
Foundations of Computational Mathematics
https://doi.org/10.1007/s10208-023-09619-6

Implicitisation and Parameterisation in Polynomial
Functors

Andreas Blatter1 · Jan Draisma2,3 · Emanuele Ventura4

Received: 2 June 2022 / Revised: 14 June 2023 / Accepted: 6 July 2023
© The Author(s) 2023

Abstract
In earlier work, the second author showed that a closed subset of a polynomial functor
can always be defined by finitely many polynomial equations. In follow-up work
on GL∞-varieties, Bik–Draisma–Eggermont–Snowden showed, among other things,
that in characteristic zero every such closed subset is the image of a morphism whose
domain is the product of a finite-dimensional affine variety and a polynomial functor.
In this paper, we show that both results can be made algorithmic: there exists an
algorithm implicitise that takes as input a morphism into a polynomial functor and
outputs finitely many equations defining the closure of the image; and an algorithm
parameterise that takes as input a finite set of equations defining a closed subset of a
polynomial functor and outputs a morphism whose image is that closed subset.

Keywords Polynomial functor · Schur functors · Elimination · Parameterisation

Communicated by Teresa Krick.

Andreas Blatter was supported by Swiss National Science Foundation Grant 200021_191981. Jan Draisma
was partially supported by SNSF Grant 200021_191981 and Vici Grant 639.033.514 from the Netherlands
Organisation for Scientific Research. Emanuele Ventura is a member of GNSAGA of INdAM (Italy).

B Jan Draisma
jan.draisma@unibe.ch

Andreas Blatter
andreas.blatter@unibe.ch

Emanuele Ventura
emanuele.ventura@polito.it

1 Mathematical Institute, University of Bern, Alpeneggstrasse 22, 3012 Bern, Switzerland

2 Mathematical Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland

3 Department of Mathematics and Computer Science, Eindhoven University of Technology,
P.O. Box 513, 5600MB Eindhoven, The Netherlands

4 Dipartimento di Scienze Matematiche “G.L. Lagrange”, Politecnico di Torino, Corso Duca degli
Abruzzi 24, 10129 Turin, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-023-09619-6&domain=pdf

Foundations of Computational Mathematics

Mathematics Subject Classification 13P99 · 15A69 · 20G05 · 14M99

1 Introduction

1.1 Implicitisation

An important theme in computational algebraic geometry is implicitisation: given a
list (ϕ1, . . . , ϕn) of polynomials in K [x1, . . . , xm], which represent a polynomial map
ϕ from the m-dimensional affine space A

m to A
n over the field K , the challenge is to

compute equations for the Zariski closure im(ϕ) of the image of ϕ. This challenge is
solved, at least theoretically, by elimination using Buchberger’s algorithm; e.g. see [7,
§3.3].

1.2 Implicitisation in Families

But now consider a scenario where one is given not a single polynomial map, but rather
a family ϕi : A

mi → A
ni of polynomial maps depending on a discrete parameter i that

takes infinitely many values. If the ambient spaces A
mi and A

ni and the polynomial
map ϕi vary favourably with i , it is sometimes possible to find finitely many equations
that capture the image closures of all ϕi at once.

1.3 Implicitisation Over Categories

To make the phrase “vary favourably” concrete, assume that i ranges through the
objects of a category C and A(i) is a finite-dimensional affine space varying func-
torially with i . This means that for each π ∈ HomC (i, j) we have a linear map
A(π) : A(i) → A(j) such that A(idi) = idA(i) and A(σ ◦ π) = A(σ) ◦ A(π) for
σ ∈ HomC (j, k). Suppose thatA′(i) is another affine space depending functorially on
i ∈ C , and finally that, for any i ∈ C , we have a polynomial map ϕi : A(i) → A

′(i)
such that the following diagram commutes for every π ∈ HomC (i, j):

A(i)
ϕi ��

A(π)

��

A
′(i)

A
′(π)

��
A(j)

ϕ j
�� A′(j).

In this case, if f is a polynomial equation for the image closure im(ϕ j) of ϕ j , then
f ◦ A

′(π) is a polynomial equation for im(ϕi)—and, since we assumed that A
′(π) is

linear, of the same degree. We then ask:

(1) Do there exist finitely many j ∈ C such that the equations for those im(ϕ j), by
pulling back along the linear maps A

′(π) for all relevant π , define im(ϕi) for all
i ∈ C?

123

Foundations of Computational Mathematics

(2) If so, does there exist an algorithm for computing these finitely many j?

A well-known case where the answer to the two questions above is “yes” is
that where C is the opposite category FIop of the category FI of finite sets with
injections, A(i) = (An)i , A

′(i) = (An′
)i for some fixed n and n′, and the maps

A(i) → A(j), A
′(i) → A

′(j) corresponding to an injection j → i are the canoni-
cal projections. In that case, it is known that the kernel of the FI-homomorphism ϕ∗
dual to the FIop-polynomial map ϕ is finitely generated and can be computed using a
version of Buchberger’s algorithm, and this has been applied to problems in algebraic
statistics [4, 5, 15–17]. The setting discussed in the current paper is of a very different
flavour in that it involves continuous symmetries rather than discrete symmetries, and
it is also significantly more complicated. One cause for trouble is that in the setting
below, we do not actually know whether the kernel of the relevant algebra homomor-
phism is finitely generated, and so we have to settle for finding set-theoretic equations
for the im(ϕi).

1.4 Implicitisation in Polynomial Functors

In the case where C is the category Vec of finite-dimensional K -vector spaces, and
both A and A

′ are polynomial functors Vec → Vec (see Sect. 2.3 for definitions),
the second author established a positive answer to the first question above [9]; see
Theorem 2.4.2.

Example 1.4.1 Here are two instances of this setting:

(1) A(V) = V k for some positive integer k,A′(V) = S3V , the third symmetric power
of V , and

ϕV (v1, . . . , vk) := v31 + · · · + v3k .

The image ofϕV is the set of cubic homogeneous polynomials in dim(V) variables
ofWaring rank≤ k, and its closure is the variety of polynomials of border Waring
rank ≤ k.

(2) A(V) = (S2V)k × V k , A
′(V) = S3V , and

ϕV (q1, . . . , qk, v1, . . . , vk) := q1v1 + · · · + qkvk .

In this case, the image of ϕV is closed [8] and consists of the cubics of q-rank
(also called slice rank or Schmidt rank in the literature) ≤ k.

In the first case, it is well known that generators of the vanishing ideal of im(ϕU) for
U of dimension k + 1 pull back to generators of the ideal of im(ϕV) for all V ; this is
called symmetric inheritance in [19]. Much more is known for small values of k; in
particular, for k ≤ 2, the ideal is generated by 3 × 3-minors of catalecticant matrices
[22].

In the second case, we do not know whether the ideal is finitely generated in this
sense, but [8] assures the existence of a number � = �(k) such that equations for

123

Foundations of Computational Mathematics

im(ϕU) with U of dimension � pull back to equations that define im(ϕV) for all V
set-theoretically. No explicit value of �(k) is known, even for k = 2. ♦

In many respects, the q-rank example is much more difficult than the Waring rank
example. Themain reason for this is that the sourceA is a polynomial functor of degree
2, whereas A has degree 1 in the first case. Nevertheless, Theorem 2.4.2 implies, for
general polynomial functors A, A

′ and morphisms ϕ, the existence of a U such that
in A

′(U) one sees enough set-theoretic equations to define im(ϕV) for all V .

1.5 Main Result

The main result of this paper makes Theorem 2.4.2 effective.

Theorem 1.5.1 (MainTheorem; seeTheorem4.1.1 for amore precise statement)There
exists an algorithm implicitise that, on input polynomial functors A, A

′ and a mor-
phism ϕ : A → A

′, computes a U ∈ Vec such that the equations for im(ϕU) pull back
to set-theoretic defining equations for im(ϕV) for all V .

This means, in particular, that the number �(k) for the cubics of q-rank at most any
fixed k can in principle be computed.

1.6 Structure of the Algorithm

The structure of implicitise is as follows. For U = K 0, K 1, K 2, . . ., one computes
equations for im(ϕU) using Buchberger’s algorithm. By Theorem 2.4.2, we know
that at some point these equations, via pull-back, define im(ϕV) for all V . However,
Theorem 2.4.2 does not give a criterion for when we may stop—this is different from
the algorithm in the FI-setting: there, if one has not seen new equations arise between
the finite set {1, . . . , n} and the finite set {1, . . . , 2n}, one is guaranteed to have found
a generating set of equations [4].

To obtain a stopping criterion in the polynomial functor setting, we derive an algo-
rithm parameterise that, on input the polynomial equations on A

′(U) found so far,
computes a parameterisation ψ of the closed subset of A

′ defined by those equations.
If we can check that im(ψ) ⊆ im(ϕ), then we are done.

That such a parameterisation ψ exists is guaranteed by the unirationality theorem
from [2]. The algorithm parameterise makes this theorem effective.

Finally, to check that im(ψ) lies in the closure of im(ϕ), we pass to infinite dimen-
sions and use a result from [3] that says that this happens if and only if a suitably
generic point of im(ψ∞) can be reached as the limit of a curve in im(ϕ∞). In the
current paper, we show that this curve, which lives in infinite-dimensional space, can
be represented in finite terms, and searched for, on a computer.

If such a curve does not exist, i.e. if im(ψ) is not contained in im(ϕ), then this is
because the current space U is too small. In this case, the search for a curve does not
terminate. So for our algorithm implicitise to terminate, it is imperative to run the
search for witness curves in parallel to the search for equations: in each step, U is
increased with one dimension, new equations are computed, and a new curve search is

123

Foundations of Computational Mathematics

started. Wemodel this behaviour by running the algorithm on countably many parallel
processors. Of course, standard results in the theory of computation imply that this
algorithm can then also run on an ordinary Turing machine (see, e.g. [20]).

