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results to the case where Q is a variety — so that QRFSI

is the class of finitely subdirectly irreducible members of Q
and the Q-CEP is the usual congruence extension property — 
and prove that when Q is finitely generated and congruence-
distributive, and QRFSI is closed under subalgebras, possession 
of the property is decidable. Finally, as a case study, we 
provide a complete description of the subvarieties of a notable 
variety of BL-algebras that have the amalgamation property.
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1. Introduction

This paper studies a cluster of interrelated properties of general interest in algebra: the 
congruence extension property, (strong) amalgamation property, transferable injections 
property, and surjective epimorphisms property. The latter have each been investigated in 
a range of algebraic contexts, with studies spanning groups, rings, lattices, Lie algebras, 
and numerous other algebraic structures (see [27] for an extensive survey). In this paper, 
we adopt a general vantage point and develop a widely applicable toolkit for studying 
these properties. Our main contribution consists of transfer theorems that characterize 
each property for a class of algebraic structures satisfying certain hypotheses in terms of 
a smaller and more easily studied subclass, namely, the (relatively) finitely subdirectly 
irreducible members of the class. These theorems generalize other transfer results in the 
literature (found in, e.g., [9,10,19,26,29]), while simultaneously providing a more uniform 
treatment.

We freely make use of basic notions of universal algebra throughout our discussion, 
but first recall several key definitions, referring to [5,18] for more detailed treatments. 
Let Q be a quasivariety: a class of similar algebras (i.e., a class of algebras of the same 
signature) defined by quasiequations, or, equivalently, closed under isomorphisms, sub-
algebras, direct products, and ultraproducts. A congruence Θ of an algebra A ∈ Q is 
called a Q-congruence if A/Θ ∈ Q. When ordered by inclusion, the set of Q-congruences 
of A forms an algebraic lattice ConQ A. Arbitrary meets coincide in ConQ A with those 
taken in the algebraic lattice ConA of all congruences of A, as do joins of chains, but 
this may not be the case for arbitrary joins. If Q is a variety — that is, a class of sim-
ilar algebras defined by equations, or, equivalently, closed under homomorphic images, 
subalgebras, and direct products — then every congruence of A is a Q-congruence and 
ConQ A and ConA coincide.

An algebra A is said to be (finitely) subdirectly irreducible if whenever A is isomorphic 
to a subdirect product of a (non-empty finite) set of algebras, it is isomorphic to one of 
these algebras. Equivalently, A is finitely subdirectly irreducible if the least congruence 
ΔA := {〈a, a〉 | a ∈ A} is meet-irreducible in ConA, and subdirectly irreducible if ΔA

is completely meet-irreducible in ConA.1 When A belongs to Q, it is convenient to 
relativize these notions. In this case, A is said to be (finitely) Q-subdirectly irreducible if 
whenever A is isomorphic to a subdirect product of a (non-empty finite) set of algebras 
in Q, it is isomorphic to one of them. Equivalently, A is finitely Q-subdirectly irreducible 
if and only if ΔA is meet-irreducible in ConQ A, and Q-subdirectly irreducible if and 
only if ΔA is completely meet-irreducible in ConQ A.

For any A ∈ Q and Θ ∈ ConQ A, it follows from the correspondence theorem for 
universal algebra that the quotient algebra A/Θ ∈ Q is finitely Q-subdirectly irreducible 

1 An element a of a lattice L is meet-irreducible if a = b ∧ c implies a = b or a = c, and this is true of 
any greatest element � of L; however, a is completely meet-irreducible if a = ∧

B implies a ∈ B for any 
B ⊆ L, which is not the case for � = ∧

∅.
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if and only if Θ is meet-irreducible in ConQ A, and Q-subdirectly irreducible if and only 
if it is completely meet-irreducible. Clearly, if Q is a variety, the properties of being 
(finitely) Q-subdirectly irreducible and (finitely) subdirectly irreducible coincide. When 
Q is clear from the context, we call a (finitely) Q-subdirectly irreducible algebra A
relatively (finitely) subdirectly irreducible.

Let QFSI , QSI , QRFSI , and QRSI denote the classes of finitely subdirectly irreducible, 
subdirectly irreducible, relatively finitely subdirectly irreducible, and relatively sub-
directly irreducible members of Q, respectively. A sizeable number of results in the 
universal algebra literature state that, under certain conditions, well-studied algebraic 
properties transfer from QRSI to Q, at least when Q is a variety (see, e.g., [9,10,19,26,29]). 
The aim of this paper is to determine conditions under which these properties transfer 
from QRFSI to Q and, in some cases, back again. A key motivation for considering QRFSI

rather than QRSI is that it is often easier to state or check conditions for the larger class. 
Notably, if Q has equationally definable relative principal congruence meets (a common 
property for quasivarieties corresponding to non-classical logics), then QRFSI is a univer-
sal class [8, Theorem 2.3]. Moreover, if V is a variety such that VFSI is a universal class, 
then VFSI is a positive universal class if and only if ConA is a chain (totally ordered set) 
for each A ∈ VFSI .2

An algebra B ∈ Q is said to be Q-congruence-distributive if ConQ B is a distributive 
lattice. If every member of Q is Q-congruence-distributive, then Q is said to be relatively 
congruence-distributive and in this case, as shown in [12, Theorem 2.3], QRFSI = QFSI . 
Clearly, a variety is relatively congruence-distributive if and only if it is congruence-
distributive in the usual sense.

