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Abstract 

Bac kgr ound: Assessing the performance of machine learning (ML) models r equir es car eful consideration of the ev aluation metrics 
used. It is often necessary to utilize multiple metrics to gain a compr ehensi v e understanding of a trained model’s performance, as 
each metric focuses on a specific aspect. However, comparing the scores of these individual metrics for each model to determine the 
best-performing model can be time-consuming and susce ptib le to subjecti v e user pr efer ences, potentiall y intr oducing bias. 

Results: We propose the Machine Learning Cum ulati v e Performance Scor e (MLcps), a nov el ev aluation metric for classification prob- 
lems. MLcps inte gr ates sever al pr ecomputed ev aluation metrics into a unified scor e, ena b ling a compr ehensi v e assessment of the 
trained model’s strengths and weaknesses. We tested MLcps on 4 pub licl y av aila b le datasets, and the r esults demonstrate that MLcps 
provides a holistic evaluation of the model’s robustness, ensuring a thorough understanding of its overall performance. 

Conclusions: By utilizing MLcps, resear c hers and practitioners no longer need to individually examine and compare multiple metrics 
to identify the best-performing models. Instead, they can r el y on a single MLcps value to assess the overall performance of their ML 
models. This streamlined evaluation process saves valuable time and effort, enhancing the efficiency of model evaluation. MLcps is 
av aila b le as a Python package at https://pypi.org/project/MLcps/. 

Ke yw or ds: mac hine learning, classification pr ob lems, model ev aluation, unified ev aluation scor e, Python packa ge 

Key points 

� Ev aluating mac hine learning models involves consid- 
ering multiple metrics. Comparing scores of individ- 
ual metrics to determine the best model can be time- 
consuming and subjectiv e, potentiall y intr oducing bias. 

� The pr oposed Mac hine Learning Cum ulativ e Perfor- 
mance Score (MLcps) is a novel evaluation metric for 
classification problems. It integrates multiple evaluation 

metrics into a unified scor e, pr oviding a holistic under- 
standing of model performance. 

� MLcps outperforms standard metric-based rankings, of- 
fering a more reliable and consistent assessment of 
model performance. 

� MLcps is available as a Python package, making it easily 
accessible for r esearc hers to incor por ate into their e v al- 
uation pipelines. 

Introduction 

The e v aluation of mac hine learning (ML) models is crucial in the 
ML w orkflo w as it helps determine their effectiveness. Ho w ever, 
it is essential to select the a ppr opriate e v aluation metric since 
the performance of a trained model is only as good as the metric 
used for e v aluation [ 1–5 ]. Numer ous metrics ar e av ailable for as- 
sessing the performance of ML models, with each metric focusing 
on a specific aspect of the model’s performance [ 6 , 7 ]. For exam- 
ple, the “recall” metric effectively measures a model’s ability to 
pr edict positiv e class instances but does not provide insights into 
the negative class instances . T his poses a significant challenge be- 
cause a model that performs w ell accor ding to one metric may not 
exhibit the same le v el of performance when e v aluated using an- 
other metric [ 8–14 ]. Hence, r el ying solel y on a single performance 
metric is inadequate in practical scenarios. 

Furthermor e, the c har acteristics and composition of the avail- 
able dataset can influence the behavior and outcomes of various 
metrics . For instance , when dealing with imbalanced datasets , 
accuracy becomes an inadequate metric, and r el ying solel y on 
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ccuracy can lead to misleading inter pr etations [ 15 ]. Ther efor e,
t is crucial to calculate multiple performance metrics for each

odel to e v aluate its performance compr ehensiv el y [ 7 ]. By con-
idering v arious e v aluation metrics, we can gain a holistic view of
 model’s performance and make informed decisions about the
est-performing model for a given task. 

When calculating multiple metrics for a model, there is of-
en an assumption that the best model will consistently achieve
he highest scor es acr oss all metrics. Ho w e v er, this assumption
s r ar el y true in pr actical scenarios, necessitating the comparison
f the individual metrics of different models to identify the best-
erforming model. Ho w e v er, comparing metric scor es for man y
odels can be labor-intensive and susceptible to user pr efer ence

ias [ 16 ]. As a result, the complexity of finding the best model in-
r eases exponentiall y when considering the comparison of differ-
nt metrics. 