1.7 Outlook

The algorithms implicitise and parameterise are very much theoretical algorithms,
and—apart from recent research on varieties over categories—they rely onmany pow-
erful results from classical, finite-dimensional, computational algebra: Buchberger’s
algorithm, of course, but also algorithms for computing the radical of an ideal and
for computing the minimal primes containing a radical ideal. Also, a fair amount of
representation theory of the general linear group goes into the algorithm.

At present, a general implementation of implicitise and parameterise seems
entirely out of reach. However, we believe that our computational approach to implici-
tisation in polynomial functors will in the future serve as a guide towards finding
equations in concrete settings, e.g. for the variety of cubics of q-rank ≤ 2 from Exam-
ple 1.4.1.

1.8 Organisation of the Paper

In Sect. 2, we collect material that we will need in the rest of the paper: some
assumptions on the ground field, computer representations of finite-dimensional affine
varieties, polynomial functors and their closed subsets, and morphisms between these.

In Sect. 3, we derive the algorithm parameterise; see Theorem 3.1.1. In Sect. 4, we
derive the algorithm implicitise and prove our Main Theorem; see Theorem 4.1.1 for
a more precise statement.

Finally, implicitise depends on a procedure called certify that aims at certifying
the existence of a curve as discussed in Sect. 1.6. This procedure requires tools from
infinite-dimensional algebraic geometry, both from the paper [3] and from more clas-
sical sources. In particular, it is Greenberg’s approximation theorem (Theorem 5.5.1)
from [13] and its effective version in [23] which allows us to represent this curve in
finite terms.

2 Preliminaries

2.1 The Ground Field

Let K be a field of characteristic zero in which we can do computations on a computer.
More precisely, we want K to be a computable field, and we further require that there
exists an algorithm for factoring polynomials in K [X]. The class of such fields is quite
large; it includes Q and its finitely generated extensions [14, Appendix B].

123

Foundations of Computational Mathematics

2.2 Finite-Dimensional Affine Varieties

A finite-dimensional affine variety over K is represented by a finite list of generators
of a radical ideal in some polynomial ring over K with finitely many variables.Wewill
only consider varieties over K , and in particular the adjective irreducible will refer to
irreducibility over K . A morphism between affine varieties over K is represented by a
finite list of polynomials. Our algorithms will intensively use existing algorithms for
dealing with affine varieties. Good general references are [6, 7]. In particular, we will
need algorithms for computing the radical of an ideal; see, e.g. [18].

If R is a K -algebra and h is an element of R, then we write R[1/h] for the locali-
sation. Similarly, if B is a finite-dimensional affine variety and h an element of K [B],
then we write B[1/h] for the basic open subset defined by h, i.e. the affine variety
with coordinate ring K [B][1/h].

2.3 Polynomial Functors

Let Vec be the category of finite-dimensional K -vector spaces. We write Hom(U , V)

and End(U) for the spaces of K -linear maps U → V and U → U , respectively.

Definition 2.3.1 A polynomial functor of degree at most d over K is a covariant func-
tor P : Vec → Vec such that for any U , V ∈ Vec the map P : Hom(U , V) →
HomP(U),P(V) is polynomial of degree at most d. Polynomial functors of degree at
most d form an abelian category in which a homomorphism P → Q is a natural
transformation, i.e. given by a linear map ψU : P(U) → Q(U) for each U ∈ Vec,
such that for all ϕ ∈ Hom(U , V) we have Q(ϕ) ◦ ψU = ψV ◦ P(ϕ). ♦

When we say polynomial functor, we will always mean a polynomial functor of
degree at most some integer. A priori, a polynomial functor seems to be given by
an infinite amount of data. But up to isomorphism, the following lemma due to
Friedlander–Suslin [11, Lemma 3.4] implies that it is given by a finite amount of
data only.

Lemma 2.3.2 [11] The map from polynomial functors of degree at most d to
GLd-representations that assigns to P the vector space P(Kd) with the algebraic
group homomorphism GLd → GL(P(Kd)), ϕ �→ P(ϕ) is an equivalence of
abelian categories from polynomial functors of degree at most d to polynomial GLd-
representations of degree at most d.

Here, a homomorphism ρ : GLd → GL(W) of algebraic groups is called polyno-
mial of degree at most d if it extends to a polynomial map End(Kd) → End(W) of
degree at most d. For our algorithmic purposes, it is important that the proof of the
Friedlander–Suslin lemma, and in particular the map back, is completely constructive.
We sketch this map back.

Proof (Construction of the inverse map in the Friedlander–Suslin Lemma) By polyno-
miality, ρ extends to a polynomial map ρ : Md → End(W), where Md := End(Kd),
and this extension is a monoid homomorphism. Dually, this gives an algebra homo-
morphism K [End(W)] → K [Md] that restricts to a linear map from End(W)∗ to

123

Foundations of Computational Mathematics

the space K [Md]≤d of polynomials of degree ≤ d in the standard coordinates xi j on
Md . Dualising once again, we obtain a map ρ̃ : S := K [Md]∗≤d → End(W). By a
similar construction, now applied to the multiplication Md × Md → Md instead of ρ,
S becomes an associative algebra, and ρ̃ is an algebra homomorphism, so W is a left
S-module. (This actually gives an equivalence of categories between polynomial GLd -
representations of degree ≤ d and S-modules.) Now let V ∈ Vec be arbitrary. Then,
Hom(Kd , V) is a right Md -module, and by a construction like above applied to the
map Hom(Kd , V) × Md → Hom(Kd , V), the space K [Hom(Kd , V)]∗≤d becomes

a right S-module. Finally, define P(V) := K [Hom(Kd , V)]∗≤d ⊗S W . This is the
polynomial functor corresponding to ρ.

The Friedlander–Suslin lemma is relevant to us for two reasons. First, since poly-
nomial representations of GLd are completely reducible and the irreducible ones are
completely classified by combinatorial data, the same holds for polynomial functors.
The consequence is that each polynomial functor of degree at most d is a direct sum of
Schur functors: functors of the form Sλ : V �→ HomSe (Uλ, V⊗e), where e ≤ d, λ is a
partition of e, andUλ is the corresponding irreducible representation of the symmetric
group Se on e letters. So we may represent a polynomial functor by a finite tuple of
partitions. Second, the above shows that the Friedlander–Suslin lemma is completely
constructive: it can be transformed into algorithms that, using basic linear algebra,
compute the following data from a polynomial representation ρ of GLd of degree ≤ d
corresponding to a polynomial functor P:

• (a basis for) P(V) on input V ;
• (a matrix for) P(ϕ) : P(U) → P(V) on input a linear map ϕ : U → V ; and
• (a matrix for) ψV : P(V) → Q(V) on input a second polynomial GLd -
representation of degree ≤ d representing the polynomial functor Q, as well as
homomorphism of GLd -representations.

We will not make these algorithms explicit here.
Each polynomial functor P of degree at most d is a direct sum of homogeneous

polynomial functors: P = P0 ⊕ · · · ⊕ Pd , where

Pe(V) := {p ∈ P(V) | P(t · idV)p = te p}.

In particular, P0 is a degree-0 polynomial functor, which assigns a fixed vector space,
also denoted P0, to every V and the identity idP0 to every linear map ϕ ∈ Hom(U , V).
We call P pure if P0 = 0, and we call P1 ⊕ · · · ⊕ Pd the pure part of P .

2.4 Closed Subsets of Polynomial Functors

Definition 2.4.1 A closed subset X of a polynomial functor P over K is the data
of a closed subvariety X(V) of K ⊗ P(V) defined over K such that for each ϕ ∈
Hom(U , V) the linear map 1 ⊗ P(ϕ) maps X(U) into X(V). ♦

We take points with coordinates in K because K might not be large enough to see
all points. On the other hand, our algorithm will always work over K itself, and all

123

Foundations of Computational Mathematics

varieties will be defined over K . In fact, we shall usually drop the K from the notation
and just write closed subvariety X(V) of P(V) and P(ϕ) : X(U) → X(V) in the
above setting. This is not different from the classical setting of implicitisation, where
one computes the equations of the Zariski closure in K

n
of the image of a polynomial

map K
m → K

n
which is defined over K .

For a closed subset X of a polynomial functor P and a linear map ϕ ∈ Hom(U , V),
we will write X(ϕ) : X(U) → X(V) for the restriction of P(ϕ) to X(U). Note
that, in particular, the map GL(V) × X(V) → X(V), (g, x) �→ X(g)(x) defines an
algebraic action of GL(V) on X(V), for each V ∈ Vec. So this paper is concerned
with (typically) highly symmetric varieties, related by linear maps coming from linear
maps between distinct vector spaces.

If X is a closed subset of P , then the variety B := X(0) is a closed subvariety of
P(0) = P0. For each V ∈ Vec, the zero map 0V ,0 : V → 0 maps X(V) to X(0), and
indeed onto X(0), because for any p0 ∈ X(0) ⊆ P(0) we have

p0 = P(0V ,0 ◦ 00,V)p0 = P(0V ,0)(P(00,V)p0) ∈ P(0V ,0)(X(V))

where we have used that P is a functor and X is a closed subset of P . Hence for each
V , X(V) is a closed subset of B × P ′(V), where P ′ is the pure part of P , such that
X(V) maps surjectively to B. We will also say that X is a closed subset of B × P ′.

The following theorem with its corollary implies that a closed subset X of a poly-
nomial functor P can be represented on a computer.

Theorem 2.4.2 [9] Let P be a polynomial functor and let X1 ⊇ X2 ⊇ . . . be a
descending chain of closed subsets of P. Then, this chain stabilises, i.e. there exists
n0 such that Xn0 = Xn0+1 = . . .

Corollary 2.4.3 For each closed subset X ⊆ P, there exists a vector space U ∈ Vec
with the property that for all V ∈ Vec we have

X(V) =
⋂

ϕ∈Hom(V ,U)

P(ϕ)−1(X(U)).

Proof For every n ∈ N consider the closed subset Xn in P defined by

Xn(V) :=
⋂

ϕ∈Hom(V ,Kn)

P(ϕ)−1(X(Kn)).