An algebra B ∈ Q is said to have the Q-congruence extension property (for short, 
Q-CEP) if for any subalgebra A of B and Θ ∈ ConQ A, there exists a Φ ∈ ConQ B such 
that Φ ∩A2 = Θ. A class K of algebras in Q is said to have the Q-CEP if every member of 
K has the Q-CEP. In Section 2, we prove that if Q is relatively congruence-distributive, 
it has the Q-CEP if and only if QRFSI = QFSI has the Q-CEP (Theorem 2.3). When Q is a 
variety, the Q-CEP is the usual congruence extension property (for short, CEP) and if it 
is congruence-distributive, Q has the CEP if and only if QFSI has the CEP (Corollary 2.4). 
This result yields also the known fact that a congruence-distributive variety V such that 
VSI is elementary has the CEP if and only if VSI has the CEP [10, Theorem 3.3]. Note, 
however, that the requirement that VSI is elementary may fail or be difficult to establish, 
and this result may therefore be significantly harder to apply than Theorem 2.3.

When QFSI is closed under subalgebras, Theorem 2.3 can be reformulated in terms 
of commutative diagrams. Let K be any class of similar algebras. A span in K is a 5-
tuple 〈A, B, C, ϕB , ϕC〉 consisting of A, B, C ∈ K and homomorphisms ϕB : A → B, 
ϕC : A → C. We call this span injective if ϕB is an embedding, doubly injective if both 

2 Suppose that VFSI is a universal class. Then it is a positive universal class if and only if for any A ∈ VFSI

and Θ ∈ ConA, also A/Θ ∈ VFSI , i.e., Θ is meet-irreducible in ConA. But a lattice is a chain if and only 
if all its elements are meet-irreducible, so VFSI is a positive universal class if and only if Con A is a chain 
for each A ∈ VFSI .
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Fig. 1. Commutative diagrams for algebraic properties.

ϕB and ϕC are embeddings, and injective-surjective if ϕB is an embedding and ϕC is 
surjective. The class K has the extension property (for short, EP) if for any injective-
surjective span 〈A, B, C, ϕB , ϕC〉 in K, there exist a D ∈ K, a homomorphism ψB : B →
D, and an embedding ψC : C → D such that ψBϕB = ψCϕC , that is, the diagram 
in Fig. 1(i) is commutative. We prove that Q has the Q-CEP if and only if it has the
EP (Corollary 2.11, generalizing [3, Lemma 1.2]) and that if Q is relatively congruence-
distributive and QRFSI = QFSI is closed under subalgebras, then the EP and Q-CEP for 
Q and QRFSI = QFSI all coincide (Theorem 2.12).

Now let K and K′ be two classes of algebras of the same signature. An amalgam in K′

of a doubly injective span 〈A, B, C, ϕB , ϕC〉 in K is a triple 〈D, ψB , ψC〉 where D ∈ K′

and ψB, ψC are embeddings of B and C into D, respectively, such that ψBϕB = ψCϕC

(see Fig. 1(ii)). The class K has the amalgamation property (for short, AP) if every 
doubly injective span in K has an amalgam in K. We also say that K has the one-sided 
amalgamation property (for short, 1AP) if for any doubly injective span 〈A, B, C, ϕB , ϕC〉
in K, there exist a D ∈ K, a homomorphism ψB : B → D, and an embedding ψC : C → D
such that ψBϕB = ψCϕC (see Fig. 1(iii)). It is easy to see that a class K of similar 
algebras that is closed under finite products has the 1AP if and only if it has the AP,3
but this is not always the case for other classes, in particular, the class of relatively finitely 
subdirectly irreducible members of a quasivariety. In Section 3, we prove that when Q
has the Q-CEP and QRFSI is closed under subalgebras, Q has the 1AP (equivalently, 
the AP) if and only if QRFSI has the 1AP (Theorem 3.4).

In Section 4, we consider consequences of our results for three further properties. 
First, a class K of similar algebras is said to have the transferable injections property
(for short, TIP) if for any injective span 〈A, B, C, ϕB, ϕC〉 in K, there exist a D ∈ K, 
a homomorphism ψB : B → D, and an embedding ψC : C → D such that ψBϕB =
ψCϕC (see Fig. 1(iv)). A variety has the TIP if and only if it has the CEP and AP ([3, 
Lemma 1.7]). More generally, we show here that a class of similar algebras that is closed 
under subalgebras has the TIP if and only if it has the EP and 1AP. It then follows from 
our previous results that when Q is relatively congruence-distributive and QRFSI = QFSI

is closed under subalgebras, Q has the TIP if and only if QRFSI = QFSI has the TIP
(Theorem 4.3).

3 For the non-trivial direction, observe that an amalgam of a doubly injective span 〈A, B, C, ϕB , ϕC〉 in 
K may be obtained as the product of the one-sided amalgams of 〈A, B, C, ϕB , ϕC〉 and 〈A, C, B, ϕC , ϕB〉.
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Next, let K be a class of similar algebras and A, B ∈ K. A homomorphism ϕ : A → B
is an epimorphism in K if for all C ∈ K and all homomorphisms ψ1, ψ2 : B → C, if 
ψ1ϕ = ψ2ϕ, then ψ1 = ψ2. Surjective homomorphisms are always epimorphisms, but 
the converse does not hold in general. If all epimorphisms in K are surjections, K is said 
to have surjective epimorphisms (for short, SE). In [6, Theorem 22], it was proved that 
an arithmetical (i.e., congruence-distributive and congruence-permutable) variety V such 
that VFSI is a universal class has SE if and only if VFSI has SE.

