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Abstract

Background: Assessing the performance of machine learning (ML) models requires careful consideration of the evaluation metrics
used. It is often necessary to utilize multiple metrics to gain a comprehensive understanding of a trained model’s performance, as
each metric focuses on a specific aspect. However, comparing the scores of these individual metrics for each model to determine the
best-performing model can be time-consuming and susceptible to subjective user preferences, potentially introducing bias.

Results: We propose the Machine Learning Cumulative Performance Score (MLcps), a novel evaluation metric for classification prob-
lems. MLcps integrates several precomputed evaluation metrics into a unified score, enabling a comprehensive assessment of the
trained model’s strengths and weaknesses. We tested MLcps on 4 publicly available datasets, and the results demonstrate that MLcps
provides a holistic evaluation of the model’s robustness, ensuring a thorough understanding of its overall performance.

Conclusions: By utilizing MLcps, researchers and practitioners no longer need to individually examine and compare multiple metrics
to identify the best-performing models. Instead, they can rely on a single MLcps value to assess the overall performance of their ML
models. This streamlined evaluation process saves valuable time and effort, enhancing the efficiency of model evaluation. MLcps is
available as a Python package at https://pypi.org/project/MLcps/.
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Introduction

Key points ) ) ) ) o
The evaluation of machine learning (ML) models is crucial in the

ML workflow as it helps determine their effectiveness. However,
it is essential to select the appropriate evaluation metric since
the performance of a trained model is only as good as the metric
used for evaluation [1-5]. Numerous metrics are available for as-
sessing the performance of ML models, with each metric focusing
on a specific aspect of the model’s performance [6, 7]. For exam-
ple, the “recall” metric effectively measures a model’s ability to
predict positive class instances but does not provide insights into
the negative class instances. This poses a significant challenge be-
cause a model that performs well according to one metric may not
exhibit the same level of performance when evaluated using an-
other metric [8-14]. Hence, relying solely on a single performance
metric is inadequate in practical scenarios.

Furthermore, the characteristics and composition of the avail-
able dataset can influence the behavior and outcomes of various
metrics. For instance, when dealing with imbalanced datasets,
accuracy becomes an inadequate metric, and relying solely on

® Evaluating machine learning models involves consid-
ering multiple metrics. Comparing scores of individ-
ual metrics to determine the best model can be time-
consuming and subjective, potentially introducing bias.

® The proposed Machine Learning Cumulative Perfor-
mance Score (MLcps) is a novel evaluation metric for
classification problems. It integrates multiple evaluation
metrics into a unified score, providing a holistic under-
standing of model performance.

® MLcps outperforms standard metric-based rankings, of-
fering a more reliable and consistent assessment of
model performance.

® MLcps is available as a Python package, making it easily
accessible for researchers to incorporate into their eval-
uation pipelines.
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accuracy can lead to misleading interpretations [15]. Therefore,
it is crucial to calculate multiple performance metrics for each
model to evaluate its performance comprehensively [7]. By con-
sidering various evaluation metrics, we can gain a holistic view of
a model’s performance and make informed decisions about the
best-performing model for a given task.

When calculating multiple metrics for a model, there is of-
ten an assumption that the best model will consistently achieve
the highest scores across all metrics. However, this assumption
is rarely true in practical scenarios, necessitating the comparison
of the individual metrics of different models to identify the best-
performing model. However, comparing metric scores for many
models can be labor-intensive and susceptible to user preference
bias [16]. As a result, the complexity of finding the best model in-
creases exponentially when considering the comparison of differ-
ent metrics.

Apart from these limitations, some methods prevent users
from evaluating model performance with multiple metrics simul-
taneously. For example, in the field of biology, the wrapper-based
feature selection method is commonly used to identify important
features from a large set of original attributes. This method trains
a model with different feature subsets and selects the subset that
shows the best performance compared to the other subsets. Un-
fortunately, these methods are limited to evaluating model per-
formance using only one metric at a time. This constraint can po-
tentially lead to overfitting to a specific metric, resulting in the
selection of suboptimal feature subsets that lack generalizability.