Using that P is a polynomial functor and X is a closed subset, we can see that for all n,
Xn(Kn) = X(Kn) and that X1 ⊇ X2 ⊇ . . . is a descending chain. By Theorem 2.4.2,
this chain stabilises at, say, Xn0 , and hence for n ≥ n0, X(Kn) = Xn(Kn) = Xn0(K

n).
Using that X is a closed subset, we get the same for n < n0. Hence, X = Xn0 , and
the corollary holds for U = Kn0 .

Consequently, if f1, . . . , fk ∈ K [P(U)] are defining equations for X(U), then
the pull-backs of the fi along all linear maps P(ϕ) : P(V) → P(U) cut out X(V).
We then write X = VP (f1, . . . , fk). The tuple consisting of P , U , and (f1, . . . , fk)

123

Foundations of Computational Mathematics

together form a computer representation of X . Slightly more generally, we will often
represent X as follows.

Definition 2.4.4 Let B be a finite-dimensional affine variety, P a pure polynomial
functor, U a finite-dimensional vector space, and f1, . . . , fk ∈ K [B × P(U)]. The
tuple (B, P,U , f1, . . . , fk) is called the implicit representation of the closed subset
X of B × P defined by

X(V) = {(b, p′) | ∀ϕ ∈ Hom(V ,U) ∀i = 1, . . . , r : fi (b, P(ϕ)p′) = 0}. ♦

Again by Corollary 2.4.3, every closed subset of B × P admits an implicit repre-
sentation. Here, we allow that some of the fi are nonzero elements of K [B], so that
X does not map surjectively to B but rather onto a closed subvariety of B.

2.5 Irreducibility

Definition 2.5.1 Let B be a finite-dimensional affine variety, Q a pure polynomial
functor, and X a closed subset of B × Q. Then, X is called irreducible if X �= ∅ and
whenever X = X1∪X2 where X1, X2 are closed subsets of B×Q (as always, defined
over K), we have X = X1 or X = X2. ♦

Astraightforward check shows that X is irreducible if andonly if X(V) is irreducible
for each V ∈ Vec (i.e. not the union of two closed proper subsets defined over K); in
particular, B × Q is irreducible if and only if B is irreducible. Note that since K may
not be algebraically closed, irreducibility in our sense may not imply irreducibility
over K .

2.6 Gradings and Ideals

For any polynomial functor P = P0 ⊕· · ·⊕ Pd , and any V ∈ Vec, the coordinate ring
K [P(V)] ∼= ⊗d

e=0 K [Pe(V)] is a graded polynomial ring in which the coordinates
on K [Pe(V)] are given the degree e. A polynomial f is homogeneous of degree n
with respect to this grading if and only if f (P(t · idV)p) = tn f (p) for all p ∈ P(V).
If X is a closed subset of P , then X(V) is preserved under P(t · idV) for all t , and
hence the ideal of X(V) is homogeneous.

Similarly, for B a finite-dimensional affine variety and P a pure polynomial functor,
K [B × P(V)] has a standard grading in which the elements of K [B] have degree 0,
and the ideal of any closed subset X of B × P is homogeneous.

We find that the coordinate rings K [X(V)], for X a closed subset of a polynomial
functor P of degree at most d (or for X a closed subset of B × P with P a pure
polynomial functor of degree d), have standard gradings and are generated in degree
at most d. A straightforward computation shows that for each ϕ ∈ Hom(U , V), the
pull-back X(ϕ)∗ : K [X(V)] → K [X(U)] is a graded K -algebra homomorphism.

123

Foundations of Computational Mathematics

2.7 Morphisms

Definition 2.7.1 Let X ,Y be closed subsets of polynomial functors. Then, amorphism
α : X → Y is given by a morphism αV : X(V) → Y (V) of affine varieties over K
for each V ∈ Vec such that for all ϕ ∈ Hom(U , V) we have Y (ϕ) ◦ αU = αV ◦ X(ϕ).

♦

By taking for ϕ scalar multiples of the identity, one finds that the pull-back α∗
V is a

graded K -algebra homomorphism.
Lemma 2.7.3 ensures that we can represent morphisms on a computer. First, the

following generalises a well-known property of finite-dimensional affine varieties (see
[1, Proposition 1.3.22]).

Lemma 2.7.2 If X is a closed subset of a polynomial functor P and Y is a closed
subset of a polynomial functor Q, then any morphism X → Y extends to a morphism
P → Q.

Lemma 2.7.3 Let X ,Y be closed subsets of polynomial functors of degree at most d.
Then, a morphism α : X → Y is uniquely determined by αKd : X(Kd) → Y (Kd),
and this unique determination is algorithmic in the sense that if αKd is known, then
αV can be computed for any V ∈ Vec.

Proof By Lemma 2.7.2, α extends to a morphism β : P → Q, where X ,Y are closed
subsets in the degree-≤ d polynomial functors P, Q. Now for each e = 0, . . . , d, the
restriction of β∗

V : Qe(V)∗ → K [P(V)]e defines, as V varies, a homomorphism from
the polynomial functor V ∗ �→ Qe(V)∗ to the polynomial functor V ∗ �→ K [P(V)]e,
both of degree e (except that K [P(V)]e is not finite-dimensional if P0 �= 0, butwemay
replace it by its image). Then, we apply the Friedlander–Suslin lemma to conclude
that this homomorphism is uniquely determined by its evaluation at V = Kd . The
algorithmicity follows from the algorithmicity of the Friedlander–Suslin lemma.

Remark 2.7.4 A special instance of the lemma is when X = P and Y = Q, with
P, Q pure polynomial functors of degree ≤ d. In this case, the space of morphisms
Map(P, Q) is a finite-dimensional vector space over K , namely, the direct sum for
e = 1, . . . , d of the space of GLd -equivariant linear maps Qe(V)∗ → K [P(V)]e,
where V = Kd . This space will be important to us towards the end of the paper. ♦

Remark 2.7.5 We will often consider morphisms α : A × P → B × Q, where A, B
are finite-dimensional varieties over K and P, Q are pure polynomial functors. Such
a morphism decomposes into a morphism α(0) : A → B and a morphism α(1) :
A × P → Q; here we use that α∗

V preserves the degree and that the coordinates
on B have degree zero (see Sect. 2.6), and hence their images cannot involve the
positive-degree coordinates on P . If A is irreducible, then α(1) can be thought of as a
K (A)-valued point of the finite-dimensional affine space Map(P, Q); this will be a
useful point of view later. ♦

123

Foundations of Computational Mathematics

2.8 Shifting

Definition 2.8.1 Any fixed U ∈ Vec defines a covariant polynomial functor ShU :
Vec → Vec of degree 1 byShU (V) = U⊕V and, forϕ : V → W , ShU (ϕ) = idU ⊕ϕ.
If P is a polynomial functor of degree d, then ShU P := P ◦ShU is also a polynomial
functor of degree d, called the shift over U of P . ♦

The top-degree parts of ShU P and P are canonically isomorphic [9, Lemma 14].
If X is a closed subset of P , then ShU X := X ◦ShU is a closed subset of ShU P . Note
that (ShU X)(0) = X(U), so shifting has the effect of making the finite-dimensional
base variety larger. More precisely, if X is a closed subset of B × P with P a pure
polynomial functor, then ShU X is a closed subset of (B × P(U)) × P ′ where P ′ is
the pure part of ShU P .

2.9 An Order on Polynomial Functors

Definition 2.9.1 A polynomial functor Q is a subfunctor of P when Q(V) ⊆ P(V)

for all V and Q(ϕ) = P(ϕ)|Q(V) for all ϕ ∈ Hom(V ,W). In this case, the quotient
P/Q is defined by (P/Q)(V) := P(V)/Q(V). ♦
Definition 2.9.2 We call a polynomial functor Q smaller than a polynomial functor P
if the two are not isomorphic and for the largest e such that Qe is not isomorphic to
Pe, the former is a quotient of the latter. ♦

Using the Friedlander–Suslin lemma, one can show that this is a well-founded order
on polynomial functors [9, Lemma 12].

2.10 Summary

We have now indicated computer representations for all the mathematical objects that
we will need below: finite-dimensional affine varieties, polynomial functors, closed
subsets of the latter and morphisms between these. Furthermore, we have introduced
two tools in the design and analysis of our algorithms: shifting and a well-founded
order on polynomial functors.

3 Parameterisation

3.1 The Result

The goal of this section is to prove the following theorem.

Theorem 3.1.1 There exists an algorithm parameterise that, on input a finite-
dimensional affine variety B, a pure polynomial functor Q, a finite-dimensional vector
space U over K , and elements fi ∈ K [B × Q(U)] for i = 1, . . . , k, computes
(A; P;β) where A is a finite-dimensional affine variety, P is a pure polynomial func-
tor, and β is a morphism A × P → B × Q, defined over K , such that for each

123

Foundations of Computational Mathematics

finite-dimensional K -vector space V we have

β(A(K) × K ⊗ P(V))

= {(b, q) ∈ B(K) × K ⊗ Q(V) | ∀i ∀ϕ ∈ HomK (V ,U) : fi (b, 1 ⊗ Q(ϕ)q) = 0}.

Here, Z(K)means the K -points of a finite-dimensional affine variety Z definedover
K , i.e. the set of K -algebra homomorphisms K [Z] → K . If Z is just a vector space
over K , then this means K ⊗ Z . In what follows, to simplify notation, we will supress
K and write (b, q) ∈ B × Q(V) when we really mean (b, q) ∈ B(K) × Q(V)(K),
and for a ϕ ∈ HomK (V ,W) we will write (b, Q(ϕ)q) ∈ B × Q(W) instead of
(b, (1 ⊗ Q(ϕ))q) ∈ B(K) × Q(W)(K). This is analogous to Definition 2.4.1 in the
case of closed subsets, where X(V) denotes the K -points of the given variety.

We write X := VB×Q(f1, . . . , fk), so that X(V) is the set on the right-hand side
above. This is the closed subset of B × Q that we want to parameterise.

