjust the kriging ordinary model (Sluiter, 2012). 
Finally, the files were resampled to the scale of the EVI index. 

Generally, for temperature, precipitation, and other climate data, the 
best way to interpret and study these phe-nomenons is using anomaly 
measurements, which correspond to the difference between a mea
surement and mean (Kawale et al., 2011). In this sense, the average 
value of the variable of each image for each month was computed, 
giving a total of 192 images analysed for both regions (CM and LM), and 
for each climatic variable, a total of 1224 images. Following this pro
cedure, the number of pixels with values higher and lower than the 
average value of the variable was extracted to a table. Finally, the table 
included the total of pixels with values greater than or less than the 
mean for each variable, which translated into ten variables. All the data 
that support the findings of this study are available in the referenced 

sites above. 

2.4. Deforestation trends and climatic factors - generalized additive 
models 

A number of studies on land cover change examine the rates and 
dynamics of environmental transition in terms of their primary factors 
(Van Vliet et al., 2013; Almeida et al., 2016; Sonter et al., 2017). More 
precisely, these studies seek to identify the primary drivers of land-cover 
change across a variety of geographical and historical contexts. Several 
studies show that drier, flatter, more fertile areas with adequate 
drainage and therefore more agriculturally suitable areas are more likely 
to be cleared (Kaimowitz and Angelsen, 1998; Grimaldi et al., 2014). By 
contrast, it has been reported that poor soil quality contributes to rela
tively high deforestation rates, as insufficient soil endowment acceler
ates clearing for other purposes, such as pasture (Geist and Lambin, 
2001; Silva Costa et al., 2012; Fujisaki et al., 2015; Laurent et al., 2021). 

Environmental factors and biophysical drivers are increasingly being 
recognised as being fundamental to defor-estation, not just a contrib
uting factor (Geist and Lambin, 2001). For example, Barni et al. (2015) 
demonstrated that. 

the areas affected by forest fires were dependent on forest type and 
climate factors, regardless of the rate and magnitude of deforestation. 
Ecotone-influenced zones are more deforested than other factors, i.e., 
the denser the forest, the less deforested it is. Additionally, the highest 
frequency of forest fires was observed during El Nino events in areas with 
economic influence, such as the state of Maranhão. Additionally, they 
discovered that the areas most affected by forest fires throughout the 
research period were connected with severe climatic events and that 
fires occurred more frequently in ecotone-influenced zones (Barni et al., 
2015). These findings strongly imply that it is critical to account for 
climate factors in ecotone zones when examining deforestation trends.2 

Considering that a significant percentage of ecological and climatic 
data sets do not agree with the conclusions underlying a linear regres
sion model, a generalized additive model (GAM) can overcome this 
issue. The mathemat-ical modelling technique utilises smooth functions 
to capture the impact of predicted variables (Larsen, 2015). The 
generalized additive model (GAM) with an exponential family distri
bution has been the most widely used method for measuring and 
quantifying the non-linear relationship between phenology and cova
riates such as meteorological con-ditions, primarily because it allows for 
non-parametric adjustment of non-linear seasonality and trend effects 
(Bio et al., 1998; Bell et al., 2015; Auderset Joye and Rey-Boissezon, 
2015; Lusk et al., 2016; Pourtaghi et al., 2016; Halperin et al., 2016, 
2016de Souza et al., 2017; Antunez et al., 2017; Liu et al., 2018; Mor
eno-Fernandez et al., 2018). 

Given the nature of the dataset, the deforestation counts are often 
estimated using an overdispersed Poisson regres-sion model. A GAM 
with a quasi-poisson distribution and a logarithmic connection is used to 
quantify forest distur-bance as a proxy for deforestation. The quasi- 
poisson distribution is appropriate for this study because the variance 
of the deforestation variable is significantly greater than the mean, 
which is a characteristic of ecological data (Zuur, 2011). The quasi 
model formulation has the advantage of preserving natural, interpret
able parameters and enabling standard model diagnostics without 
sacrificing efficient fitting algorithms. The model assumes that Yi ~ Poi 
μi, 0 

where the mean μi for the i th observation vary as a function of the 
covariates for that observation (Ver Hoef and Boveng, 2007; Rodrigues 
et al., 2019). Because the mean μi > 0, it is natural to model:  

Table 1 
Meteorological stations in the ecological tension zone - study region.  