Apart from these limitations, some methods prevent users
r om e v aluating model performance with multiple metrics simul-
aneously. For example, in the field of biology, the wr a pper-based
eature selection method is commonly used to identify important
eatur es fr om a lar ge set of original attributes . T his method trains
 model with different feature subsets and selects the subset that
hows the best performance compared to the other subsets. Un-
ortunatel y, these methods ar e limited to e v aluating model per-
ormance using only one metric at a time . T his constraint can po-
entially lead to overfitting to a specific metric, resulting in the
election of suboptimal feature subsets that lack generalizability.

In the realm of information retrieval (IR), Chakrabarti et al. [ 17 ]
r e viousl y intr oduced nov el algorithms designed to mer ge m ul-
iple ranking criteria into a unified approach, ultimately enhanc-
ng the optimization of search results. Building upon this research,
eng and Cheng [ 18 ] further investigated learning to rank, consid-
ring multiple evaluation metrics, and proposed the combination
f multiple metrics to optimize IR metrics. 

Her e, we intr oduce a nov el e v aluation metric called the Ma-
hine Learning Cumulative Performance Score (MLcps) to address
he challenges associated with model e v aluation in the field of

achine learning. MLcps is a unified score that follows a simi-
ar methodology compared to the previously mentioned study re-
ated to IR. MLcps combines precomputed performance metrics
nto a single score while preserving their distinct characteristics.
y le v er a ging m ultiple metrics, MLcps pr ovides a mor e compr e-
ensiv e e v aluation of mac hine learning model performance. To
nhance the accessibility of MLcps, we have implemented it as a
ython pac ka ge, enabling dir ect comparisons of tr ained ML mod-
ls to assess their performance. 

esults and Discussion 

n this section, the results of the current study are showcased,
ith a specific focus on e v aluating MLcps as a robust measure for
ssessing ML model performance . T he primary objective of this
nalysis is to shed light on the effectiveness of MLcps in ranking
odels based on their consistency and excellence across multiple

erformance metrics . Furthermore , we explor e the r eliability of
Lcps in selecting models that not only excel on training data but

lso demonstrate the ability to generalize well to unseen datasets.
Additionally, we emphasize the importance of employing a di-

erse set of performance metrics when evaluating machine learn-
ng models. By doing so, we aim to provide a compr ehensiv e un-
erstanding of model performance beyond traditional measures
nd showcase the significance of considering various aspects of
odel behavior in real-world applications. 
v alua ting MLcps robustness 

ach performance metric represents a specific aspect of model
erformance, and for a model to be considered robust and su-
erior, it should consistently excel across all these metrics . T his
onsistency can be reflected by having the lowest standard de-
iation (SD) across performance metrics . T herefore , our analysis
 e volv es ar ound understanding the r elationship between MLcps
nd SD. This e v aluation helps determine the reliability of MLcps
s a performance measure. 

To assess MLcps’ robustness as a model performance measure,
e anal yzed m ultiple models acr oss 5 distinct datasets (Table 1 ).
ur findings consistently revealed a strong correlation between

he highest MLcps score and the lo w est SD in performance met-
ic scores (Fig. 1 A, B and Fig. 2 A, B). This correlation indicates that
Lcps r eliabl y identifies the best-performing model when it con-

istently excels across all metrics, validating its reliability as a per-
ormance measure. 

Ho w e v er, ther e ar e important exceptions that r equir e attention.
or instance, in the c hr onic l ymphocytic leukemia (CLL) dataset,
he GP model outperforms the dummy model in terms of MLcps
cor e, e v en though the dummy model has a lo w er SD (Fig. 1 A).
imilarly, in the cervical cancer dataset, the MLcps scores of the
xtr a tr ees classifier (ETC), support v ector mac hine (SVM), and
 andom for est (RF) classifier models surpass that of the linear dis-
riminant analysis (LDA) model, despite the LDA model having a
o w er SD (Fig. 1 B). Similar exceptions were observed in the body
ignals dataset as well ( Supplementary Fig. S4A ). 