Remark 3.1.2 We allow A to be reducible, even when B is irreducible. The fact that
α : A × P → B × Q as in the theorem exists is [1, Theorem 4.2.5]; see also [2,
Proposition 5.6]. If B is indeed irreducible, then for some irreducible component A′
of A the restriction of α to A′ × P is dominant into VB×Q(f1, . . . , fk). ♦

3.2 Smearing Out Equations

Before proving the theorem, we introduce an algorithm that computes the equations
for any single instance X(V).

Proposition 3.2.1 There exists an algorithm smear, that, on the same input as
parameterise plus a finite-dimensional vector space V , outputs generators of the
radical ideal of X(V) ⊆ K [B × Q(V)].

Proof The algorithm smear(B; Q;U ; f1, . . . , fk; V) proceeds as follows: choose
identifications U = Km and V = Kn and construct the generic matrix

ψ :=
dimU∑

i=1

dim V∑

j=1

zi j Ei j ∈ K [(zi j)i j] ⊗ HomK (V ,U),

where the Ei j form the standard basis of HomK (V ,U). Then compute Q(ψ)y ∈
K [(zi j)i j] ⊗ Q(U), where y = (y1, . . . , ydim Q(V))

T represents a point of Q(V) ∼=
K dim Q(V) with variables as coordinates, substitute Q(ψ)y into the fi , and expand as a
polynomial in the zi j with coefficients in K [B][y1, . . . , ydim Q(V)] ∼= K [B × Q(V)].
Finally, return generators of the radical of the ideal generated by all these coefficients.
The correctness of this algorithm follows from the fact that those coefficients span
the same space as the images of the fi under pull-back along the linear maps Q(ϕ) :
Q(V) → Q(U) for all ϕ ∈ Hom(V ,U).

123

Foundations of Computational Mathematics

3.3 The Parameterisation Algorithm

The algorithm parameterise is recursive and proceeds as follows; the algorithmic part
is written in normal font, text that will be used in the analysis in italic. The proofs of
termination and correctness are below.

(1) If Q = 0, then compute the variety A ⊆ B defined by f1, . . . , fk via a radical
ideal computation, return (A; 0; A ↪→ B), and exit.

(2) Decompose Q = Q′ ⊕ R where R is an irreducible subfunctor of the top-degree
part of Q.
This corresponds to choosing a partition in the tuple representing Q. Let
x1, . . . , xn be a basis of R(U)∗. We regard elements in K [B × Q(U)] ∼=
K [B × Q′(U)] ⊗ K [R(U)] ∼= K [B × Q′(U)][x1, . . . , xn] as polynomials in
x1, . . . , xn with coefficients in K [B × Q′(U)].

(3) Compute

(f ′
1, . . . , f ′

r) := smear(B; Q;U ; f1, . . . , fk;U)

and a Gröbner basis (g1, . . . , gl) of the elimination ideal in K [B × Q′(U)]
obtained by eliminating all xi from f ′

1, . . . , f ′
r .

The elements f ′
1, . . . , f ′

r generate the radical ideal of X(U) in B × (Q′(U) ⊕
R(U)). Let X ′(V) be the closure of the image of X(V) under projection B ×
Q(V) → B × Q′(V), so X ′ is a closed subset of B × Q′. Then g1, . . . , gl
generate the radical ideal of X ′(U) by construction; and, as we will see below
in the proof of correctness, we have X ′ = VB×Q′(g1, . . . , gl).

(4) In each fi , replace each coefficient by its normal form modulo g1, . . . , gl .
This has the effect that all coefficients that vanish identically on X ′(U) are set
to zero.

(5) If all fi are now zero, then compute

(A′; P ′;α′) := parameterise(B; Q′;U ; g1, . . . , gl),

output (A′; P ′ ⊕ R;α′ × idR), and exit.
(6) Pick the minimal i for which fi is nonzero and let x j be a variable that appears

in some monomial in fi with a nonzero coefficient.
There cannot be degree-0 elements among the fi , because these would lie in the
elimination ideal and hence have been reduced to zero.

(7) Compute the partial derivative h := ∂ fi/∂x j ∈ K [B × Q′(U)][x1, . . . , xn].
By construction, this h is nonzero and its coefficients, which are a subset of
the coefficients of fi up to some positive integer scalars, do not lie in the ideal
generated by g1, . . . , gl .

(8) Compute

(A′; P ′;α′) := parameterise(B; Q;U ; h, f1, . . . , fk).

123

Foundations of Computational Mathematics

(9) Compute Q̃ := (ShU Q)/R via [12, Exercise 6.11], determine the pure part Q′′
of Q̃, and compute B ′′ := (B × Q(U))[1/h].
So we have (B × ShU Q)[1/h] = B ′′ × (Q′′ ⊕ R).

(10) Compute

(f ′′
1 , . . . , f ′′

s) := smear(B; Q;U ; f1, . . . , fk;U ⊕U)

and replace each f ′′
i by its image in K [B ′′ × (Q′′(U) ⊕ R(U))] under the map

K [B × Q(U ⊕U)] → K [B ′′ × (Q′′(U) ⊕ R(U))] dual to the inclusion

B ′′ × (Q′′(U) ⊕ R(U)) ⊆ B × Q(U) × (Q′′(U) ⊕ R(U))

= B × (ShU Q)(U) = B × Q(U ⊕U).

The elements f ′′
1 , . . . , f ′′

s generate the radical ideal of (ShU X)(U)[1/h] in
B ′′ × (Q′′(U) ⊕ R(U)). As we will see in the proof of correctness, we have
(ShU X)[1/h] = VB′′×(Q′′⊕R)(f ′′

1 , . . . , f ′′
s).

(11) Using Buchberger’s algorithm to eliminate the coordinates on R(U) from
f ′′
1 , . . . , f ′′

s , compute equations g′′
1 , . . . , g

′′
t for the projection of the finite-

dimensional affine variety (ShU X)(U)[1/h] into B ′′ × Q′′(U).
Recall from [9, Lemma 25] that the projection (B ′′ × (Q′′ ⊕ R)) → B ′′ × Q′′
restricts to a closed embedding from (ShU X)[1/h] to a closed subset X ′′ of the
latter space. We will see below that X ′′ = VB′′×Q′′(g′′

1 , . . . , g
′′
t).

(12) Compute the inverse ι : X ′′ → (ShU X)[1/h].
By Lemma 2.7.3, this inverse is uniquely determined by its instance ιV with
dim V = deg(Q).

(13) Compute

(A′′; P ′′;α′′) := parameterise(B ′′; Q′′;U ; g′′
1 , . . . , g

′′
t),

output

(A′ � A′′; P ′ ⊕ P ′′;α′ � (π ◦ ι ◦ α′′)),

where π : B× (ShU Q) → B× Q, evaluated at V , equals idB ×Q(0U ,0 ⊕ idV),
and exit.
Here, α′ is regarded as a map A′ × (P ′ ⊕ P ′′) → B × Q that ignores the
argument from P ′′, and similarly α′′ ignores the component in P ′.

3.4 Termination of Parameterise

Proof of termination of parameterise. If, on some input, parameterisewould not ter-
minate, then this was due to an infinite chain of recursive calls to itself. In the recursive
calls in steps 5 and 13, the polynomial functors Q′ and Q′′, respectively, are smaller
than Q in the order from Sect. 2.9, whereas Q remains the same in the call in step 8.

123

Foundations of Computational Mathematics

Since the order on polynomial functors is well founded, apart from a finite initial seg-
ment, the infinite chain consists entirely of consecutive calls in step 8. Now note that,
after each such call, X ′(U) either remains constant or becomes smaller. As long as it
remains constant, i.e. the list (g1, . . . , gl) remains constant, the degree in x1, . . . , xn
of the first equation keeps dropping. Hence after finitely many such steps, X ′(U)

becomes strictly smaller. It follows that X ′(U) becomes smaller infinitely often, but
this contradicts the Noetherianity of the finite-dimensional variety B × Q′(U).

3.5 Correctness of Parameterise

Proof that parameterise returns the correct output. We now prove that the output of
the algorithm is correct. This is immediate if the algorithm exits in step 1.

If it exits in step 5, then by Lemma 3.5.1, X = X ′ × R, which is parameterised by
α′ × idR for a parameterisation α′ of X ′. Moreover, by the same lemma, X ′ is defined
by g1, . . . , gl .

Finally, assume that the algorithm exits in step 13. We need to show that the union
of the images of α′ and π ◦ ι ◦ α′′ (on K -points) equals X .

First consider α′, which is computed in step 8. The closed subset Y :=
VB×Q(f1, . . . , fk, h) parameterised by α′ is clearly contained in X , so α′ : A′×P ′ →
B × Q has image on K -points contained in the K -points of X .

Next we argue that VB′′×(Q′′⊕R)(f ′′
1 , . . . , f ′′

s) is precisely (ShU X)[1/h]. First, by
construction, f ′′

1 , . . . , f ′′
s generate the ideal of (ShU X)[1/h](U) in (B × Q(U ⊕

U))[1/h]; this shows the containment ⊇. For the opposite containment, we argue that
if V is any finite-dimensional K -vector space and (b, q) ∈ B × Q(U ⊕ V) has the
property that

(∀ϕ ∈ Hom(V ,U) : (b, Q(idU ⊕ϕ)q) ∈ X(U ⊕U)) ⇒ (b, q) ∈ X(U ⊕ V).

To show that (b, q) ∈ X(U ⊕V), since X is defined by its equations in K [B×Q(U)],
it suffices to prove that for each ψ ∈ Hom(U ⊕ V ,U) we have (b, Q(ψ)q) ∈ X(U).
Let ϕ := ψ |V ∈ Hom(V ,U) be the restriction of ψ to V . Then,

ker(idU ⊕ϕ : U ⊕ V → U ⊕U) = ker(ϕ) ⊆ ker(ψ)

and hence the linear map ψ factors as ψ ′ ◦ (idU ⊕ϕ) for some ψ ′ ∈ Hom(U ⊕U ,U).
Hence, since Q is a functor,

(b, Q(ψ)q) = (b, Q(ψ ′)(Q(idU ⊕ϕ)q)) ∈ X(U)

because (b, Q(idU ⊕ϕ)q) ∈ X(U ⊕U) and idB ×Q(ψ ′)maps X(U ⊕U) into X(U).
This concludes the proof that VB′′×(Q′′⊕R)(f ′′

1 , . . . , f ′′
s) = (ShU X)[1/h].