Station ID Lat Long Altitude Name Area 

82571 − 5.5 − 45.23 153 Barra do Corda LM 
82970 − 9.5 − 46.2 285 Alto Parnaiba LM 
82460 − 4.21 − 44.76 25 Bacabal LM 
82765 − 7.33 − 47.46 193 Carolina LM 
82376 − 3.26 − 45.65 45 Ze Doca LM 
82476 − 4.86 − 43.35 104 Caxias CM 
82382 − 3.73 − 43.35 104 Chapadinha CM 
82676 − 6.03 − 44.25 180 Colinas CM 
82280 − 2.53 − 44.21 51 Sao Luis CM  

2 In this study, ecological tension zone, ecotone zones and transitional forest 
have the same meaning. 
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g(μi)= α+
∑J

j=1
sj
(
xij; βj

)
+
∑K

k=1
γkuik (4)  

where μi = E(Y) and is a monotonic link function. The functions sj de
notes the smooth function for variables. 

xj while yk is the parameter estimate for the linear relationship of 
variables, uk and μi. 

The equation considered the sum of EVI pixels signalled as deforested 
(Def(EV Ii)) and several covariates cal-culated as the total amount of 
positive and negative anomaly pixels. A variable’s anomaly is its devi
ation from the 

climatological normal. The normal is a baseline number that is the 
long-term average of the same variable. In this study, a (t) positive 
anomaly indicates that the value of the variable was higher than the 
baseline value and a (!) neg-ative means a lower value compared to the 
mean. It also included Year as a smooth function variable to allow the 
observance of the trend throughout the studied period. Model selection 
followed the forwarding approach of Zuur et al. (2014), p.391, with two 
distinct models chosen for each area (CM and LM). An autocorrelation 
examination was performed after model choice, but none of the models 
proved to be autocorrelated. The model began with a GAM with a single 
covariate, then fitted 13 separate versions using a variety of different 
smoothers (penalised splines "ps," cubic splines "cr," and cyclic splines 
"cc") and contrasted their quasi-Akaike knowledge criterion (quasi-AIC) 
(Burn-ham and Anderson, 2010). The model with the lowest value was 
elected as the main model and then it was fitted to 12 different models, 
each with the addition of the variable with the lowest quasi-AIC. The 
forward selection stopped at the moment the main model had the lowest 
quasi-AIC value comparing to the remaining models. The choice of 
smoothing parameters for smoothing splines in GAM should always be 
accompanied by a graphical verification of functional associations with 
the outcome to verify clinical plausibility (Moore et al., 2011). The final 
model shows   

where a is an intercept parameter, the f are smooth functions, and the 
ei are independent N 0, cr random vari-ables. To visualise the results 
graphically, the first derivative of the trend splines derived from the 
deforestation data was generated using the Generalized Additive Model 
(GAM). The grey band represents a 95% confidence interval for simul
taneous point-wise observations. This graph may be used to determine 
whether the rate of deforestation is growing or reducing statistically 
substantially. The strategy is to compute the fitted trend’s first de
rivatives using the finite difference method. To get derivatives using 
finite differences, we calculated the values of the fitted trend on a grid of 
points encompassing the whole data set. After then, the grid was shifted 
slightly to recompute the trend values at the new places. The differences 
between the two fitted sets of data indicate the trend’s initial differences 
and serve as a proxy for the trend’s slope at any point in time. 

For handling spatial datasets, ArcMap 10.4.1, ArcPy 10.4.1, and the 
extensions Geostatistical Analyst, Spatial Analyst and Spatial Statistics 
from ArcToolbox (ESRI, 2016b,b), and MATLAB R2017a with Statistics 
and Machine Learning and Image Processing Toolbox (MATLAB, 2017) 
was extensively used. For statistical analysis and mod-elling, R (R Core 
Team, 2018) and several packages specially ’MASS’(Venables and Rip
ley, 2002), ’mgcv’ (Wood, 2004; 2004, 2011, 2017), ’MuMIn’ (Barton, 
2020) and ’gratia’ (Simpson, 2018) were considered. 