In the realm of information retrieval (IR), Chakrabarti et al. [17]
previously introduced novel algorithms designed to merge mul-
tiple ranking criteria into a unified approach, ultimately enhanc-
ing the optimization of search results. Building upon this research,
Geng and Cheng [18] further investigated learning to rank, consid-
ering multiple evaluation metrics, and proposed the combination
of multiple metrics to optimize IR metrics.

Here, we introduce a novel evaluation metric called the Ma-
chine Learning Cumulative Performance Score (MLcps) to address
the challenges associated with model evaluation in the field of
machine learning. MLcps is a unified score that follows a simi-
lar methodology compared to the previously mentioned study re-
lated to IR. MLcps combines precomputed performance metrics
into a single score while preserving their distinct characteristics.
By leveraging multiple metrics, MLcps provides a more compre-
hensive evaluation of machine learning model performance. To
enhance the accessibility of MLcps, we have implemented it as a
Python package, enabling direct comparisons of trained ML mod-
els to assess their performance.

Results and Discussion

In this section, the results of the current study are showcased,
with a specific focus on evaluating MLcps as a robust measure for
assessing ML model performance. The primary objective of this
analysis is to shed light on the effectiveness of MLcps in ranking
models based on their consistency and excellence across multiple
performance metrics. Furthermore, we explore the reliability of
MLcps in selecting models that not only excel on training data but
also demonstrate the ability to generalize well to unseen datasets.

Additionally, we emphasize the importance of employing a di-
verse set of performance metrics when evaluating machine learn-
ing models. By doing so, we aim to provide a comprehensive un-
derstanding of model performance beyond traditional measures
and showcase the significance of considering various aspects of
model behavior in real-world applications.

Evaluating MLcps robustness

Each performance metric represents a specific aspect of model
performance, and for a model to be considered robust and su-
perior, it should consistently excel across all these metrics. This
consistency can be reflected by having the lowest standard de-
viation (SD) across performance metrics. Therefore, our analysis
revolves around understanding the relationship between MLcps
and SD. This evaluation helps determine the reliability of MLcps
as a performance measure.

To assess MLcps’ robustness as a model performance measure,
we analyzed multiple models across 5 distinct datasets (Table 1).
Our findings consistently revealed a strong correlation between
the highest MLcps score and the lowest SD in performance met-
ric scores (Fig. 1A, B and Fig. 2A, B). This correlation indicates that
MLcps reliably identifies the best-performing model when it con-
sistently excels across all metrics, validatingits reliability as a per-
formance measure.

However, there are important exceptions that require attention.
For instance, in the chronic lymphocytic leukemia (CLL) dataset,
the GP model outperforms the dummy model in terms of MLcps
score, even though the dummy model has a lower SD (Fig. 1A).
Similarly, in the cervical cancer dataset, the MLcps scores of the
extra trees classifier (ETC), support vector machine (SVM), and
random forest (RF) classifier models surpass that of the linear dis-
criminant analysis (LDA) model, despite the LDA model having a
lower SD (Fig. 1B). Similar exceptions were observed in the body
signals dataset as well (Supplementary Fig. S4A).

These exceptions can be attributed to the fact that while these
models exhibit lower SD compared to others, they also perform
poorly for each individual metric. Consequently, their low MLcps
scores accurately reflect their subpar performance across all met-
rics. This observation acknowledges that a model with poor per-
formance metrics may still have a smaller SD when compared to
other models. These exceptions underscore that MLcps takes into
account not only the SD but also the overall magnitude of perfor-
mance metric scores, thereby providing a comprehensive evalua-
tion of ML models’ performance.

Consistency in model performance across
training and test datasets

To evaluate the reliability of MLcps in selecting the best-
performing models, we examined the consistency of model per-
formance between the training and test datasets. Among the 5
datasets, the The Cancer Genome Atlas (TCGA) breast invasive
carcinoma (BRCA) and body signals datasets offered a larger sam-
ple size, allowing us to create an independent test set comprising
30% of the data. When analyzing these 3 datasets, we found that
the model identified as the best performer based on MLcps also
demonstrated the best performance on the independent test set
(Fig. 2C, D).