Next, by [9, Lemma 25], the projection B ′′ × (Q′′ ⊕ R) → B ′′ × Q′′ restricts to
an isomorphism embedding from (ShU X)[1/h] to a closed subset of B ′′ × Q′′.

By Lemma 3.5.2, the equations of X ′′ can be pulled back from the equations of
X ′′(U), so we have indeed X ′′ = VB′′×Q′′(g′′

1 , . . . , g
′′
t).

123

Foundations of Computational Mathematics

Finally, consider the image of π ◦ ι ◦ α′′. A straightforward calculation shows that
settingπV := idB ×Q(0U ,0⊕idV)does indeed yield amorphism B×ShU Q → B×Q
that maps ShU X into X . We need to show that if α′′ : A′′ × P ′′ → B ′′ × Q′′ is a
morphism parameterising X ′′, then π ◦ ι ◦ α′′ is a morphism A′′ × P ′′ → B × Q
whose image contains all points in X that are not in the subset Y parameterised by α′.
So assume that (b, q) ∈ X(V) ⊆ B × Q(V) does not lie in Y (V). Then, there exists
a linear map ϕ : V → U such that h(b, Q(ϕ)q) �= 0. Let ψ ∈ Hom(V ,U ⊕ V) be
the map v �→ (ϕ(v), v). Then, since (idU ⊕0V ,0) ◦ ψ = ϕ, the point q ′ := Q(ψ)q ∈
X(U ⊕ V) satisfies

h(b, Q(idU ⊕0V ,0)q
′) = h(b, Q(ϕ)q) �= 0,

i.e. q ′ lies in (ShU X)[1/h], which is the image of ι ◦ α′′. Moreover, since (0U ,0 ⊕
idV) ◦ ψ = idV , we have πV (q ′) = q. Hence, q lies in the image of π ◦ ι ◦ α′′. This
concludes the proof of correctness of parameterise.

Lemma 3.5.1 Let Q be a pure polynomial functor and X ⊆ B × Q a closed subset.
Assume that X is defined by its equations in K [B×Q(U)], let R be a subfunctor of Q,
and set Q′ := Q/R. Define X ′ as the closure of the image of X under the projection
idB ×π : B × Q → B × Q′. Assume that X(U) = (idB ×πU)−1(X ′(U)). Then,
X(V) = (idB ×πV)−1(X ′(V)) for all V ∈ Vec, so that X = X ′ × R, and moreover
X ′ is defined by its equations in K [B × Q′(U)].
Proof Let (b, q) ∈ B × Q(V) satisfy (b, πV (q)) ∈ X ′(V). Then for all ϕ ∈
Hom(V ,U), we have

(b, πU (Q(ϕ)(q))) = (b, Q′(ϕ)(πV (q))) ∈ X ′(U)

and hence, by assumption, (b, Q(ϕ)(q)) ∈ X(U). But then, since X is defined by its
equations in K [B × Q(U)], we have (b, q) ∈ X(V). This proves the first statement.

For the last statement, suppose that (b, q ′) ∈ B × Q′(V) is such that
(b, Q′(ϕ)(q ′)) ∈ X ′(U) for all ϕ ∈ Hom(V ,U). Pick any q ∈ Q(V) with
πV (q) = q ′. Then, the same computation as above shows that (b, q) ∈ X(V), hence
a fortiori (b, q ′) ∈ X ′(V). Hence, X ′ is defined by its equations in K [B × Q′(U)].

Lemma 3.5.2 Let Q be a pure polynomial functor, R a (not necessarily irreducible)
subfunctor, B an affine variety. Set Y := B × Q, Y ′ := B × (Q/R). Let X be a closed
subset of Y such that the projection π : Y → Y ′ restricts to an isomorphism from
X to a closed subset X ′ of Y ′. Let U be a vector space such that X is defined by its
equations in K [Y (U)]. Then, X ′ is defined by its equations in K [Y ′(U)].
Proof The idea is to find an inverse to π , i.e. a morphism ψ : Y ′ → Y such that

(1) πV ◦ ψV = idY ′(V)

(2) ψ |X ′ = (π |X)−1

123

Foundations of Computational Mathematics

Once we have found this ψ , we are done: Let y′ ∈ Y ′(V), such that for every linear
map ϕ : V → U , Y ′(ϕ)(y′) ∈ X ′(U), and hence, by property (2), ψU (Y ′(ϕ)(y′)) ∈
X(U). Since ψ is a morphism, we get

ψU (Y ′(ϕ)(y′)) = (Y (ϕ)(ψV (y′)) ∈ X(U).

Since X is defined by its equations in K [Y (U)], we get that ψV (y′) ∈ X(V), and
hence, with property (1) of ψ , πV (ψV (y′)) = y′ ∈ X ′(V).

By the Friedlander–Suslin Lemma (Lemma 2.3.2 and proof of Lemma 2.7.3), it is
enough to find a GLd -equivariant map ψ̃ : Y ′(Kd) → Y (Kd), where d is the degree
of Q, that fulfils properties (1) and (2) (with V = Kd and ψKd = ψ̃).

It is easy to find a possibly non-GLd -equivariant map ψ̂ : Y ′(Kd) → Y (Kd) with
properties (1) and (2): Note that X ′(Kd) is a closed subvariety of the affine space
A
n′
B , where n

′ = dim(Q(Kd)/R(Kd)) and X(Kd) is a closed subvariety of the affine
space A

n
B , where n = dim(Q(Kd)). By basic properties of affine spaces, the map

(πKd |X(Kd))
−1 extends to a morphism ψ̂ from the ambient affine spaceA

n′
B of X ′(Kd)

to the ambient affine space A
n
B of X(Kd). Now ψ̂ lives in some finite-dimensional

space equipped with a linear action of GLd given by (g, η) �→ Y (g) ◦ η ◦ Y ′(g−1).
Since this space is an algebraic group representation of GLd and GLd is linearly
reductive, there exists a GLd -equivariant linear map ρ from the space onto its subspace
of GLd -invariant elements—the so-called Reynolds operator. Then, ψ̃ := ρ(ψ̂) is
GLd -equivariant, and we claim that it still satisfies (1) and (2).

By the Lefschetz principle, it is sufficient to check this when K = C. In this case,
ψ̃ takes the more explicit form

ψ̃ :=
∫

Ud (C)

Y (ϕ) ◦ ψ̂ ◦ Y ′(ϕ)−1 dϕ

whereUd(C) ⊆ GLd(C) is the unitary group, and the integral is over theHaarmeasure
(see, e.g. [21]) with

∫
Ud (C)

dϕ = 1 (note that the Haar integral needs to be taken over
a compact group, so we have to use Ud(C) instead of GLd(C)).

Indeed, by construction, the morphism ψ̃ defined by this integral isUd -equivariant.
To see that it is, indeed, GLd -equivariant, one uses that Ud(C) is Zariski dense in
GLd(C) [21, Section 8.6.1]. This is a version of Weyl’s well-known unitary trick.

The following chain of equations now verifies that ψ̃ meets property (1):

πCd ◦ ψ̃ = πCd ◦
∫

Ud (C)

Y (ϕ) ◦ ψ̂ ◦ Y ′(ϕ)−1 dϕ

=
∫

Ud (C)

πCd ◦ Y (ϕ) ◦ ψ̂ ◦ Y ′(ϕ)−1 dϕ

=
∫

Ud (C)

Y ′(ϕ) ◦ πCd ◦ ψ̂ ◦ Y ′(ϕ)−1 dϕ =
∫

Ud (C)

idY ′(Cd) dϕ.

123

Foundations of Computational Mathematics

For property (2), let x ∈ X ′(Cd). Then,

ψ̃(x) =
∫

Ud (C)

Y (ϕ)(ψ̂(Y ′(ϕ)−1(x)︸ ︷︷ ︸
∈X ′(Cd)

)) dϕ

=
∫

Ud (C)

Y (ϕ)((πCd |X(Cd))
−1(Y ′(ϕ)−1(x))) dϕ

=
∫

Ud (C)

Y (ϕ)(Y (ϕ)−1((πCd |X(Cd))
−1(x))) dϕ = (πCd |X(Cd))

−1(x).

Note that for the second to last equality we have used that (π |X)−1 is a morphism, as
is easy to verify.

4 Implicitisation

4.1 The Result

The goal of this section is to prove the following more precise version of the Main
Theorem.

Theorem 4.1.1 There exists an algorithm implicitise that, on input finite-dimensional
affine varieties A, B, pure polynomial functors P, Q, and a morphism α : A × P →
B × Q, computes a U ∈ Vec and elements f1, . . . , fk ∈ K [B × Q(U)] that define
the image closure of α, i.e. such that, for all V ∈ Vec, we have

α(A(K) × K ⊗ P(V))

= {(b, q) ∈ B(K) × K ⊗ Q(V) | ∀i ∀ϕ ∈ HomK (V ,U) : fi (b, 1 ⊗ Q(ϕ)q) = 0}.

4.2 The Implicitisation Algorithm

The algorithm implicitise(A, P, B, Q, α) is run on countably many parallel pro-
cessors: the one where the original call is handled, plus countably many labelled
0, 1, 2, 3, . . . where call to an auxiliary procedure certify is made. The latter has the
following specification.

Proposition 4.2.1 There exists a procedure certify that, on input finite-dimensional
affine varieties A, A′, B, pure polynomial functors P, P ′, Q, and morphisms α :
A × P → B × Q and α′ : A′ × P ′ → B × Q, has the following behaviour: if
for all V ∈ Vec we have

α′(A′(K) × (K ⊗ P ′(V))) ⊆ α(A(K) × (K ⊗ P(V))),

then certify(B; Q; A; P;α; A′; P ′;α′) terminates and returns “true”. Otherwise, it
does not terminate.