2.5. Validation 

To validate the results on the EVI time series a confusion matrix was 
employed. The two-by-two output table comprises four binary classifier 
outputs. The confusion matrix indicates how many observations were 
made in each cell. The uncertainty matrix’s rows correspond to the real 
class and its columns to the expected class. Diagonal and off-diagonal 
cells, respectively, refer to correctly categorised and incorrectly classi
fied observations (Lewis and Brown, 2001). A confusion matrix was 
produced for the dataset after resampling to the spatial resolution of the 
MapBiomas dataset and aggregating to year maps. 

The covariates were validated using cross-validation processes dur
ing the interpolation procedure. Cross-validation uses all the data to 
estimate the trend and autocorrelation models. It removes each data 
location one at a time and predicts the associated data value. This is also 
known as leaving-one-out, and can be computed for all or a subset of the 
data locations (ESRI, 2016b). In the kriging method, the cross-validation 
produced other results that helped evaluate the best interpolation 
method. More specifically, the Average Standard Errors (ASE) and Root 
Mean Square Standardized Error (RMSE) were computed. 

In terms of statistics, after the model selection phase, model valida
tion with additive modelling was visual rather than numerical. Four 
diagnostic plots were examined, including a Q-Q plot and histogram of 
model residuals, a plot of residuals vs the linear predictor, and a plot of 
observed vs fitted values. An important assumption of the analysis is that 
the buffer zone, created either side of the artificial line to isolate and 
compare pixels, is geographically and biologically homogeneous. To 
find support for this important assumption an effect size index for the 
two areas either side of the line was first calculated. Following Cohen 
(1977), differences in the means, expressed in terms of the pooled within 
areas standard deviation, is calculated. 

3. Results 

The validation results showed that the algorithm to detect defores
tation had an accuracy superior to 95% which tells what proportion of 
the data points was predicted correctly. The classification results can be 
found in the supplementary file S1. In addition, for the covariates ana
lyses, ASE were on average 95% of the value of the RMSE, proving to be 
a reasonable interpolation method with valid results. The resulting 
Cohen index is interpreted in terms of the average percentile standing 
area relative to another. This result is an index with a value of 0.2 which 
indicates that the mean of one area is at the 58th percentile of the buffer 
zone, i.e the dissimilarities for the two areas are close to zero. Since the 
chosen buffer zone may seem somewhat arbitrary, the next step was to 
examine whether forests between the two regions differ just outside of 
the chosen buffer zone. More precisely, areas 0.2◦ just outside buffer 
zone on each side of the two regions were isolated and their difference 
was similarly tested. The corresponding Cohen index was 0.59, which is 
at the 69th percentile, and thus one can reject the null hypothesis that 
there is no difference between these two regions. As a matter of fact, the 
index value of 0.59 indicates a difference of 33% in the two 
distributions. 

All the analysis was based on generalized additive models (GAM). 
Figures A1 to A.6 in the Appendix provide diagnostic graphs. The 
baseline model includes the sum of the number of pixels deforested from 
192 monthly obser-vations of EVI values changing over the years with 
the five influencing covariates (Precipitation, Max Temperature, Min 
Temperature, Sunlight and Humidity) considering the Legal Amazon 

Def(EV Ii) = α+ fYear(Yeari)+ fmaP(↑↓maPi)+ fmaMxT(↓ maMxTi)+ fmaMinT(↑↓maMinTi)+ fmaRH(↑↓ maRHi)+ fmaTS(↓maTSi) + ∈i (5)   

V. Gonçalves Sales                                                                                                                                                                                                                              



Science of Remote Sensing 7 (2023) 100076

6

line. Table 2 summarises the diagnostic outcomes, including deviation, 
Quasi-AIC, and R-squared. The best model for the Legal Maranhão is the 
one that de-picts the dry season with the lowest Quasi-AIC value and the 
maximum power of deviance explanation. In the Cerrado Maranhão, the 
best model is the dry season model with the lowest Quasi-AIC score 
although the rain Season model presented the maximum power of 
deviance explanation. 