Furthermore, it is noteworthy that if we solely relied on the
SD to rank the models, the Logistic Regression (LR) model would
have been chosen as the best performer on the training dataset of
TCGA-BRCA mRNA (Fig. 2B). However, when evaluating its perfor-
mance on the test dataset, LR did not even rank among the top 2
(Fig. 2D). Similarly, in the body signals dataset, the bagging classi-
fier model would have been considered the best performer based
on the SD criteria (Supplementary Fig. S4A). However, it is impor-
tant to note that on the test dataset, this model ranked fourth in
terms of performance (Supplementary Fig. S4B).

In contrast, when sorting the model performance based on ML-
cps, the ranking remained consistent across both training and test
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Table 1: Example datasets used in this study

Number of Number of

Dataset Data type samples features Target class ratio
CLL MRNA 5,000 Male (n = 82)/Female (n = 54)
Cervical cancer miRNA 714 Normal (n = 29)/Tumor (n = 29)
TCGA-BRCA miRNA 1,207 1,404 Normal (n = 104)/Tumor (n = 1,104)
TCGA-BRCA MRNA 1,219 5,520 Normal (n = 113)/Tumor (n = 1,106)
Body signal Body signal data (hemoglobin, 100,000 21 Consume Alcohol

triglyceride) Yes (n = 50,173)/No (n = 49,827)

datasets, providing a more robust measure of model performance
(Supplementary Fig. S4B). These findings indicate that MLcps ef-
fectively identifies models that not only perform well on the train-
ing data but also generalize well to unseen data, highlighting its
comprehensive ability to assess model performance across differ-
ent datasets.

Importance of utilizing multiple performance
metrics

To emphasize the significance of using multiple performance met-
rics in evaluating ML model performance, we employed a visual
representation of the metric scores using a 2-dimensional po-
lar coordinate system for each ML algorithm trained on different
datasets. Our results demonstrated that both precision and av-
erage precision metrics consistently yielded high scores (>90%)
for all the trained models in the TCGA miRNA (Supplementary
Fig. S1B, C) and mRNA datasets (Supplementary Fig. S2B, C). How-
ever, relying solely on these metrics would have resulted in mis-
takenly selecting the dummy model as the best-performing one.
This highlights the crucial importance of incorporating multiple
performance metrics to obtain a more accurate assessment of ML
model performance. Importantly, this phenomenon was not ob-
served in the CLL and cervical cancer datasets (Supplementary
Figs. S1A, S2A), indicating that the interpretation of performance
metrics is dataset dependent. By considering a diverse range of
metrics, researchers and practitioners can make more informed
decisions regarding the usefulness and reliability of ML models.

Materials and Methods
MLcps methodology

The MLcps algorithm requires an input table consisting of
columns that hold various performance metrics, such as F1, ac-
curacy, and recall. The rows in the table represent different ma-
chine learning methods, such as k-nearest neighbors (KNN) and
SVM. Typically, this table is generated as the output of a standard
machine learning pipeline (Fig. 3A-C). In principle, MLcps can be
calculated for any evaluation metric. However, it is highly recom-
mended that all of them are on the same scale; for example, if
accuracy ranges between 0 and 1, then the F1 metric should also
be in the same range, not in percentages.

To calculate MLcps, the first step involves plotting the precal-
culated performance metrics on a 2-dimensional polar coordinate
system (Fig. 3D). In this polar coordinate system, each metric is
represented as a ray, and the length of the ray corresponds to the
metric value. This representation allows the polar plane to be di-
vided into multiple triangles, with the number of triangles being
equal to the available evaluation metrics. The combined area of
these individual triangles represents the total area of the polar
plane and serves as the MLcps (Fig. 3E).

Finally, the MLcps can be visually represented using a bar chart,
as shown in Fig. 3F. It provides a clear and visually informative de-
piction of the relative performance of different machine learning
methods. By examining the bar chart, one can easily identify the
performance differences between various ML methods.

Area calculation of a 2-dimensional polar plane
The projection of multiple evaluation metrics onto a 2-
dimensional polar coordinate system divides the polar plane into
several triangles. Therefore, the total sum of the areas of these tri-
angles is equal to the total area of the polar plane generated by
the multiple performance scores. In order to calculate the area of
each individual triangle, as described in Equation (1), we need to
multiply half the length of base by the height drawn to that side
(Fig. 3G-N).