123

Foundations of Computational Mathematics

The proof of Proposition 4.2.1 is deferred to Sect. 5. We can now present the steps
for implicitise(A, P, B, Q, α).

(1) Set n := 0.
(2) While no instance of certify has returned “true”, perform steps (3)–(6):
(3) Set U := Kn and, by classical elimination, compute defining equations

fn,1, . . . , fn,kn ∈ K [B × Q(U)] for the image closure of αU . This is a finite-
dimensional affine variety.

(4) Compute (An, Pn, αn) := parameterise(B; Q;U ; fn,1, . . . , fn,kn).
(5) On the n-th processor, start certify(B; Q; A; P;α; An; Pn;αn).
(6) Set n := n + 1.
(7) if the m-th processor has returned “true”, then return (Km; fm,1, . . . , fm,km).

4.3 Correctness and Termination of implicitise

Proof of Theorem 4.1.1 By Corollary 2.4.3, there exists a value of n such that the tuple
(Kn; fn,1, . . . , fn,kn) computed in iteration n is a correct output for implicitise. It then
follows that αn , which, by virtue of parameterise, parameterises the closed subset of
B × Q defined by fn,1, . . . , fn,kn , has its image contained in the closure of the image
of α. Hence, by Proposition 4.2.1, the n-th call to certify terminates and returns “true”.
This shows that implicitise terminates.

Next, when it terminates with output (Km; fm,1, . . . , fm,km), then this is because
the image of αm , which equals the closed subset of B×Q defined by fm,1, . . . , fm,km ,
is contained in the image closure of α. Since, conversely, the image closure of α is
contained in the closed subset defined by fm,1, . . . , fm,km , the output is correct.

5 Certifying Inclusion of Image Closures

5.1 An Instructive Example

Example 5.1.1 Letα : (S1)2 → S3 be themorphismdefined byα(u, v) = u3+v3. The
image closure of α is the set of symmetric three-tensors of border Waring rank at most
2. On the other hand, let β : (S1)2 → S3 be the morphism defined by β(u, v) = 6u2v.
Then, we have

β(u, v) = 6u2v = lim
t→0

[(t2v + t−1u)3 + (t2v − t−1u)3]
= lim

t→0
α(t2v + t−1u, t2v − t−1u)

and this implies that im(β) ⊆ im(α). However, im(β) � im(α)—indeed, it is well
known that the Waring rank of cubics of the form u2v with u, v linearly independent
vectors is equal to 3. ♦

123

Foundations of Computational Mathematics

This example shows a certificate for im β ⊆ im α, namely, that β is a limit of a
composition α ◦ γt with

γt : (S1)2 → (S1)2, (u, v) �→ (t2v + t−1u, t2v − t−1u).

Roughly speaking, whenever im(β) is contained in im(α), where β, α are morphisms
into B × Q, with B a finite-dimensional variety and Q a pure polynomial functor,
there is a certificate of this inclusion such as the one above—see below for the precise
statement. However, we are not aware of any a priori lower bound on the (negative)
exponents of t in such a certificate. This is why, in Proposition 4.2.1, the procedure
certify does not terminate when no certificate exists.

5.2 An Excursion to Infinite Dimensions

We collect some material on GL-varieties. The results stated here appeared in [2, 3]
or can directly be derived from results there.

Given a finite-dimensional variety A and a pure polynomial functor P , we construct
the inverse limit lim←n(A× P(Kn)) = A× P∞, where the projections P(Kn+1) →
P(Kn) are of the form P(π) with π the standard projection Kn+1 → Kn . Rather
than as a set of K -valued points, we will regard A × P∞ as a reduced, affine K -
scheme, namely, the spectrum of the ring K [A] ⊗K R, where R is the symmetric
algebra of the countable-dimensional vector space limn→∞ P(Kn)∗. The groupGL :=⋃∞

n=0 GLn(K) acts on A×P∞ bymeans of automorphisms and A×P∞ is aGL-variety
in the sense of [2]. More generally, if X is a closed subset of a polynomial functor,
then the inverse limit X∞ of all X(Kn) is a GL-variety. The association X �→ X∞
is an equivalence of categories with the category of affine GL-varieties, which sends
a morphism α : X → Y to a GL-equivariant morphism α∞ : X∞ → Y∞ of affine
schemes over K .

Let α : A × P → B × Q and α′ : A′ × P ′ → B × Q be morphisms as in
Proposition 4.2.1. Then, the following two statements are equivalent:

(1) im(α∞) ⊇ im(α′∞) and
(2) im(αV) ⊇ im(α′

V) for all V ∈ Vec.

It is (2) which we want to certify in certify(B; Q; A; P;α; A′, P ′, α′). From now on,
we assume that A, A′ are irreducible—in the procedure certify we will reduce to this
case.

Now the article by Bik, Eggermont, Snowden and the second author [3] contains
the following useful criterion for (1). Let a′ be the generic point of A′ and let p′ ∈
P ′∞(K) be a point whose GL-orbit is dense in P∞ (such points exist, see [2]). Let
x := α′∞(a′, p′); this is an �-point of B × Q∞ =: X∞, where � = K (A′), and the
GL-orbit of x is dense in im(α′∞). Write Y∞ := A × P∞.

Theorem 5.2.1 (Theorem 6.6 from [3]) We have im(α′∞) ⊆ im(α∞) if and only if
there exists a finite-dimensional field extension �̃ of � and a bounded �̃((t))-point
y(t) of Y∞ such that limt→0 α∞(y(t)) = x.

123

Foundations of Computational Mathematics

Here bounded means that the exponents of t in the countably many coordinates of
the P∞-component of y(t) are uniformly bounded from below, see [3, Definition 6.1].
This ensures that α∞(y(t)) is a well-defined �̃((t))-point of X∞. The theorem says
that we can choose y(t) such that α∞(y(t)) is in fact an �̃[[t]]-point of X∞ and that
setting t to zero yields x .

The procedure certify should certify the existence of y(t). To this end, we will
narrow down the space in which to search for y(t) to an increasing chain of finite-
dimensional varieties. First, we will show that y(t) needs not use more of P∞ than
can be obtained by applying morphisms to p′. To do so (see Proposition 5.4.1 below),
we now introduce systems of variables in Schur functors.

5.3 Systems of Variables in Schur Functors

Fix a field extension� of K . For every nonempty partition λ, Sλ,∞ is an affine scheme
over K whose�-valued points form an�-vector space of uncountable dimension. Let
Vλ ⊆ Sλ,∞(�) be the set of all points s for which there exist k, partitions μ1, . . . , μk

with 0 < |μi | < |λ|, an �-valued point α of Map(Sμ1 ⊕ · · · ⊕ Sμk , Sλ), and an
�-valued point p of Sμ1,∞ ×· · ·× Sμk ,∞ such that α∞(p) = s. (Recall the definition
of Map(P ′, P) from Remark 2.7.4.)

Example 5.3.1 If λ = (2), then Sλ,∞(�) is the space of infinite-by-infinite symmetric
matrices with entries in �, and Vλ is the subspace of matrices of finite rank. ♦

Now Vλ is a proper �-vector subspace of Sλ,∞(�), and we choose any �-basis
(ξλ,i)i∈Iλ of a vector space complement to Vλ in Sλ,∞(�), where Iλ is an uncountable
index set. We call the ξλ,i variables. We choose these variables for every λ and write ξ

for the resulting uncountable tuple; ξ is what we call a system of variables (over�) for
all Schur functors. If f is an �-valued point ofMap(Sμ1 ⊕ · · · ⊕ Sμk , Sλ) and we fix
indices i1 ∈ Iμ1 , . . . , ik ∈ Iμk , then we will write f (ξ) for f (ξμ1,i1 , . . . , ξμk ,ik). This
is slight abuse of notation, since it is not apparent from the formula f (ξ)which indices
were chosen, but the notation is compatible with the notation f (x) for a polynomial
that uses finitely many of an uncountable set of variables x .

Remark 5.3.2 We need to fix the extension � first and then choose the system of
variables. It is not true that a system of variables chosen over K is also a system of
variables over field extensions of K , as Sλ,∞(K) ⊗K � = Sλ,∞(�) only when � is
finite-dimensional over K . ♦

The following proposition follows readily from the material in [2].

Proposition 5.3.3 Let S = Sμ1 ⊕ · · · ⊕ Sμk be a pure polynomial functor, and let
s = (s1, . . . , sk) ∈ S∞(�). Then, the si can be chosen as part of a system of variables
if and only if the GL-orbit of s is dense in S∞(�).

The following theorem expresses that the variables in a system are independent and
generate all vectors in all Schur functors.

123

Foundations of Computational Mathematics

Theorem 5.3.4 Fix a field extension � of K and a system of variables ξ over � for
all Schur functors. Then for every nonempty partition λ and any p ∈ Sλ,∞(�), there
exist partitions λ1, . . . , λk and an �-valued point f ofMap(Sλ1 ⊕· · ·⊕ Sλk , Sλ) and
variables ξλ j ,i j for j = 1, . . . , k and i j ∈ Iλ j such that p = f∞(ξλ1,i1 , . . . , ξλk ,ik).
Moreover, if f really depends on all ξλ j ,i j in the sense that replacing one of them by
zero changes the outcome, then, up to permutations of {1, . . . , k}, the partitions λ j ,
the variables ξλ j ,i j , and f are unique.