For a class of algebras K′ of the same signature as K, an amalgam 〈D, ψB, ψC〉 in 
K′ of a doubly injective span 〈A, B, C, ϕB , ϕC〉 in K is called strong if ψBϕB [A] =
ψB [B] ∩ψC [C]. The class K is said to have the strong amalgamation property (for short,
SAP) if every doubly injective span in K has a strong amalgam in K. Using the fact 
that a quasivariety has the SAP if and only if it has SE and the AP [22], it follows from 
our previous results and [6, Theorem 22] that an arithmetical variety V with the CEP
such that VFSI is a universal class has the SAP if and only if VFSI has SE and the 1AP
(Corollary 4.6). We also show that such a variety has the SAP if every doubly injective 
span in VFSI has a strong amalgam in V (Theorem 4.8).

In Section 5, we conclude that possession of all the properties mentioned above is 
decidable for certain finitely generated varieties. More precisely, we obtain effective al-
gorithms to decide if a congruence-distributive variety V that is generated by a given 
finite set of finite algebras, such that VFSI is closed under subalgebras, has the CEP,
AP, or TIP (Theorem 5.1). In the case where V is arithmetical, we obtain also effective 
algorithms to decide if V has SE or the SAP. Finally, in Section 6, we provide a complete 
description of the subvarieties of a notable variety of BL-algebras (those generated by a 
class of “one-component” totally ordered BL-algebras) that have the AP.

2. The congruence extension property

We first recall some basic facts about extending congruences, denoting the Q-
congruence of an algebra A ∈ Q generated by a set R ⊆ A2 by CgQ

A
(R).

Lemma 2.1. Let Q be any quasivariety and let B ∈ Q.

(a) (cf. [26, Lemma 1.3]) Suppose that for any subalgebra A of B and completely meet-
irreducible Θ ∈ ConQ A, there exists a Ψ ∈ ConQ B such that Ψ ∩ A2 = Θ. Then 
B has the Q-CEP.

(b) (cf. [4, p. 392]) Let A be a subalgebra of B and Θ ∈ ConQ A such that Ψ ∩A2 = Θ
for some Ψ ∈ ConQ B. Then CgQ

B
(Θ) ∩A2 = Θ.

Proof. (a) Consider any subalgebra A of B and Θ ∈ ConQ A. Since ConQ A is an 
algebraic lattice, there exists a set {Θi}i∈I of Q-congruences of A such that Θ =

⋂
i∈I Θi

and Θi is completely meet-irreducible for each i ∈ I (see, e.g., [18, Lemma 1.3.2]). By 
assumption, there exists for each i ∈ I, a Ψi ∈ ConQ B such that Ψi∩A2 = Θi. It follows 
that Ψ :=

⋂
i∈I Ψi ∈ ConQ B satisfies Ψ ∩A2 =

⋂
i∈I(Ψi ∩A2) =

⋂
i∈I Θi = Θ.
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(b) Since Θ ⊆ Ψ and Ψ ∈ ConQ B, also CgQ
B

(Θ) ⊆ Ψ. Hence, using the assumption, 
Θ ⊆ CgQ

B
(Θ) ∩A2 ⊆ Ψ ∩A2 = Θ. �

We will also make use of the following consequence of the correspondence theorem of 
universal algebra.

Lemma 2.2 (cf. [4, Lemma 2]). Let Q be any quasivariety and let A, B ∈ Q. For any 
surjective homomorphism ϕ : A → B and R ⊆ A ×A,

ϕ−1[CgQ
B

(ϕ[R])] = CgQ
A

(R) ∨ ker(ϕ),

where the join on the right hand side is taken in ConQ A and ϕ[R] abbreviates 
{〈ϕ(x), ϕ(y)〉 | 〈x, y〉 ∈ R}.

Proof. Let Θ := ϕ−1[CgQ
B

(ϕ[R])]. Since R ⊆ Θ and Θ ∈ ConQ(A), also CgQ
A

(R) ⊆
Θ. Moreover, ker(ϕ) ⊆ Θ, so CgQ

A
(R) ∨ ker(ϕ) ⊆ Θ. For the converse inclusion, since 

CgQ
A

(R) ∨ ker(ϕ) ∈ [ker(ϕ), A2], it follows using the correspondence theorem that

ϕ−1[CgQ
B

(ϕ[R])] ⊆ ϕ−1[CgQ
B

(ϕ[CgQ
A

(R) ∨ ker(ϕ)])] = CgQ
A

(R) ∨ ker(ϕ). �
We now establish the first main result of this section, recalling from the introduction 

that if Q is a relatively congruence-distributive quasivariety, then QRFSI = QFSI [12, 
Theorem 2.3].

Theorem 2.3. Let Q be any relatively congruence-distributive quasivariety. Then Q has 
the Q-congruence extension property if and only if QRFSI = QFSI has the Q-congruence 
extension property.

Proof. Suppose for the non-trivial direction that QRFSI has the Q-CEP. Let A be a 
subalgebra of some B ∈ Q and let Θ ∈ ConQ A. We assume towards a contradiction 
that CgQ

B
(Θ) ∩ A2 	= Θ, that is, there exists an ordered pair 〈a, b〉 ∈ CgQ

B
(Θ) ∩ A2

satisfying 〈a, b〉 /∈ Θ. Define

T := {Ψ ∈ ConQ B | 〈a, b〉 /∈ (Ψ ∩A2) ∨ Θ}.

Then ΔB ∈ T , so T 	= ∅. Moreover, every chain in 〈T, ⊆〉 has an upper bound (its union) 
in T , so, by Zorn’s Lemma, 〈T, ⊆〉 has a maximal element Ψ∗.

Claim. Ψ∗ is meet-irreducible in ConQ B and hence B/Ψ∗ ∈ QRFSI .