These exceptions can be attributed to the fact that while these
odels exhibit lo w er SD compared to others, they also perform

oorl y for eac h individual metric. Consequentl y, their low MLcps
cor es accur atel y r eflect their subpar performance acr oss all met-
ics . T his observ ation ac knowledges that a model with poor per-
ormance metrics may still have a smaller SD when compared to
ther models . T hese exceptions underscore that MLcps takes into
ccount not only the SD but also the overall magnitude of perfor-
ance metric scor es, ther eby pr oviding a compr ehensiv e e v alua-

ion of ML models’ performance. 

onsistency in model performance across 

raining and test datasets 

o e v aluate the r eliability of MLcps in selecting the best-
erforming models, we examined the consistency of model per-
ormance between the training and test datasets. Among the 5
atasets , the T he Cancer Genome Atlas (TCGA) breast in v asiv e
arcinoma (BRCA) and body signals datasets offered a larger sam-
le size, allowing us to create an independent test set comprising
0% of the data. When analyzing these 3 datasets, we found that
he model identified as the best performer based on MLcps also
emonstrated the best performance on the independent test set

Fig. 2 C, D). 
Furthermor e, it is note w orthy that if w e solel y r elied on the

D to rank the models, the Logistic Regression (LR) model would
av e been c hosen as the best performer on the training dataset of
CGA-BRCA mRNA (Fig. 2 B). Howe v er, when e v aluating its perfor-
ance on the test dataset, LR did not e v en r ank among the top 2

Fig. 2 D). Similarly, in the body signals dataset, the bagging classi-
er model would have been considered the best performer based
n the SD criteria ( Supplementary Fig. S4A ). Ho w e v er, it is impor-
ant to note that on the test dataset, this model ranked fourth in
erms of performance ( Supplementary Fig. S4B ). 

In contrast, when sorting the model performance based on ML-
ps, the ranking remained consistent across both training and test

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad108#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad108#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad108#supplementary-data
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Table 1: Example datasets used in this study 

Dataset Data type 
Number of 
samples 

Number of 
features Target class r a tio 

CLL mRNA 136 5,000 Male ( n = 82)/Female ( n = 54) 
Cervical cancer miRNA 58 714 Normal ( n = 29)/Tumor ( n = 29) 
TCGA-BRCA miRNA 1,207 1,404 Normal ( n = 104)/Tumor ( n = 1,104) 
TCGA-BRCA mRNA 1,219 5,520 Normal ( n = 113)/Tumor ( n = 1,106) 
Body signal Body signal data (hemoglobin, 

triglyceride) 
100,000 21 Consume Alcohol 

Yes ( n = 50,173)/No ( n = 49,827) 
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datasets , pro viding a more robust measure of model performance 
( Supplementary Fig. S4B ). These findings indicate that MLcps ef- 
fectiv el y identifies models that not only perform well on the train- 
ing data but also generalize well to unseen data, highlighting its 
compr ehensiv e ability to assess model performance across differ- 
ent datasets. 

Importance of utilizing multiple performance 

metrics 

To emphasize the significance of using multiple performance met- 
rics in e v aluating ML model performance, we employed a visual 
r epr esentation of the metric scores using a 2-dimensional po- 
lar coordinate system for each ML algorithm trained on different 
datasets. Our results demonstrated that both precision and av- 
er a ge pr ecision metrics consistentl y yielded high scor es ( > 90%) 
for all the trained models in the TCGA miRNA ( Supplementary 
Fig. S1B, C ) and mRNA datasets ( Supplementary Fig. S2B, C ). How- 
e v er, r el ying solel y on these metrics would hav e r esulted in mis- 
takenly selecting the dummy model as the best-performing one.
This highlights the crucial importance of incor por ating m ultiple 
performance metrics to obtain a more accurate assessment of ML 
model performance. Importantly, this phenomenon was not ob- 
served in the CLL and cervical cancer datasets ( Supplementary 
Figs. S1A, S2A ), indicating that the inter pr etation of performance 
metrics is dataset dependent. By considering a div erse r ange of 
metrics, r esearc hers and practitioners can make more informed 

decisions regarding the usefulness and reliability of ML models. 