1
Areapapc = 3 ah (1)

where

a = represents the side (base), and
h = represents the height drawn to that side.

However, to apply this formula, we require the value for the
height (h) variable, which cannot be controlled in a polar plane.
Nonetheless, we do have control over the angles (¢) of all the tri-
angles, which can be calculated by dividing 360 degrees by the
number of performance metrics used, as described in Equation

(2).

Angle 6 = 360 X
& " Number of performance metrics =~ 180
2

(2)

" Number of performance metrics

Now, by employing trigonometry, as outlined in Equation (3),
we can calculate the height (h) based on the known angles (9).
Therefore, the height of the triangle can be expressed as h = bsing.

. h
sing = P (3)
By substituting the new expression for the height (h) variable
into the general formula for the area of a triangle, we obtain a
new formula, as shown in Equation (4), where values for all the
required variables are available.

1 . .
Areapapc = §ab sinf or 2Areasapc = absiné (4)

In Equation (4), the parameters a and b represent any 2 sides
of a triangle, while 6 denotes the included angle. It is important
to note that in this context, the values a and b correspond to the
actual measurements for each performance metric.
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Figure 1: SD of performance metrics and MLcps comparison for CLL and cervical cancer datasets. (A, B) The SD of performance metric scores for ML
algorithms trained on the CLL and cervical cancer datasets, respectively. The bars in the plot represent the SD of performance metric scores and are
displayed on the left y-axis. The bars are arranged from left to right, with smaller SD values on the left and larger SD values on the right. A red dot on
the plot represents the MLcps, which is displayed on the right y-axis. (C, D) MLcps for training data from the CLL and cervical cancer datasets,
respectively. The numerical MLcps values are indicated within each bar. Rankings, enclosed in brackets, reflect model performance based on MLcps.

Finally, by utilizing Equation (5), derived from Equation (4), the

d; = length of the ith ray (the value of ith metric score) (Fig. 3L),

total area of the polar plane can be determined by summing the and

areas of all triangles formed within the polar coordinate system.

n n
. 1 .
2AT€A 1, =SNG Y didiy1 — A€y = 5 sing > didi1 (5)

i=1

where

i=1

n = number of triangles point of collapse (Fig. 3M).

Weighted MLcps

In specific situations, certain metrics hold more significance than
others. For instance, when dealing with an imbalanced dataset,
achieving a high F1 score may be prioritized over higher accuracy
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Figure 2: SD of performance metrics and MLcps comparison for TCGA mRNA and miRNA datasets. (A, B) The SD of performance metric scores for ML
algorithms trained on the mRNA and miRNA datasets, respectively. The bars in the plot represent the SD of performance metric scores and are
displayed on the left y-axis. The bars are arranged from left to right, with smaller SD values on the left and larger SD values on the right. A red dot on
the plot represents the MLcps, which is displayed on the right y-axis. (C, D) A comparison of MLcps for training and test data from the mRNA and
miRNA datasets, respectively. The numerical MLcps values are indicated within each bar. Rankings, enclosed in brackets, reflect model performance
based on MLcps, whether computed from the training or test data.

[19, 20]. In such cases, users have the option to assign weight vari- where
ables to the metrics of interest during the calculation of MLcps.
A weight variable assigns a value (referred to as the weight) to
each precomputed metric, and the respective metric scores are
adjusted using these weights in the following manner:

Sweightedmetric = Weighted metric score,
Smetric = Taw metric score, and
W netric = weight.