Proof of Claim. Suppose that Ψ∗ = Ψ1 ∩ Ψ2 for some Ψ1, Ψ2 ∈ ConQ B. Then, since 
ConQ A is distributive by assumption,

((Ψ1 ∩A2) ∨ Θ) ∩ ((Ψ2 ∩A2) ∨ Θ) = (Ψ1 ∩ Ψ2 ∩A2) ∨ Θ = (Ψ∗ ∩A2) ∨ Θ.
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But 〈a, b〉 /∈ (Ψ∗ ∩ A2) ∨ Θ, so 〈a, b〉 /∈ (Ψ1 ∩ A2) ∨ Θ or 〈a, b〉 /∈ (Ψ2 ∩ A2) ∨ Θ. Hence 
Ψ1 ∈ T or Ψ2 ∈ T and, by the maximality of Ψ∗ in 〈T, ⊆〉, either Ψ∗ = Ψ1 or Ψ∗ = Ψ2. 
So Ψ∗ is meet-irreducible. �
Observe next that A/(Ψ∗∩A2) embeds into B/Ψ∗ and can be identified with a subalgebra 
of B/Ψ∗ with universe A/Ψ∗. We consider the congruence ((Ψ∗ ∩A2) ∨Θ)/(Ψ∗ ∩A2) of 
A/(Ψ∗ ∩A2). By the second isomorphism theorem of universal algebra,

(A/(Ψ∗ ∩A2))/((Ψ∗ ∩A2) ∨ Θ)/(Ψ∗ ∩A2)) ∼= A/((Ψ∗ ∩A2) ∨ Θ) ∈ Q.

In particular, (Ψ∗ ∩ A2) ∨ Θ)/(Ψ∗ ∩ A2) ∈ ConQ A/(Ψ∗ ∩ A2). Moreover, since 〈a, b〉 /∈
(Ψ∗ ∩A2) ∨ Θ,

〈[a]Ψ∗∩A2 , [b]Ψ∗∩A2〉 /∈ ((Ψ∗ ∩A2) ∨ Θ)/(Ψ∗ ∩A2).

Recall now that 〈a, b〉 ∈ CgQ
B

(Θ) ∩ A2, so 〈a, b〉 ∈ CgQ
B

((Ψ∗ ∩ A2) ∨ Θ) ∨ Ψ∗. Letting 
R := (Ψ∗ ∩ A2) ∨ Θ and ϕ be the canonical homomorphism from B to B/Ψ∗ with 
ker(ϕ) = Ψ∗, an application of Lemma 2.2 yields

ϕ−1[CgQ
B/Ψ∗ (ϕ[(Ψ∗ ∩A2) ∨ Θ])] = CgQ

B
((Ψ∗ ∩A2) ∨ Θ) ∨ Ψ∗.

Hence, identifying the congruence ((Ψ∗ ∩ A2) ∨ Θ)/(Ψ∗ ∩ A2) of A/(Ψ∗ ∩ A2) with the 
corresponding subset of B/Ψ∗,

〈[a]Ψ∗ , [b]Ψ∗〉 ∈ CgQ
B/Ψ∗ (((Ψ∗ ∩A2) ∨ Θ)/(Ψ∗ ∩A2)).

But, by Lemma 2.1, this contradicts the assumption that B/Ψ∗ ∈ QRFSI has the Q-CEP. 
So CgQ

B
(Θ) ∩A2 = Θ as required. �

Corollary 2.4. Let V be any congruence-distributive variety. Then V has the congruence 
extension property if and only if VFSI has the congruence extension property.

Note that if Q is a relatively congruence-distributive quasivariety, then every member 
of QRFSI embeds into an ultraproduct of members of QRSI , by the Relativized Jónsson 
Lemma [8, Lemma 1.5]. Hence, since the Q-CEP is preserved under subalgebras, Theo-
rem 2.3 yields also a characterization of the Q-CEP for Q in terms of the members of 
QRSI .

Corollary 2.5. Let Q be any relatively congruence-distributive quasivariety. Then Q has 
the Q-congruence extension property if and only if the class of ultraproducts of members 
of QRSI has the Q-congruence extension property.
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In particular, we obtain Davey’s result that for any congruence-distributive variety V
such that VSI is an elementary class, V has the CEP if and only if VSI has the CEP [10, 
Theorem 3.3].4

We now turn our attention to the relationship between the Q-CEP and the EP, es-
tablishing first a simple lemma and useful corollary for investigating relatively finitely 
subdirectly irreducible algebras.

Lemma 2.6. Let Q be any quasivariety and let A be a subalgebra of some B ∈ Q. For any 
meet-irreducible Θ ∈ ConQ A satisfying CgQ

B
(Θ) ∩A2 = Θ, there exists a meet-irreducible 

Φ ∈ ConQ B such that Φ ∩A2 = Θ.

Proof. Consider any meet-irreducible Θ ∈ ConQ A satisfying CgQ
B

(Θ) ∩ A2 = Θ. By 
assumption, T := {Ψ ∈ ConQ B | Ψ ∩ A2 = Θ} 	= ∅, and, since every chain in 〈T, ⊆〉
has an upper bound (its union) in T , by Zorn’s Lemma, 〈T, ⊆〉 has a maximal element 
Φ ∈ ConQ B.