Materials and Methods 

MLcps methodology 

The MLcps algorithm r equir es an input table consisting of 
columns that hold various performance metrics, such as F1, ac- 
cur acy, and r ecall. The r ows in the table r epr esent differ ent ma- 
c hine learning methods, suc h as k-near est neighbors (KNN) and 

SVM. Typically, this table is generated as the output of a standard 

machine learning pipeline ( Fig. 3 A–C). In principle, MLcps can be 
calculated for any evaluation metric. Ho w ever, it is highly recom- 
mended that all of them are on the same scale; for example, if 
accur acy r anges between 0 and 1, then the F1 metric should also 
be in the same range, not in percentages. 

To calculate MLcps, the first step involves plotting the precal- 
culated performance metrics on a 2-dimensional polar coordinate 
system ( Fig. 3 D). In this polar coordinate system, each metric is 
r epr esented as a ray, and the length of the r ay corr esponds to the 
metric value . T his representation allows the polar plane to be di- 
vided into multiple triangles, with the number of triangles being 
equal to the available evaluation metrics . T he combined area of 
these individual triangles r epr esents the total area of the polar 
plane and serves as the MLcps ( Fig. 3 E). 
Finally, the MLcps can be visually represented using a bar chart,
s shown in Fig. 3 F. It provides a clear and visually informative de-
iction of the r elativ e performance of different machine learning
ethods. By examining the bar chart, one can easily identify the

erformance differences between various ML methods. 

rea calculation of a 2-dimensional polar plane 

he projection of multiple evaluation metrics onto a 2- 
imensional polar coordinate system divides the polar plane into 
e v er al triangles . T her efor e, the total sum of the ar eas of these tri-
ngles is equal to the total area of the polar plane generated by
he multiple performance scores. In order to calculate the area of
ach individual triangle, as described in Equation ( 1 ), we need to
 ultipl y half the length of base by the height drawn to that side

 Fig. 3 G–N). 

Area �ABC = 

1 
2 

ah (1) 

where 

a = r epr esents the side (base), and 

h = r epr esents the height drawn to that side. 

Ho w e v er, to a ppl y this form ula, we r equir e the value for the
eight ( h ) v ariable, whic h cannot be controlled in a polar plane.
onetheless, we do have control over the angles ( θ ) of all the tri-
ngles, which can be calculated by dividing 360 degrees by the
umber of performance metrics used, as described in Equation 

 2 ). 

Angle θ = 

360 
Number of performance metrics 

× π

180 

= 

2 π
Number of performance metrics 

(2) 

No w, b y emplo ying trigonometry, as outlined in Equation ( 3 ),
e can calculate the height ( h ) based on the known angles ( θ ).
her efor e, the height of the triangle can be expressed as h = b sinθ . 

sin θ = 

h 

b 
(3) 

By substituting the new expression for the height ( h ) variable
nto the general formula for the area of a triangle, we obtain a
e w form ula, as shown in Equation ( 4 ), wher e v alues for all the
 equir ed v ariables ar e av ailable. 

Are a �ABC = 

1 
2 

ab sin θ or 2 Are a �ABC = ab sin θ (4) 

In Equation ( 4 ), the parameters a and b r epr esent an y 2 sides
f a triangle, while θ denotes the included angle. It is important
o note that in this context, the values a and b correspond to the
ctual measurements for each performance metric. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad108#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad108#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad108#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad108#supplementary-data
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Figure 1: SD of performance metrics and MLcps comparison for CLL and cervical cancer datasets. (A, B) The SD of performance metric scores for ML 
algorithms trained on the CLL and cervical cancer datasets, respectively. The bars in the plot represent the SD of performance metric scores and are 
displayed on the left y-axis. The bars are arranged from left to right, with smaller SD values on the left and larger SD values on the right. A red dot on 
the plot r epr esents the MLcps, which is displayed on the right y-axis. (C, D) MLcps for training data from the CLL and cervical cancer datasets, 
r espectiv el y. The numerical MLcps values are indicated within each bar. Rankings, enclosed in brackets, reflect model performance based on MLcps. 
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Finally, by utilizing Equation ( 5 ), derived from Equation ( 4 ), the
otal area of the polar plane can be determined by summing the
reas of all triangles formed within the polar coordinate system. 