Itis essential to note that the assigned weight for a metric must
always be greater than or equal to zero. A weight of zero indicates
Sweightedmetric = Smetric X Wetric (6) that the user intends to exclude that metric from the MLcps cal-
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Figure 3: Schematic overview of the complete analysis process for MLcps Python package. Before using the MLcps Python package, one needs to
prepare the raw data (A). This input table can be RNA sequencing, proteomics, patients’ profile, molecular data, and so on (normally these data are in
txt or csv format). Next step is to perform multiple ML algorithms (B). Performing this step can be done by any package or programming language of
choice. The next step is to evaluate the performance of the ML algorithms. We recommend the use of multiple metrics such as F1, recall, and so on (C).
The performance metric scores then need to be arranged in a tabular format, as depicted in (C). This table will be used as an input for the MLcps
package. From here on, the MLcps will process the data. MLcps involves 3 steps: projection, calculation, and visualization (PCV). To calculate the
cumulative score of each ML algorithm in the input data, MLcps first projects the performance metric onto the 2-dimensional polar coordinates system
(D). Next, the projected polygon’s area is calculated (E). Finally, the user can visualize this MLcps to rank the performance of given ML algorithms (F).
The lower panel (G-N) visualizes the procedure to calculate the surface area as a cumulative score in detail. The names of the algorithms are just
mentioned as an example and other algorithms can be used too. BC: bagging classifier; DTC: decision tree classifier; ETC: extra trees classifier; GP:
Gaussian process classifier; KNN: k-nearest neighbors; LDA: linear discriminant analysis; RF: random forest classifier; SVM: support vector machine.

culation. Metrics with higher weights have a more significant con-
tribution to the MLcps compared to metrics with lower weights. In
the case where no weights are assigned (unweighted MLcps), it is
equivalent to conducting a weighted analysis where all weights
are set to 1.

In this study, 4 distinct datasets were employed to evaluate MLcps
(Table 1). The initial dataset comprises mRNA data (n = 136) de-
rived from a CLL study, which examined transcriptome profiles in
individuals affected by blood cancer [21]. Our objective was to de-
velop a model capable of distinguishing between male and female
patients using their transcriptomic profiles. To achieve this, we fo-
cused on the top 5,000 most variably expressed mRNAs, excluding
genes from the Y chromosome.

The second set of data was obtained from a study on cervical
cancer, where the expression levels of 714 miRNAs were measured
inhuman samples (n = 58) [22]. The third and fourth datasets were
collected from TCGA and involved mRNA (n = 1,219) and miRNA (n
= 1,207) sequencing of BRCA. The TCGAbiolinks package in R was
used to retrieve these datasets [23]. For the BRCA mRNA dataset,

we focused on genes that showed differential expression accord-
ing to edgeR analysis (False discovery rate (FDR) < 0.001 and Fold
Change log(FC) > +2) [24]. Our objective was to develop a model
capable of distinguishing between normal and tumor samples for
both the cervical cancer and TCGA-BRCA datasets.

The fifth dataset in our study comprises body signal data col-
lected from 100,000 individuals through the National Health In-
surance Service in Korea [25]. This dataset includes 21 essential
biological signals related to health, such as measurements of sys-
tolic blood pressure and total cholesterol levels. Our main goal
with this dataset was to determine whether individuals consume
alcohol based on the available biological signal information.

Among these datasets, 2 were relatively small (CLL and the
cervical cancer study), while the other 2 (TCGA datasets) were
imbalanced (Table 1). We utilized an in-house ML pipeline
(Supplementary Fig. S5) to train and evaluate 8 different models
(Supplementary Table S1) to identify the best-performing model
for CLL, cervical cancer, and the TCGA datasets. For the biolog-
ical signal dataset, we utilized the “customML’ feature from the
Machine Learning Made Easy [26] tool to train and evaluate 6 dif-
ferent models and identify the best-performing one for classifying
alcohol consumers and nonconsumers.
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Implementation

MLcps is developed using Python [27] and R [28] programming lan-
guages. Pandas [29, 30] is used to store and process the data. Plotly
[31] is used to generate the figures. The radarchart [32] package in
R was used for surface area calculation of the polar plane. The R
packages tibble [33] and dplyr [34] were utilized for data wrangling
in the computation of MLcps during the analysis.

Conclusions

Our article introduces MLcps, a novel evaluation metric imple-
mented as a Python package. MLcps is a robust evaluation met-
ric designed specifically for classification problems. Its ability to
integrate multiple evaluation metrics into a single score makes
it an efficient and reliable approach for evaluating model perfor-
mance and selecting the most successful model. This is especially
valuable when multiple evaluation metrics are necessary to fully
comprehend a model’s strengths and weaknesses.