It remains to show that Φ is meet-irreducible in ConQ B, so let Φ = Φ1 ∩Φ2 for some 
Φ1, Φ2 ∈ ConQ B. Then

(Φ1 ∩A2) ∩ (Φ2 ∩A2) = Φ1 ∩ Φ2 ∩A2 = Φ ∩A2 = Θ

and, since Θ is meet-irreducible in ConQ A, either Φ1 ∩ A2 = Θ or Φ2 ∩ A2 = Θ. So 
Φ1 ∈ T or Φ2 ∈ T . Hence, by the maximality of Φ in 〈T, ⊆〉, either Φ1 = Φ or Φ2 = Φ. 
So Φ is meet-irreducible in ConQ B. �
Corollary 2.7. Let Q be any quasivariety and suppose that A ∈ QRFSI is a subalgebra of 
some B ∈ Q. Then there exists a meet-irreducible Φ ∈ ConQ B such that Φ ∩A2 = ΔA, 
and hence there exist also a C ∈ QRFSI and surjective homomorphism ϕ : B → C such 
that ker(ϕ) ∩A2 = ΔA.

The following result provides a general sufficient criterion for a subclass K of a qua-
sivariety Q to have the EP.

Proposition 2.8. Let K be a subclass of a quasivariety Q satisfying

(i) K is closed under isomorphisms;
(ii) for any B ∈ Q and subalgebra A ∈ K of B, there exists a Φ ∈ ConQ B such that 

B/Φ ∈ K and Φ ∩A2 = ΔA;
(iii) K has the Q-congruence extension property.

Then K has the extension property.

4 This result also follows from a more general theorem of Kiss [26, Theorem 2.3] for congruence-modular 
varieties; however, the latter does not imply, or seem to be implied by, our Theorem 2.3.
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Proof. Consider any A, B, C ∈ K, embedding ϕB : A → B, and surjective homomor-
phism ϕC : A → C. Since K is closed under isomorphisms, by (i), we may assume without 
loss of generality that A is a subalgebra of B and that C = A/Θ for some Θ ∈ ConQ A. 
Since K has the Q-CEP, by (iii), there exists a Ψ ∈ ConQ B such that Ψ ∩A2 = Θ. Let 
D := B/Ψ ∈ Q and let ψB be the canonical homomorphism from B to D mapping each 
b ∈ B to [b]Ψ ∈ B/Ψ. Observe also that for any a, b ∈ A,

[a]Θ = [b]Θ ⇐⇒ 〈a, b〉 ∈ Θ ⇐⇒ 〈a, b〉 ∈ Ψ ⇐⇒ [a]Ψ = [b]Ψ.

Hence we obtain an embedding ψC of C into D mapping each [a]Θ ∈ A/Θ to [a]Ψ ∈
B/Ψ such that ψBϕB = ψCϕC . Finally, by (ii), there exist a D∗ ∈ K, a surjective 
homomorphism ψ∗

B : D → D∗, and an embedding ψ∗
C : C → D∗ such that ψ∗

BψBϕB =
ψ∗
CϕC . So K has the EP. �
In particular, combining Proposition 2.8 with Corollary 2.7, we obtain the following 

result for the class of relatively finitely subdirectly irreducible members of a quasivariety.

Corollary 2.9. Let Q be any quasivariety. If QRFSI has the Q-congruence extension prop-
erty, then QRFSI has the extension property.

Next, we provide a sufficient criterion for a subclass K of a quasivariety Q to have the 
Q-CEP.

Proposition 2.10. Let K be a subclass of a quasivariety Q satisfying

(i) K is closed under subalgebras;
(ii) every relatively subdirectly irreducible member of Q belongs to K;
(iii) K has the extension property.

Then K has the Q-congruence extension property.

Proof. Consider any B ∈ K. To show that B has the Q-CEP, it suffices, by Lemma 2.1(1), 
to prove that for any subalgebra A of B and completely meet-irreducible Θ ∈ ConQ A, 
there exists a Ψ ∈ ConQ B such that Ψ ∩ A2 = Θ. Note first that A ∈ K, by (i), and 
A/Θ ∈ QRSI ⊆ K, by (ii). Now let ϕC : A → A/Θ be the canonical homomorphism 
mapping a ∈ A to [a]Θ ∈ A/Θ and let ϕB : A → B be the inclusion map. Since K has 
the EP, by (iii), there exist a D ∈ K, a homomorphism ψB : B → D, and an embedding 
ψC : A/Θ → D such that ψBϕB = ψCϕC . Let Ψ := ker(ψB). By the homomorphism 
theorem, B/Ψ is isomorphic to a subalgebra of D ∈ K, so B/Ψ ∈ Q and Ψ ∈ ConQ B. 
Moreover, for any a, b ∈ A, using the injectivity of ψC for the third equivalence,

〈a, b〉 ∈ Ψ ⇐⇒ ψBϕB(a) = ψBϕB(b)

⇐⇒ ψCϕC(a) = ψCϕC(b)

⇐⇒ ϕC(a) = ϕC(b)
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⇐⇒ 〈a, b〉 ∈ ker(ϕC) = Θ.

That is, Ψ ∩A2 = Θ. So B has the Q-CEP. �
In particular, we obtain the following generalization of [3, Lemma 1.2].

Corollary 2.11. Let Q be any quasivariety. Then Q has the Q-congruence extension prop-
erty if and only if Q has the extension property.

We can now combine these results to obtain the second main result of this section.

Theorem 2.12. Let Q be a relatively congruence-distributive quasivariety such that 
QRFSI = QFSI is closed under subalgebras. The following are equivalent:

(1) Q has the Q-congruence extension property.
(2) Q has the extension property.
(3) QRFSI = QFSI has the Q-congruence extension property.
(4) QRFSI = QFSI has the extension property.