2 Are a total = sin θ

n ∑ 

i =1 

d i d i +1 → Are a total = 

1 
2 

sin θ

n ∑ 

i =1 

d i d i +1 (5) 

here 
d i = length of the i th ray (the value of i th metric score) ( Fig. 3 L),
and 

n = number of triangles point of collapse ( Fig. 3 M). 

eighted MLcps 

n specific situations, certain metrics hold more significance than
thers . For instance , when dealing with an imbalanced dataset,
c hie ving a high F1 score may be prioritized over higher accuracy
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Figure 2: SD of performance metrics and MLcps comparison for TCGA mRNA and miRNA datasets. (A, B) The SD of performance metric scores for ML 
algorithms trained on the mRNA and miRNA datasets, r espectiv el y. The bars in the plot r epr esent the SD of performance metric scores and are 
displayed on the left y-axis. The bars are arranged from left to right, with smaller SD values on the left and larger SD values on the right. A red dot on 
the plot r epr esents the MLcps, which is displayed on the right y-axis. (C, D) A comparison of MLcps for training and test data from the mRNA and 
miRNA datasets, r espectiv el y. The numerical MLcps values are indicated within each bar. Rankings, enclosed in brackets, reflect model performance 
based on MLcps, whether computed from the training or test data. 
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[ 19 , 20 ]. In such cases, users have the option to assign weight vari- 
ables to the metrics of interest during the calculation of MLcps.
A weight variable assigns a value (referred to as the weight) to 
eac h pr ecomputed metric, and the r espectiv e metric scor es ar e 
adjusted using these weights in the following manner: 

S weightedmetric = S metric × W metric (6) 
here 

S weightedmetric = weighted metric score, 
S metric = raw metric score, and 

W metric = weight. 

It is essential to note that the assigned weight for a metric must
lways be greater than or equal to zero. A weight of zero indicates
hat the user intends to exclude that metric from the MLcps cal-
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A B C D E F

G H I J K L

M N

Figure 3: Schematic ov ervie w of the complete analysis process for MLcps Python package. Before using the MLcps Python package, one needs to 
pr epar e the raw data (A). This input table can be RNA sequencing, proteomics, patients’ profile, molecular data, and so on (normall y these data ar e in 
txt or csv format). Next step is to perform multiple ML algorithms (B). Performing this step can be done by any package or programming language of 
choice . T he next step is to evaluate the performance of the ML algorithms. We recommend the use of multiple metrics such as F1, recall, and so on (C). 
The performance metric scores then need to be arranged in a tabular format, as depicted in (C). This table will be used as an input for the MLcps 
pac ka ge. Fr om her e on, the MLcps will pr ocess the data. MLcps involv es 3 steps: pr ojection, calculation, and visualization (PCV). To calculate the 
cum ulativ e scor e of eac h ML algorithm in the input data, MLcps first projects the performance metric onto the 2-dimensional polar coordinates system 

(D). Next, the projected polygon’s area is calculated (E). Finally, the user can visualize this MLcps to rank the performance of given ML algorithms (F). 
The lo w er panel (G–N) visualizes the pr ocedur e to calculate the surface ar ea as a cum ulativ e scor e in detail. The names of the algorithms ar e just 
mentioned as an example and other algorithms can be used too. BC: bagging classifier; DTC: decision tree classifier; ETC: extra trees classifier; GP: 
Gaussian process classifier; KNN: k-nearest neighbors; LDA: linear discriminant analysis; RF: random forest classifier; SVM: support vector machine. 
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ulation. Metrics with higher weights have a more significant con-
ribution to the MLcps compared to metrics with lo w er w eights. In
he case where no weights are assigned (unweighted MLcps), it is
quivalent to conducting a weighted analysis where all weights
re set to 1. 

atasets 

n this study, 4 distinct datasets w ere emplo y ed to e v aluate MLcps
Table 1 ). The initial dataset comprises mRNA data ( n = 136) de-
iv ed fr om a CLL study, whic h examined tr anscriptome pr ofiles in
ndividuals affected by blood cancer [ 21 ]. Our objective was to de-
elop a model capable of distinguishing between male and female
atients using their transcriptomic profiles. To achieve this, we fo-
used on the top 5,000 most v ariabl y expr essed mRNAs, excluding
enes from the Y chromosome. 