Proof The existence of f follows by induction on |λ|: we may write p

p = c1ξλ,i1 + c2ξλ,i2 + · · · + clξλ,il + p̃

with p̃ ∈ Vλ and (unique) i1, . . . , il ∈ Iλ and c1, . . . , cl ∈ �. Now p̃ = α∞(q), for a
suitable α, where q is an �-valued point of Sμ1,∞ × · · · × Sμk ,∞ with 0 < |μi | < |λ|
for all i . By the induction hypothesis, the components qi , i = 1, . . . , k of q are of the
form fi,∞(ξ), and then p equals

α∞(f1,∞(ξ), . . . , fk,∞(ξ)) +
l∑

i=1

ciξλ,i ,

so that f := α(f1, . . . , fk) + ∑l
i=1 ci idSλ does the trick for the obvious choice of

variables.
For uniqueness, it suffices to show that if f is a nonzero �-valued point of

Map(Sμ1⊕. . .⊕Sμk , Sλ) and ξμ1,i1 , . . . , ξμk ,ik are distinct variables, then f∞(ξ) �= 0.
Indeed, by Proposition 5.3.3, the GL-orbit of (ξμ1,1, . . . , ξμk ,ik) is dense, and f∞ is
GL-equivariant, so that f∞(ξ) = 0 implies that f = 0, a contradiction.

Remark 5.3.5 Our notion of systems of variables is inspired by [10]. Indeed, If we
restrict a system of variables in Schur functors to the symmetric powers Sd with
d = 0, 1, . . ., then the proof of [10, Theorem 1.1] shows that these are algebraically
independent (over �) generators of the ring

⊕
d S

d∞(�), and that this ring is there-
fore abstractly isomorphic to a polynomial ring. This fact can also be deduced from
Theorem 5.3.4 above. ♦

5.4 Narrowing Down the Search for y(t)

In this section, we retain the notation from Sect. 5.2. The following diagram represents
the situation:

(a′, p′) ∈ A′ × P ′∞
α′∞
��

y(t) = (a(t), p(t)) ∈ (A × P∞)(�̃((t)))
α∞ �� x = (b, q) ∈ (B × Q∞)(�)

123

Foundations of Computational Mathematics

where � = K (A′), a′ is the generic point of A′, p′ is a K -point of P∞ with dense
GL-orbit, and we want to certify the existence of y(t), defined over a finite extension
�̃ of �, such that limt→0 α∞(y(t)) = x .

Proposition 5.4.1 If a y(t) as in Theorem 5.2.1 exists, then it can be chosen of the
form (a(t), γ (t)∞(p′)) with a(t) ∈ A(�̃((t))) and γ (t) a �̃[t, t−1]-valued point of
the finite-dimensional affine space Map(P ′, P).

Proof Write y(t) = (a(t), p(t)). First, terms in p(t) of sufficiently high degree in t
do not contribute to limt→0 α∞(a(t), p(t)), so we may truncate p(t) and assume that
it is a finite sum

∑m2
d=m1

td pd where each pd ∈ P∞(�̃).
Now write P ′ = Sλ1 ⊕ · · · ⊕ Sλk , where the λi are partitions. Accordingly, decom-

pose p′ = (p′
1, . . . , p

′
k) with p′

i ∈ Sλi ,∞. Over the field extension �̃ of K , choose
a system of variables ξ in such a manner that p′

1, . . . , p
′
k are among these variables;

this can be done by Proposition 5.3.3 because GL ·p′ is dense in P ′∞. Then, by The-
orem 5.3.4, we have pd = fd,∞(ξ) for all d, where fd is an (essentially unique)
morphism into P with coefficients in �̃.

Recall from Remark 2.7.5 that α splits as α(0) : A → B and α(1) : A × P → Q,
and similarly for α′. The limit limt→0 α

(1)∞ (a(t), p(t)) equals

g∞(pm1, . . . , pm2) = g∞(fm1,∞(ξ), . . . , fm2,∞(ξ))

for some �̃-point g of Map(Pm2−m1+1, Q). On the other hand, by the choice of
y(t), it equals (α′)(1)∞ (p′). In the latter expression, only the variables p′

1, . . . , p
′
k

appear. By the uniquess statement in Theorem 5.3.4, the same must apply to
g∞(fm1,∞(ξ), . . . , fm2,∞(ξ)).

Therefore, replacing each pd by p̃d := fd,∞(p′, 0), where all variables not among
the variables p′

1, . . . , p
′
k are set to zero, yields a ỹ(t) with the same property as y(t):

limt→0 α∞(ỹ(t)) = x . Now γ (t) := ∑
d t

d fd(·, 0) is the desired �̃[t, t−1]-valued
point of Map(P ′, P).

Recall from Remark 2.7.5 that (α′)(1) can be regarded an �-point ofMap(P ′, Q).
Similarly, α(1)(a(t), ·) can be regarded an �̃((t))-point of Map(P, Q).

Lemma 5.4.2 A point (a(t), γ (t)∞(p′)) as in Proposition 5.4.1 satisfies the property
limt→0 α∞(a(t), γ (t)∞(p′)) = α′(a′, p′) =: (b, q) ∈ (B × Q∞)(�) if and only
if, first, limt→0 α(0)(a(t)) = b and, second, the �̃((t))-point α(1)(a(t), ·) ◦ γ (t) of
Map(P ′, Q) satisfies

lim
t→0

α(1)(a(t), ·) ◦ γ (t) = (α′)(1);

an equality of �̃-points in Map(P ′, Q).

Proof The statement “if” is immediate, by substituting p′; and the statement “only if”
follows from the fact that the GL-orbit of p′ is dense in P ′∞.

123

Foundations of Computational Mathematics

5.5 Greenberg’s Approximation Theorem

We have almost arrived at a countable chain of finite-dimensional varieties in which
we can look for y(t). The only problem is that the point a(t) ∈ A(�̃((t))) does not
yet have a finite representation. For concreteness, assume that A is given by a prime
ideal I = (f1, . . . , fr) in K [x1, . . . , xm], B is embedded in Kn , and α(0) : A → B is
the restriction of some polynomial map α(0) : Km → Kn .

Then, a(t) is an m-tuple in �̃((t))m , and together with γ (t) it is required to satisfy
the following properties from Lemma 5.4.2:

(i) fi (a(t)) = 0 for i = 1, . . . , r ;
(ii) limt→0 α(0)(a(t)) = b;
(iii) and limt→0 α(1)(a(t), ·) ◦ γ (t) = (α′)(1).
Suppose thatwe fix a lower bound−d1, with d1 ∈ Z≥0, on the exponents of t appearing
in a(t) or in γ (t). From the data of α and d1, one can compute a bound d2 ∈ Z≥0
such that the validity of (ii) and (iii) does not depend on the terms in a(t) or γ (t)
with exponents > d2. However, (i) does depend on all (typically infinitely many)
terms of a(t). Here, Greenberg’s approximation theorem comes to the rescue. As
this theorem requires formal power series rather than Laurent series, we put ã(t) :=
td1a(t). Accordingly, replace each fi by f̃i := te fi (t−d1x1, . . . , t−d1xn) where e is
large enough such that all coefficients of f̃i for all i are in �̃[[t]]. Note that a(t) is a
root of all fi if and only if ã(t) is a root of all f̃i .

Theorem 5.5.1 (Greenberg, [13]) There exist numbers N0 ≥ 1, c ≥ 1, s ≥ 0 such that
for all N ≥ N0 and a(t) ∈ �̃[[t]]n with f̃i (a(t)) ≡ 0 mod t N for all i = 1, . . . , r

there exists an ã(t) ∈ �̃[[t]]n such that ã(t) ≡ a(t) mod t� N
c �−s and moreover

fi (ã(t)) = 0 for all i . Moreover, N0, c, s can be computed from f̃1, . . . , f̃r .

As a matter of fact, the computability, which is crucial to our work, is only implicit
in [13]; it is made explicit in the overview paper [23].

Corollary 5.5.2 There exist natural numbers d2, N1, which can be computed from d1
and f1, . . . , fr , α, such that the following statements are equivalent:

(1) a pair a(t), γ (t) with properties (i)–(iii) exists that has no exponents of t smaller
than −d1;

(2) a pair a(t), γ (t) exists with all exponents of t in the interval {−d1, . . . , d2} that
satisfies (ii) and (iii), and that satisfies (i) modulo t N1 .

Proof The implication (1) ⇒ (2) holds for any choice of N1 if d2 is chosen large
enough so that the terms of a(t), γ (t) with degree > d2 in t do not affect (ii),(iii), and
do not contribute to the terms of degree < N1 in fi (a(t)) for any i .

For the converse, first we compute f̃i and e as above; they depend on the choice
of d1. Then, we compute N0, c, s as in Greenberg’s theorem. Compute N1 ≥ N0 − e
such that terms in a(t), γ (t) in which t has exponent at least � N1+e

c � − s − d1 do not
affect properties (ii)–(iii), and then compute d2 as in the first paragraph.

Given a pair a(t), γ (t) as in (2), set ā(t) := td1a(t). Then, for each i ,

f̃i (ā(t)) = te fi (a(t)) ≡ 0 mod t N1+e.

123

Foundations of Computational Mathematics

Then, since N1 + e ≥ N0, Greenberg’s theorem yields ã(t) ∈ �̃[[t]]n such that
f̃i (ã(t)) = 0 for all i and such that

ã(t) = ā(t) mod t

⌈
N1+e
c

⌉
−s

.

Now set a1(t) := t−d1 ã(t), so that fi (a1(t)) = 0 for all i—this is property (i)—and

a1(t) ≡ a(t) mod t

⌈
N1+e
c

⌉
−s−d1

.

Since the terms of a(t) with exponent of degree at least � N1+e
c �− s − d1 do not affect

(ii) and (iii), the pair a1(t), γ (t) also satisfy these conditions.

5.6 The Procedure Certify

To compute certify(B; Q; A; P;α; A′; P ′;α′), we proceed as follows. For conve-
nience, we again assume that we have sufficientlymany processorsworking in parallel.

(1) If A and A′ are not both irreducible, decompose A into irreducible compo-
nents Ai and A′ into irreducible components A′

j , and assign the computation of
certify(B; Q; Ai ; P;α|Ai×P ; A′

j , P
′, α′

A′
j×P ′) for all i, j to distinct processors.