Proof. The equivalence of (1) and (2) is a special case of Corollary 2.11, and the equiv-
alence of (1) and (3), and the implications from (3) to (4), and from (4) to (3), follow 
from Theorem 2.3, Corollary 2.9, and Proposition 2.10, respectively. �
Corollary 2.13. Let V be a congruence-distributive variety such that VFSI is closed under 
subalgebras. The following are equivalent:

(1) V has the congruence extension property.
(2) V has the extension property.
(3) VFSI has the congruence extension property.
(4) VFSI has the extension property.

Remark 2.14. Even for a congruence-distributive variety V, it is possible for VFSI to have 
the EP but not the CEP. For example, let V be the variety generated by the lattice-
ordered monoid C4 = 〈{−2, −1, 1, 2}, min, max, ·, 1〉 with multiplication table

· −2 −1 1 2
−2 −2 −2 −2 −2
−1 −2 −1 −1 2

1 −2 −1 1 2
2 −2 2 2 2

The proper subuniverses of C4 are C1 = {1}, C2 = {−1, 1}, Cδ
2 = {1, 2}, C3 = {−1, 1, 2}, 

Cδ
3 = {−2, 1, 2}, and C∗

3 = {−2, −1, 1}, up to isomorphism, and any homomorphic image 
of C4 is isomorphic to one of its subalgebras. As shown in [33], the algebra C4, and 
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hence VFSI , does not have the CEP: just observe that Θ := ΔC∗
3 ∪{〈−1, −2〉, 〈−2, −1〉} ∈

ConC∗
3, but Cg

C4
(Θ) = C4 × C4. On the other hand, using the fact that C∗

3 /∈ VFSI , it 
is easy to confirm that VFSI has the EP.

3. The amalgamation property

We first recall a useful necessary and sufficient condition for the existence of amalgams.

Lemma 3.1 ([19, Lemma 2]). Let 〈A, B, C, ϕB , ϕC〉 be a doubly injective span in a class 
of similar algebras K and suppose that

(i) for any distinct x, y ∈ B, there exist a Dxy
B ∈ K and homomorphisms ψxy

B : B → Dxy
B

and ψxy
C : C → Dxy

B satisfying ψxy
B ϕB = ψxy

C ϕC and ψxy
B (x) 	= ψxy

B (y);
(ii) for any distinct x, y ∈ C, there exist a Dxy

C ∈ K and homomorphisms χxy
B : B → Dxy

C

and χxy
C : C → Dxy

C satisfying χxy
B ϕB = χxy

C ϕC and χxy
C (x) 	= χxy

C (y).

Then 〈A, B, C, ϕB , ϕC〉 has an amalgam 〈D, ψB , ψC〉, where D is the product of the 
algebras in the set {Dxy

B | x, y ∈ B, x 	= y} ∪ {Dxy
C | x, y ∈ C, x 	= y}.

Next, we show that to establish the AP for a universal class of algebras, we can restrict 
our attention to the finitely generated members of the class.5

Lemma 3.2. Let K be a universal class of algebras such that every doubly injective span 
of finitely generated algebras in K has an amalgam in K. Then K has the amalgamation 
property.

Proof. Let 〈A, B, C, ϕB , ϕC〉 be any doubly injective span in K, assuming without loss 
of generality that A is a subalgebra of B and C, and ϕB and ϕC are inclusion maps. 
Referring to [21] for basic notions of model theory, let Σ be the union of the theory of K
and the atomic diagrams of B and C. Then the span has an amalgam in K if and only 
if Σ has a model. To show that Σ has a model, consider any union Σ′ of the theory of 
K and arbitrary finite subsets of the atomic diagrams of B and C, and let A′, B′, C′ be 
the respective subalgebras of A, B, C generated by the finitely many elements named in 
Σ′. By assumption, the doubly injective span 〈A′, B′, C′, ϕ′

B , ϕ
′
C〉, where ϕ′

B and ϕ′
C are 

inclusion maps, has an amalgam in K. So Σ′ has a model. Hence, by the compactness 
theorem, Σ has a model. �

The following result will play a key role in the proof of our Theorem 3.4. A slightly 
weaker version (applying only to varieties) was first proved in [29] (see also [30]) and used 
to establish a special case of Theorem 3.4 where V is a variety of semilinear residuated 
lattices with the CEP and VFSI is the class of totally ordered members of V.

5 We thank the anonymous referee for providing a proof of this lemma.
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Proposition 3.3 (cf. [29, Theorem 9]). Let K be a subclass of a quasivariety Q satisfying

(i) K is closed under isomorphisms and subalgebras;
(ii) every relatively subdirectly irreducible member of Q belongs to K;
(iii) for any B ∈ Q and subalgebra A of B, if Θ ∈ ConQ A and A/Θ ∈ K, then there 

exists a Φ ∈ ConQ B such that Φ ∩A2 = Θ and B/Φ ∈ K;
(iv) every doubly injective span of finitely generated algebras in K has an amalgam in 

Q.

Then Q has the amalgamation property.

Proof. By Lemma 3.2, it suffices to show that any doubly injective span 〈A, B, C, ϕB, ϕC〉
of finitely generated members of Q has an amalgam in Q, assuming, without loss of gen-
erality, that A is a subalgebra of B and C, and ϕB and ϕC are inclusion maps. We 
check condition (i) of Lemma 3.1 for the existence of an amalgam, condition (ii) being 
completely symmetrical. Consider any distinct x, y ∈ B and let Ψ be a Q-congruence 
of B that is maximal with respect to 〈x, y〉 /∈ Ψ. Then B/Ψ is a relatively subdirectly 
irreducible member of Q and belongs to K, by (ii). Define Θ := Ψ ∩ A2. The map ϕ′

B

sending [a]Θ ∈ A/Θ to [a]Ψ is an embedding of A/Θ into B/Ψ, so A/Θ ∈ K, by (i), 
and Θ ∈ ConQ A. Hence, by (iii), there exists a Φ ∈ ConQ C such that Φ ∩A2 = Θ and 
C/Φ ∈ K. Moreover, the map ϕ′

C sending any [a]Θ ∈ A/Θ to [a]Φ is an embedding of 
A/Θ into C/Φ.