The second set of data was obtained from a study on cervical
ancer, where the expression levels of 714 miRN As w ere measured
n human samples ( n = 58) [ 22 ]. The third and fourth datasets were
ollected from TCGA and inv olved mRN A ( n = 1,219) and miRNA ( n
 1,207) sequencing of BRC A. T he TCGAbiolinks pac ka ge in R was
sed to r etrie v e these datasets [ 23 ]. For the BRCA mRNA dataset,
e focused on genes that showed differential expression accord-
ng to edgeR analysis (False discovery rate (FDR) ⇐ 0.001 and Fold
hange log(FC) > ±2) [ 24 ]. Our objective was to de v elop a model
apable of distinguishing between normal and tumor samples for
oth the cervical cancer and TCGA-BRCA datasets. 

The fifth dataset in our study comprises body signal data col-
ected from 100,000 individuals through the National Health In-
urance Service in K orea [ 25 ]. T his dataset includes 21 essential
iological signals related to health, such as measurements of sys-
olic blood pr essur e and total c holester ol le v els. Our main goal
ith this dataset was to determine whether individuals consume
lcohol based on the available biological signal information. 

Among these datasets, 2 were relatively small (CLL and the
ervical cancer study), while the other 2 (TCGA datasets) were
mbalanced (Table 1 ). We utilized an in-house ML pipeline
 Supplementary Fig. S5 ) to train and e v aluate 8 differ ent models
 Supplementary Table S1 ) to identify the best-performing model
or CLL, cervical cancer, and the TCGA datasets. For the biolog-
cal signal dataset, we utilized the “customML” feature from the

achine Learning Made Easy [ 26 ] tool to train and evaluate 6 dif-
erent models and identify the best-performing one for classifying

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad108#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad108#supplementary-data
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Implementation 

MLcps is de v eloped using Python [ 27 ] and R [ 28 ] pr ogr amming lan- 
gua ges. P andas [ 29 , 30 ] is used to store and process the data. Plotly 
[ 31 ] is used to generate the figures . T he radarchart [ 32 ] package in 

R was used for surface area calculation of the polar plane . T he R 

pac ka ges tibble [ 33 ] and dplyr [ 34 ] were utilized for data wrangling 
in the computation of MLcps during the analysis. 

Conclusions 

Our article introduces MLcps, a novel evaluation metric imple- 
mented as a Python pac ka ge. MLcps is a robust evaluation met- 
ric designed specifically for classification problems. Its ability to 
integr ate m ultiple e v aluation metrics into a single scor e makes 
it an efficient and r eliable a ppr oac h for e v aluating model perfor- 
mance and selecting the most successful model. This is especially 
valuable when multiple evaluation metrics are necessary to fully 
comprehend a model’s strengths and weaknesses. 

Ho w e v er, it is essential to understand that the reliability of ML- 
cps depends on the quality of the metrics used in its calcula- 
tion. Ther efor e, it is of utmost importance to employ a ppr opri- 
ate e v aluation metrics, whic h depend on v arious factors suc h as 
the specific domain, stakeholder pr efer ences, and data c har acter- 
istics. Similarly, assigning weights to evaluation metrics in ma- 
chine learning offers a valuable technique for prioritizing spe- 
cific aspects of model performance, but it comes with potential 
dr awbac ks and complexities. For example, heavily weighting one 
metric can overshadow the ov er all e v aluation, possibl y r esult- 
ing in suboptimal models. Additionally, the assignment of metric 
weights often depends on subjective judgments regarding their 
r elativ e significance. Various stakeholders may hold differing per- 
spectives on how much weight to allocate to each metric, poten- 
tially leading to evaluation bias. 

While the allocation of weights to e v aluation metrics can en- 
hance the customization of the e v aluation pr ocess for specific ob- 
jectiv es, it m ust be executed judiciously, considering the possible 
downsides and challenges associated with this approach. Strik- 
ing a balance between highlighting k e y metrics and maintaining a 
compr ehensiv e vie w of model performance is par amount. Ther e- 
for e, we str ongl y discour a ge r el ying on MLcps without considering 
the context in which it is applied. 