The best way to understand and interpret GAMs is through visual 
representation as cited in Zuur et al. (2014). The output models depicted 
in Figs. 2–7 are named according to the location (CM and LM) and 
season (Dry and Rain). It is possible to check for the path of deforestation 
through the years and the climatic state during that period plotting the 
smoothing functions. The results are shown regarding to the average 
number of pixels of the covariates. The signs ! and t refer to the sum of 
the number of negative and positive pixels deviation to the mean, 
respectively. 

Beginning with the Cerrado Maranhão (CM) region, deforestation is 
generally associated with precipitation changes and rising temperatures, 

as indicated in Fig. 2. On average, deforestation occurred throughout the 
rainy season, which lasts from November to April, during periods of 
reduced rainfall and warming temperatures (see Fig. 3). De-forestation 
was associated with more precipitation and cooler temperatures dur
ing the dry season. Additionally, Fig. 4 illustrates how deforestation rose 
dramatically between 2004 and 2016, peaking in 2016 during the dry 
season. 

Figs. 5–7 demonstrate how deforestation behaved on average over 
the research period in Legal Maranhão (LM). Deforestation occurred, 
according to the baseline model presented in Fig. 5, during periods of 
decreasing relative humidity, decreased maximum temperatures, and 
increased precipitation levels. When split down into sea-sons, the 
pattern becomes more obvious. Fig. 6 shows how deforestation occurred 
throughout the raining season. The positive changes in the curves 
related with deforestation are few. During periods of increasing pre
cipitation and warmth, it is feasible to notice a minor yet positive effect 
of deforestation. For the dry season, Fig. 7 illustrates that deforestation 
was related to changes in the temperature and increased humidity. In 
contrast to the non-enforced region. 

deforestation was not associated with increased rainfall. Low levels 
of deforestation, on the other hand, were related with low amounts of 
precipitation during the examined season. 

It is possible to examine how policy implementation has impacted 
the route of deforestation throughout time. Fig-ures6 and 7 demonstrate 
a distinct downward trend beginning in 2004 and an increasing trend at 
the end of the research period. Between 2008 and 2012, deforestation 
was negative, but increased in the years that followed. Additionally, de- 
forestation occurred with constant rainfall in general, but was consis
tently positive and rising with severe precipitation events. The inter
acted climatic variables are available in the supplementary file S1. 

4. Discussion 

The GAMs verified that deforestation is connected to yearly variation 

Table 2 
Results of a Generalized Additive Model for Maranhão State - Cerrado Maranhão 
(CM) and Legal Maranhão (LM) and when different seasons are considered (Dry 
and Rain).  