Since A, B, and C are finitely generated, 〈A/Θ, B/Ψ, C/Φ, ϕ′
B, ϕ

′
C〉 is a doubly injec-

tive span of finitely generated members of K and, by (iv), has an amalgam 〈Dxy, χB , χC〉
in Q. We define homomorphisms

ψxy
B : B → Dxy; b �→ χB([b]Ψ) and ψxy

C : C → Dxy; c �→ χC([c]Φ).

Then ψxy
B (x) 	= ψxy

B (y) (as χB is injective and [x]Ψ 	= [y]Ψ) and for any a ∈ A,

ψxy
B (ϕB(a)) = χB([a]Ψ)

= χB(ϕ′
B([a]Θ))

= χC(ϕ′
C([a]Θ))

= χC([a]Φ)

= ψxy
C (ϕC(a)). �

We now prove the main result of this section.

Theorem 3.4. Let Q be any quasivariety with the Q-congruence extension property such 
that QRFSI is closed under subalgebras. The following are equivalent:

(1) Q has the amalgamation property.
(2) Q has the one-sided amalgamation property.
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(3) QRFSI has the one-sided amalgamation property.
(4) Every doubly injective span in QRFSI has an amalgam in QRFSI ×QRFSI .
(5) Every doubly injective span of finitely generated algebras in QRFSI has an amalgam 

in Q.

Proof. (1)⇒ (2). Immediate.
(2)⇒ (3). Suppose that Q has the 1AP and let 〈A, B, C, ϕB , ϕC〉 be a doubly injective 

span in QRFSI . By assumption, there exist a D′ ∈ Q, a homomorphism ψ′
B : B → D′, and 

an embedding ψ′
C : C → D′ such that ψ′

BϕB = ψ′
CϕC . We may assume without loss of 

generality that C is a subalgebra of D′. By Corollary 2.7, there exist a D ∈ QRFSI and a 
surjective homomorphism χ : D′ → D such that ker(χ) ∩C2 = ΔC . Hence ψB := χψ′

B is 
a homomorphism from B to D, and ψC := χψ′

C is an embedding of C into D satisfying 
ψBϕB = χψ′

BϕB = χψ′
CϕC = ψCϕC .

(3)⇒ (4). Suppose that QRFSI has the 1AP and let 〈A, B, C, ϕB , ϕC〉 be any doubly 
injective span in QRFSI . By assumption, there exist a DC ∈ QRFSI , a homomorphism 
ψC
B : B → DC , and an embedding ψC

C : C → DC such that ψC
BϕB = ψC

CϕC . However, 
〈A, C, B, ϕC , ϕB〉 is also a doubly injective span in QRFSI , so there exist a DB ∈ QRFSI , 
a homomorphism ψB

C : C → DB , and an embedding ψB
B : B → DB such that ψB

CϕC =
ψB
BϕB . Hence 〈A, B, C, ϕB , ϕC〉 has an amalgam 〈D, ψB, ψC〉, where D = DB × DC ∈

QRFSI×QRFSI , ψB maps x ∈ B to 〈ψB
B (x), ψC

B(x)〉, and ψC maps x ∈ C to 〈ψB
C (x), ψC

C (x)〉.
(4)⇒ (5). Immediate.
(5)⇒ (1). Suppose that every doubly injective span of finitely generated algebras in 

QRFSI has an amalgam in Q. Since QRSI ⊆ QRFSI and QRFSI is closed under subalgebras 
by assumption, it suffices to apply Proposition 3.3 with K := QRFSI , observing that 
condition (iii) is satisfied by Lemma 2.6. �
Corollary 3.5. Let V be any variety with the congruence extension property such that VFSI

is closed under subalgebras. The following are equivalent:

(1) V has the amalgamation property.
(2) V has the one-sided amalgamation property.
(3) VFSI has the one-sided amalgamation property.
(4) Every doubly injective span in VFSI has an amalgam in VFSI × VFSI .
(5) Every doubly injective span of finitely generated algebras in VFSI has an amalgam 

in V.

Remark 3.6. The 1AP cannot be replaced by the AP in condition (3) of Theorem 3.4
or Corollary 3.5. For example, the variety DL of distributive lattices is congruence-
distributive and has the CEP and AP, but DLFSI , which up to isomorphism contains 
only the trivial lattice and two-element lattice, does not have the AP. Just observe that 
any amalgam of a doubly injective span embedding the trivial lattice into the two-element 
lattice in two different ways must have at least three elements and hence cannot belong 
to DLFSI .
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The following result is useful for the study of joins of varieties with the AP (see, e.g., 
the proof of Theorem 6.2). Recall that a subalgebra A of an algebra B is a retract of B
if there exists a homomorphism ψ : B → A such that ψ is the identity on A.

Proposition 3.7. Let V1 and V2 be varieties of the same signature such that V1 ∨ V2 is 
congruence-distributive, and suppose that V1 and V2 have the AP and CEP, (V1)FSI and 
(V2)FSI are closed under subalgebras, and whenever A ∈ (V1)FSI ∩ (V2)FSI is a subalgebra 
of B ∈ (V1)FSI ∪(V2)FSI , it is a retract of B. Then V1∨V2 has the amalgamation property.