Availability of Supporting Source Code and 

Requirements 

Pr oject name: Mac hine Learning Cum ulativ e Performance Scor e 
(MLcps) 
Pr oject homepa ge: https:// github.com/ FunctionalUrology/ MLcps 
Operating system(s): Platform independent 
Pr ogr amming langua ge: Python ≥3.8 and R ≥4.0 
Other r equir ements: r adarc hart, tibble, and dpl yr R pac ka ges 
License: GNU GPL 
BioTool ID: mlcps 
RRID: SCR_024716 

Additional Files 

Supplementary Fig. S1. Projection of metric scores onto a two- 
dimensional (2D) polar coordinate system for each ML algorithm 

tr ained on differ ent example datasets . T he plots r epr esent A) CLL 
dataset, B) TCGA miRNA Training dataset, C) TCGA miRNA test 
dataset. 
upplementary Fig. S2. Projection of metric scores onto a two- 
imensional (2D) polar coordinate system for each ML algorithm 

r ained on differ ent example datasets . T he plots r epr esent A) Cer-
ical cancer dataset, B) TCGA mRNA Training dataset, C) TCGA
RNA test dataset. 

upplementary Fig. S3. Projection of metric scores onto a two- 
imensional (2D) polar coordinate system for each ML algorithm 

rained on Body SIgnal dataset. The plots r epr esent model perfor-
ance on A) Training Data, and B) Test Data. 

upplementary Fig. S4 . Body Signal Dataset Results. A) Standard
eviation (SD) in ML Algorithm Performance . T his plot displays
he SD of performance metric scores for ML algorithms trained on
ody signal datasets. Bars r epr esent the SD of performance met-
ic scores, as shown on the left y-axis. The bars are arranged from
eft to right, with smaller SD on the left and larger SD on the right.
 red dot on the plot represents MLcps , displa yed on the right y-
xis. B) MLcps Comparison for Training and Test Data. This bar
 harts r epr esents MLcps obtained fr om the tr aining and test data
f the body signal dataset. Each bar is color-coded, and the numer-
cal MLcps values are shown within each bar. Rankings, enclosed
n br ac kets, r eflect model performance based on MLcps, whether
omputed from the training or test data within the body signal
ataset. 
upplementary Fig. S5 . Flowc hart describing ML Pipeline: Firstl y,
he dataset is divided into k (3) equal-sized bins in a stratified

anner, with k-1 bins used for training and the remaining bin
or testing. Next, the pipeline applies the univ ariate featur e se-
ection method to select r ele v ant featur es fr om the dataset. Data
esampling is then performed using the SMOTETomek method,
hich combines synthetic data generation for the minority class 
nd r emov al of majority class samples identified as Tomek links.
ight ML algorithms are trained on the pre-processed dataset.
he model performance is e v aluated using k-fold cr oss-v alidation

CV) and nested CV (k = 3), calculating se v en differ ent performance
etrics . T his process is repeated for each unique bin within the k-

old CV method, ensuring compr ehensiv e e v aluation acr oss sub-
ets of the dataset. The entire pipeline is repeated ten times, and
he av er a ge performance is consider ed the final model perfor-

ance. Finally, the pipeline provides a list of selected features, de-
iv ed fr om the intersection of featur es c hosen by the top 10 best-
erforming models based on the F1 score. 
upplementary Table S1 . ML algorithms used in this study. 

a ta Av ailability 

n arc hiv al copy of the code and supporting data is available via
he GigaScience repository, GigaDB [ 35 ]. DOME-ML (Data, Optimi-
ation, Model, and Evaluation in Machine Learning) annotations,
upporting the current study, are available via the supporting data
n GigaDB. 

bbreviations 

RCA: breast inv asiv e carcinoma; CLL: c hr onic l ymphocytic
eukemia; ETC: extr a tr ees classifier; IR: information r etrie v al;
NN: k-nearest neighbors; LDA: linear discriminant analysis; ML: 
ac hine learning; MLcps: Mac hine Learning Cum ulativ e Perfor-
ance Score; RF: random forest classifier; SD: standard deviation; 

VM: support vector machine; TCGA: The Cancer Genome Atlas. 
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