Region Quasi- 
AIC 

R-squared 
Adjusted 

Deviance 
Explained 

Legal Maranhão (LM) 196.361 0.584 64.4% 
Legal Maranhão (LM) Rain 

Season 
186.201 0.927 90.3% 

Legal Maranhão (LM) Dry 
Season 

169.434 0.922 89.6% 

Cerrado Maranhão (CM) 207.489 0.936 84.4% 
Cerrado Maranhão (CM) Rain 

Season 
179.184 0.995 97.8% 

Cerrado Maranhão (CM) Dry 
Season 

138.754 0.984 93.2%  

Fig. 2. Model EVI Maranhão Cerrado (CM). Model Maranhão Cerrado using EVI values. The red vertical line indicates the averages of the sample. Showing 
graphical representation of significant covariates. The red vertical line for the covariate Year indicates the beginning of the surveillance policy. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 3. Model EVI Maranhão Cerrado (CM) - Rain Season. Model Maranhão Cerrado using EVI values. The red vertical line indicates the averages of the sample. 
Showing graphical representation of significant covariates.The red vertical line for the covariate Year indicates the beginning of the surveillance policy. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. Model EVI Maranhão Cerrado (CM) - Dry Season. Model Maranhão Cerrado using EVI values. The red vertical line indicates the averages of the sample. 
Showing graphical representation of significant covariates. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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Fig. 5. Model EVI Legal Maranhão (LM). Model Legal Maranhão using EVI values. The red vertical line indicates the averages of the sample. Showing graphical 
representation of significant covariates.The red vertical line for the covariate Year indicates the beginning of the surveillance policy. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. Model EVI Legal Maranhão (LM) - Rain Season. Model Legal Maranhão using EVI values. The red vertical line indicates the averages of the sample. 
Showing graphical representation of significant covariates.The red vertical line for the covariate Year indicates the beginning of the surveillance policy. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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and climatic variables, but they also demon-strated that there are sig
nificant differences in trends across seasons and between the LM and CM 
regions. In summary, the best description of the deforestation climatic 
situation for the Legal Maranhão comprises significant amounts of pre
cipitation. During the dry season, low levels of deforestation was related 
to low levels of precipitation. For the Cerrado Maranhão, deforestation is 
generally related to changes in the precipitation and rising tempera
tures. More specifically, during the rainy season, deforestation increased 
with lower levels of precipitation and the dry season showed how 
deforestation increased with increasing rainfall. 

Given that the majority of deforestation happens as a result of human 
activity, the deforestation oscillation process is driven by individual 
choices. However, the results indicate that most of this activity occurred 
differently in the two areas. As previously stated, the LM area is subject 
to an environmental monitoring programme (DETER) that use satellite 
images to identify deforestation in tropical and transitional forest and 
penalises anyone found to be responsible. In this regard, the deforesta
tion patterns in the monitored region indicate that deforestation 
occurred during periods of heavy precipitation, showing that the pres
ence of rain as a proxy for clouds in satellite images complicates the 
identification of vegetation changes. Precipitation levels above average 
may suggest the presence of clouds acting as natural barriers. 

Additionally, deforestation in the two locations behaved differently 
throughout the dry season. Given that CM and LM have the same bio
physical properties and weather patterns (for comparisons of climatic 
variables, see supplemen-tary file S1). It is possible to see that defores
tation rose in one of the zones - the unsupervised one - during periods of 
intense rainfall. Human activity may have changed away from dry 
seasons marked by bright skies and toward raining periods marked by 
cloudy days. In other words, implementation plans at environmental 
monitoring impacted human behaviour. Following this pattern closely, 
Müller et al. (2020); Menegassi (2020) also describe how deforestation 
al-legedly increased during the rainy season of January to April 2020 in 
the Legal Amazon, which contradicts the widely held belief that the 

rainy season is a quiet period for logging in the Legal Amazon, given the 
logistical difficulties inherent in operating logging equipment in the rain 
(Müller et al., 2020). 

Furthermore, it looks as though there is a spillover impact from 
environmental enforcement in the LM zone to the CM region. One 
credible piece of evidence is that deforestation continued in the Cerrado 
Maranhão during both seasons with different cycles. Throughout the dry 
season, when there was heavy rainfall, deforestation rose as opposed to 
the LM region. However, it looks as if there is no spillover impact from 
environmental regulation in the LM area to the CM area as can be seen 
that deforestation continued in the Cerrado Maranhão increasing 
through the years or it showed a linear relationship (raining season). 

There are of course a number of limitations to the analysis under
taken here. Following Murase et al. (2009) approach, possible errors in 
modelling could be taken into account. First of all, in terms of predicting 
the trend of deforestation based on a list of variables, the model 
implicitly assumes that the predicted range or potential space is fully 
occupied by forest, which in reality might not be true. Additionally, the 
spatial distribution of the vegetation indices may exhibit dynamic 
behaviour over time, so that a potential area may or may not be sparsely 
vegetated for a certain period (e.g., during sampling) due to progressive 
succession of forest. Or a temporary absence could be due to natural 
causes, such as, attack of pests or diseases or inter-species competition. 
Secondly, the current presence of forest reflects the contexts of the past 
which in turn could give rise to uncertainty (though on a smaller scale) 
in predicting the environment. Also, the regional environmental con
ditions follow changing trends of different duration, so it is possible that 
in certain cases an observed value may be declining due to regional 
changes rather local changes, but the prediction model was not able to 
detect this dynamic behaviour. Additionally, the study was based on 
coarse image resolution which could neglect local changes in the sample 
area. The results could also feasibly suffer from overfiting since more 
data is needed to optimise the smoothing algorithms. Finally, our results 
may not be generalizable to other areas, such as dense tropical forest and 

Fig. 7. Model EVI Legal Maranhão (LM) - Dry Season. Model Legal Maranhão using EVI values. The red vertical line indicates the averages of the sample. Showing 
graphical representation of significant covariates.The red vertical line for the covariate Year indicates the beginning of the surveillance policy. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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open fields. 