However, it is essential to understand that the reliability of ML-
cps depends on the quality of the metrics used in its calcula-
tion. Therefore, it is of utmost importance to employ appropri-
ate evaluation metrics, which depend on various factors such as
the specific domain, stakeholder preferences, and data character-
istics. Similarly, assigning weights to evaluation metrics in ma-
chine learning offers a valuable technique for prioritizing spe-
cific aspects of model performance, but it comes with potential
drawbacks and complexities. For example, heavily weighting one
metric can overshadow the overall evaluation, possibly result-
ing in suboptimal models. Additionally, the assignment of metric
weights often depends on subjective judgments regarding their
relative significance. Various stakeholders may hold differing per-
spectives on how much weight to allocate to each metric, poten-
tially leading to evaluation bias.

While the allocation of weights to evaluation metrics can en-
hance the customization of the evaluation process for specific ob-
jectives, it must be executed judiciously, considering the possible
downsides and challenges associated with this approach. Strik-
ing a balance between highlighting key metrics and maintaining a
comprehensive view of model performance is paramount. There-
fore, we strongly discourage relying on MLcps without considering
the context in which it is applied.

Availability of Supporting Source Code and
Requirements

Project name: Machine Learning Cumulative Performance Score
(MLcps)

Project homepage: https://github.com/FunctionalUrology/MLcps
Operating system(s): Platform independent

Programming language: Python >3.8 and R >4.0

Other requirements: radarchart, tibble, and dplyr R packages
License: GNU GPL

BioTool ID: mlcps

RRID: SCR_024716

Additional Files

Supplementary Fig. S1. Projection of metric scores onto a two-
dimensional (2D) polar coordinate system for each ML algorithm
trained on different example datasets. The plots represent A) CLL
dataset, B) TCGA miRNA Training dataset, C) TCGA miRNA test
dataset.

Supplementary Fig. S2. Projection of metric scores onto a two-
dimensional (2D) polar coordinate system for each ML algorithm
trained on different example datasets. The plots represent A) Cer-
vical cancer dataset, B) TCGA mRNA Training dataset, C) TCGA
mRNA test dataset.

Supplementary Fig. S3. Projection of metric scores onto a two-
dimensional (2D) polar coordinate system for each ML algorithm
trained on Body SIgnal dataset. The plots represent model perfor-
mance on A) Training Data, and B) Test Data.

Supplementary Fig. S4. Body Signal Dataset Results. A) Standard
deviation (SD) in ML Algorithm Performance. This plot displays
the SD of performance metric scores for ML algorithms trained on
body signal datasets. Bars represent the SD of performance met-
ric scores, as shown on the left y-axis. The bars are arranged from
left to right, with smaller SD on the left and larger SD on the right.
A red dot on the plot represents MLcps, displayed on the right y-
axis. B) MLcps Comparison for Training and Test Data. This bar
charts represents MLcps obtained from the training and test data
of the body signal dataset. Each bar is color-coded, and the numer-
ical MLcps values are shown within each bar. Rankings, enclosed
in brackets, reflect model performance based on MLcps, whether
computed from the training or test data within the body signal
dataset.

Supplementary Fig. S5. Flowchart describing ML Pipeline: Firstly,
the dataset is divided into k (3) equal-sized bins in a stratified
manner, with k-1 bins used for training and the remaining bin
for testing. Next, the pipeline applies the univariate feature se-
lection method to select relevant features from the dataset. Data
resampling is then performed using the SMOTETomek method,
which combines synthetic data generation for the minority class
and removal of majority class samples identified as Tomek links.
Eight ML algorithms are trained on the pre-processed dataset.
The model performance is evaluated using k-fold cross-validation
(CV)and nested CV (k=3), calculating seven different performance
metrics. This process is repeated for each unique bin within the k-
fold CV method, ensuring comprehensive evaluation across sub-
sets of the dataset. The entire pipeline is repeated ten times, and
the average performance is considered the final model perfor-
mance. Finally, the pipeline provides a list of selected features, de-
rived from the intersection of features chosen by the top 10 best-
performing models based on the F1 score.

Supplementary Table S1. ML algorithms used in this study.

Data Availability

An archival copy of the code and supporting data is available via
the GigaScience repository, GigaDB [35]. DOME-ML (Data, Optimi-
sation, Model, and Evaluation in Machine Learning) annotations,
supporting the current study, are available via the supporting data
in GigaDB.
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