As soon as for each j there exists at least one i such that the computa-
tion returns “true”, return “true”. So in what follows we may assume that
A, A′ are irreducible. They are given by prime ideals I ⊆ K [x1, . . . , xn] and
J ⊆ K [y1, . . . , ym], respectively.

(2) Let f1, . . . , fr be generators of I .
(3) Compute b := (α′)(0)(a′) where a′ is the generic point of A′. So a′ is just

the m-tuple (y1 + J , . . . , ym + J) ∈ �m , where � is the fraction field of
K [y1, . . . , ym]/J .

(4) Compute the �-valued point (α′)(1) of Map(P ′, Q).
(5) Construct a K -basis γ1, . . . , γm of the vector space Map(P ′, P).
(6) Set d1 := 0, r :=“false”.
(7) While not r , perform the steps (8)–(10):
(8) From α and d1, compute the natural numbers N1, d2 from Corollary 5.5.2 and

make the Ansatz γ (t) = ∑m
i=1 ci (t)γm where ci (t) is a linear combination

of t−d1, . . . , td2 with coefficients to be determined in an extension of �; and
the Ansatz a(t) = (a1(t), . . . , an(t)), where ai is also a linear combination of
t−d1, . . . , td2 with coefficients to be determined.

(9) The desired properties of (a(t), γ (t)) from the second item of Corollary 5.5.2
translate into a system of polynomial equations for the (m + n) · (d2 + d1 + 1)
coefficients of the ci (t) and the ai (t). By a Gröbner basis computation, test
whether a solution exists over an algebraic closure of �. If so, set r :=“true”.

(10) Set d1 := d1 + 1.
(11) Return “true”.

123

Foundations of Computational Mathematics

Proof of Proposition 4.2.1 The first step is justified by the observation that the image
closure of α contains the image of α′ if and only if for each j , the image of α′|A′

j×P ′
is contained in the image closure of some α|Ai×P .

If the image closure of α contains the image of α′, then by Theorem 5.2.1, Propo-
sition 5.4.1, Lemma 5.4.2, and Corollary 5.5.2, the procedure certify terminates and
returns “true”. Otherwise, by the same results, the system of equations in step (9) does
not have a solution, and the procedure does not terminate.

6 Conclusion

TheNoetherianity theorem [9] and the unirationality theorem [2] imply that closed sub-
sets of polynomial functors admit two different descriptions: an implicit description
by finitely many equations, and a description as the image (closure) of some mor-
phism. In this paper, we have described highly nontrivial algorithms parameterise
and implicitise that translate between these two descriptions. Interestingly, implicitise
requires calls to parameterise as well as Greenberg’s approximation theorem for a
stopping criterion. We do not expect these two algorithms to be implemented in full
generality anytime soon, but we do believe that their structure may guide us in finding
equations for closed subsets of polynomial functors such as “cubics of q-rank ≤ 2”.

Acknowledgements The second author thanks Arthur Bik, Rob Eggermont, and Andrew Snowden for
numerous discussions on polynomial functors, especially on the topic of systems of variables from Sect. 5.3
and on formal curves approximating a point in a closure, Theorem 5.2.1. We also thank the referees for
many valuable remarks about the original version of our paper.

Funding Open access funding provided by University of Bern.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Arthur Bik. Strength and noetherianity for infinite tensors. PhD thesis, Universität Bern, 2020.
2. Arthur Bik, Jan Draisma, Rob H. Eggermont, and Andrew Snowden. The geometry of polynomial

representations. Int. Math. Res. Not., 2021. To appear, arXiv:2105.12621.
3. Arthur Bik, Jan Draisma, Rob H. Eggermont, and Andrew Snowden. Uniformity for limits of tensors.

2023. Preprint, arXiv:2305.19866.
4. Andries E.Brouwer and JanDraisma. EquivariantGröbner bases and the two-factormodel.Math. Com-

put., 80:1123–1133, 2011.
5. Daniel E. Cohen. Closure relations, Buchberger’s algorithm, and polynomials in infinitely many vari-

ables. In Computation theory and logic, volume 270 of Lect. Notes Comput. Sci., pages 78–87, 1987.
6. David A. Cox, John Little, and Donal O’Shea. Using algebraic geometry, volume 185 of Graduate

Texts in Mathematics. Springer, New York, second edition, 2005.

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2105.12621
http://arxiv.org/abs/2305.19866

Foundations of Computational Mathematics

7. David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms. Undergraduate Texts
in Mathematics. Springer, Cham, fourth edition, 2015. An introduction to computational algebraic
geometry and commutative algebra. https://doi.org/10.1007/978-3-319-16721-3.

8. Harm Derksen, Rob H. Eggermont, and Andrew Snowden. Topological noetherianity for cubic poly-
nomials. Algebra Number Theory, 11(9):2197–2212, 2017. https://doi.org/10.2140/ant.2017.11.2197.

9. Jan Draisma. Topological Noetherianity of polynomial functors. J. Am.Math. Soc., 32:691–707, 2019.
10. Daniel Erman, Steven V. Sam, and Andrew Snowden. Big polynomial rings and Stillman’s conjecture.

Invent. Math., 218(2):413–439, 2019. https://doi.org/10.1007/s00222-019-00889-y.
11. EricM. Friedlander andAndrei Suslin. Cohomology of finite group schemes over a field. Invent.Math.,

127(2):209–270, 1997.
12. William Fulton and Joe Harris. Representation Theory. A First Course. Number 129 in Graduate Texts

in Mathematics. Springer-Verlag, New York, 1991.
13. M. J. Greenberg. Rational points in Henselian discrete valuation rings. Publ. Math., Inst. Hautes Étud.

Sci., 31:563–568, 1966. https://doi.org/10.1007/BF02684802.
14. Gert-Martin Greuel and Gerhard Pfister. A Singular introduction to commutative algebra. Springer,

Berlin, extended edition, 2008. With contributions by Olaf Bachmann, Christoph Lossen and Hans
Schönemann.

15. Christopher J. Hillar, Robert Krone, and Anton Leykin. EquivariantGBMacaulay2 package.Webpage:
http://people.math.gatech.edu/~rkrone3/EquivariantGB.html, 2013.

16. Christopher J. Hillar, Robert Krone, and Anton Leykin. Equivariant Gröbner bases. In The 50th
anniversary of Gröbner bases. Proceedings of the 8thMathematical Society of Japan-Seasonal Institute
(MSJ-SI 2015), Osaka, Japan, July 1–10, 2015, pages 129–154. Tokyo: Mathematical Society of Japan
(MSJ), 2018.

17. Christopher J. Hillar and Seth Sullivant. Finite Gröbner bases in infinite dimensional polynomial rings
and applications. Adv. Math., 221:1–25, 2012.

18. Teresa Krick and Alessandro Logar. An algorithm for the computation of the radical of an ideal in
the ring of polynomials. In Applied algebra, algebraic algorithms and error-correcting codes (New
Orleans, LA, 1991), volume 539 of Lecture Notes in Comput. Sci., pages 195–205. Springer, Berlin,
1991. https://doi.org/10.1007/3-540-54522-0_108.

19. J.M. Landsberg and Giorgio Ottaviani. Equations for secant varieties of Veronese and other varieties.
Ann. Mat. Pura Appl. (4), 192(4):569–606, 2013.

20. Toby Ord. How to simulate everything (all at once). URL: http://www.amirrorclear.net/academic/
ideas/simulation/index.html.

21. Claudio Procesi. Lie Groups. New York: Springer, 2007.
22. Claudiu Raicu. 3× 3 minors of catalecticants. Math. Res. Lett., 20(4):745–756, 2013. https://doi.org/

10.4310/MRL.2013.v20.n4.a10.
23. Guillaume Rond. Artin approximation. J. Singul., 17:108–192, 2018. https://doi.org/10.5427/jsing.

2018.17g.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/978-3-319-16721-3.
https://doi.org/10.2140/ant.2017.11.2197.
https://doi.org/10.1007/s00222-019-00889-y.
https://doi.org/10.1007/BF02684802.
http://people.math.gatech.edu/~rkrone3/EquivariantGB.html
https://doi.org/10.1007/3-540-54522-0_108.
http://www.amirrorclear.net/academic/ideas/simulation/index.html
http://www.amirrorclear.net/academic/ideas/simulation/index.html
https://doi.org/10.4310/MRL.2013.v20.n4.a10.
https://doi.org/10.4310/MRL.2013.v20.n4.a10.
https://doi.org/10.5427/jsing.2018.17g.
https://doi.org/10.5427/jsing.2018.17g.

	Implicitisation and Parameterisation in Polynomial Functors
	Abstract
	1 Introduction
	1.1 Implicitisation
	1.2 Implicitisation in Families
	1.3 Implicitisation Over Categories
	1.4 Implicitisation in Polynomial Functors
	1.5 Main Result
	1.6 Structure of the Algorithm
	1.7 Outlook
	1.8 Organisation of the Paper

	2 Preliminaries
	2.1 The Ground Field
	2.2 Finite-Dimensional Affine Varieties
	2.3 Polynomial Functors
	2.4 Closed Subsets of Polynomial Functors
	2.5 Irreducibility
	2.6 Gradings and Ideals
	2.7 Morphisms
	2.8 Shifting
	2.9 An Order on Polynomial Functors
	2.10 Summary

	3 Parameterisation
	3.1 The Result
	3.2 Smearing Out Equations
	3.3 The Parameterisation Algorithm
	3.4 Termination of Parameterise
	3.5 Correctness of Parameterise

	4 Implicitisation
	4.1 The Result
	4.2 The Implicitisation Algorithm
	4.3 Correctness and Termination of implicitise

	5 Certifying Inclusion of Image Closures
	5.1 An Instructive Example
	5.2 An Excursion to Infinite Dimensions
	5.3 Systems of Variables in Schur Functors
	5.4 Narrowing Down the Search for y(t)
	5.5 Greenberg's Approximation Theorem
	5.6 The Procedure Certify

	6 Conclusion
	Acknowledgements
	References