5. Conclusion 

One may argue that the Brazilian state of Maranhão is a particularly 
intriguing case study for examining defor-estation patterns and the 
possible influence of environmental policies. An artificial line divides 
Maranhão into two different regions. Using this geographic distinction, 
one might hypothesize on the differences in deforestation between the 
Legal Amazon Maranhão and the Cerrado Maranhão. This paper 
employed a nonlinear modelling technique based on Generalized Ad
ditive Models (GAMs) with a quasi-Poisson distribution and logarithmic 
connection function to generate deforestation patterns in the Legal 
Maranhão and the Cerrado Maranhão. The approach indicated that year 
and climatic covariates are connected to deforestation, although these 
varied widely across seasons and areas. Defor-estation occurred in the 
Legal Maranhão area during periods of excessive precipitation, which 
were above average. Cerrado Maranhão, during the dry season, there 
was a significantly divergent course of deforestation in the Legal 
Maranhão region. Indeed, the data reveal that the Cerrado Maranhão 
area had an increasing trend when precipitation levels were above 
average. Increased precipitation may indicate the existence of clouds 
functioning as natural barriers to the monitoring policy in the LM region. 
Human activity may have moved away from dry seasons marked by 
bright and clear skies and toward rainy seasons marked by cloudy days. 
In other words, regulations aimed at environmental monitoring changed 

deforestation patterns. 

CRediT authorship contribution statement 

Conceptualization of this study, Methodology, Data Curation, Soft
ware, Formal analysis, Investigation, Writing- Original Draft, Writing- 
Review Editing, and Visualization. 

Declaration of competing interest 

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests: 
Vilane G. Sales reports financial support was provided by Coordination 
of Higher Education Personnel Improvement. 

Data availability 

Data will be made available on request. 

Acknowledgements 

We thank Laisa G. Sales for useful software and technical support. 
This article is the result of the research project funded by the Coordi
nation of Superior Level Staff Improvement in Brazil. CAPES BEX 2228/ 
15-7.  

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.srs.2023.100076.

Fig. A.1. The result of Cerrado Maranhão (CM) model. Each array shows four diagnostics plots, including a Q-Q plot (top left) and histogram (bottom left) of 
model residuals, a plot of residuals vs the linear predictor (top right), and a plot of observed vs fitted values.  
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Fig. A.2. The result of Legal Maranhão (LM) model. Each array shows four diagnostics plots, including a Q-Q plot (top left) and histogram (bottom left) of model 
residuals, a plot of residuals vs the linear predictor (top right), and a plot of observed vs fitted values. 

Fig. A.3. The result of Cerrado Maranhão Rain Season (CM) model. Each array shows four diagnostics plots, including a Q-Q plot (top left) and histogram 
(bottom left) of model residuals, a plot of residuals vs the linear predictor (top right), and a plot of observed vs fitted values.  
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Fig. A.4. The result of Legal Maranhão Rain Season (LM) model. Each array shows four diagnostics plots, including a Q-Q plot (top left) and histogram (bottom 
left) of model residuals, a plot of residuals vs the linear predictor (top right), and a plot of observed vs fitted values. 

Fig. A.5. The result of Cerrado Maranhão Dry Season (CM) model. Each array shows four diagnostics plots, including a Q-Q plot (top left) and histogram (bottom 
left) of model residuals, a plot of residuals vs the linear predictor (top right), and a plot of observed vs fitted values.  
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Fig. A.6. The result of Legal Maranhão Dry Season (LM) model. Each array shows four diagnostics plots, including a Q-Q plot (top left) and histogram (bottom 
left) of model residuals, a plot of residuals vs the linear predictor (top right), and a plot of observed vs fitted values. 
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