Proof. Note first that, since V1 ∪ V2 is a positive universal class, Jónsson’s Lemma [24]
yields (V1 ∨ V2)SI ⊆ V1 ∪ V2 and hence (V1 ∨ V2)SI = (V1)SI ∪ (V2)SI . However, by 
the Relativized Jónsson Lemma [8, Lemma 1.5], every finitely subdirectly irreducible 
member of a variety embeds into an ultraproduct of its subdirectly irreducible members. 
So also (V1 ∨ V2)FSI ⊆ V1 ∪ V2, and (V1 ∨ V2)FSI = (V1)FSI ∪ (V2)FSI . Now consider any 
doubly-injective span 〈A, B, C, ϕB , ϕC〉 in (V1 ∨ V2)FSI . Since V1 and V2 have the AP, 
we may assume that A ∈ (V1)FSI ∩ (V2)FSI is a subalgebra of B, C ∈ (V1)FSI ∪ (V2)FSI . By 
assumption, there exists a homomorphism ψB : B → C (since A is a subalgebra of C) 
such that ψB is the identity on A. Let ψC be the identity map on C. Clearly, ψBϕB =
ψCϕC . Hence (V1 ∨ V2)FSI has the 1AP and so V1 ∨ V2 has the AP, by Theorem 3.4. �

Let us conclude this section by remarking that by considering completely meet-
irreducible Q-congruences in the proof of Theorem 3.4, we obtain the same result with 
QRFSI replaced by the class Q+

RSI
of trivial or Q-subdirectly irreducible members of Q. 

In particular, we obtain [19, Theorem 3], which states that a variety V with the CEP
such that the class V+

SI
of trivial or subdirectly irreducible members of V is closed under 

subalgebras has the AP if and only if every doubly injective span in V+
SI

has an amalgam 
in V. Note, however, that while the property that QRFSI is closed under subalgebras 
follows from the existence of equationally definable relative principal congruence meets 
(satisfied by many quasivarieties serving as algebraic semantics for non-classical logics), 
a similarly general condition guaranteeing closure under subalgebras is not known for 
Q+

RSI
.

4. Transferable injections and strong amalgamation

We first establish a generalization for classes of similar algebras closed under subalge-
bras of the well-known fact that a variety has the TIP if and only if it has the CEP and
AP [3, Lemma 1.7].

Proposition 4.1. Let K be a class of similar algebras that is closed under subalgebras. Then 
K has the transferable injections property if and only if it has the one-sided amalgamation 
property and extension property.
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Proof. The left-to-right direction is immediate. For the converse, suppose that K has the
1AP and EP and consider any injective span 〈A, B, C, ϕB, ϕC〉 in K. Let C′ := ϕC [A]. 
By assumption, C′ ∈ K. Moreover, ϕC : A → C′ is surjective, so, since K has the EP, 
there exist a D′ ∈ K, a homomorphism ψ′

B : B → D′, and an embedding ψ′
C : C′ → D′

such that ψ′
BϕB = ψ′

CϕC . Let ν : C′ → C be the inclusion map. Since K has the 1AP, 
there exist for the doubly injective span 〈C′, D′, C, ψ′

C , ν〉, a D ∈ K, a homomorphism 
χ : D′ → D, and an embedding ψC : C → D such that χψ′

C = ψCν. Let ψB := χψ′
B. 

Then ψBϕB = χψ′
BϕB = χψ′

CϕC = ψCνϕC = ψCϕC . Hence K has the TIP. �
Combining now Proposition 4.1 with our earlier results for the 1AP and EP, we are 

able to transfer results for the TIP from a quasivariety to the class of its relatively finitely 
subdirectly irreducible members, and back again.

Lemma 4.2. If a quasivariety Q has the transferable injections property, then QRFSI has 
the transferable injections property.

Proof. Suppose that Q has the TIP and let 〈A, B, C, ϕB , ϕC〉 be an injective span in 
QRFSI . Then there exist a D ∈ Q, a homomorphism ψB : B → D, and an embedding 
ψC : C → D such that ψBϕB = ψCϕC . Without loss of generality, we may assume that 
C is a subalgebra of D and ψC is the inclusion map. By Corollary 2.7, there exist a 
D∗ ∈ QRFSI and a surjective homomorphism χ : D → D∗ such that ker(χ) ∩ C2 = ΔC . 
Let ψ∗

B := χψB and ψ∗
C := χψC . Then ker(ψ∗

C) = ker(χ) ∩ C2 = ΔC , so ψ∗
C is an 

embedding, and ψ∗
BϕB = χψBϕB = χψCϕC = ψ∗

CϕC . Hence QRFSI has the TIP. �
Theorem 4.3. Let Q be a relatively congruence-distributive quasivariety such that QRFSI =
QFSI is closed under subalgebras. Then Q has the transferable injections property if and 
only if QRFSI = QFSI has the transferable injections property.

Proof. The left-to-right direction follows directly from Lemma 4.2. For the converse, 
suppose that QRFSI has the TIP. Then QRFSI has the 1AP and the EP, by Proposition 4.1, 
and hence Q has the Q-CEP, by Theorem 2.12. Moreover, Q has the AP, by Theorem 3.4. 
So Q has the TIP, by Proposition 4.1. �

We now recall a useful characterization of the SAP and a transfer theorem for SE.

Theorem 4.4 ([22]). Let Q be a quasivariety. Then Q has the strong amalgamation prop-
erty if and only if Q has the amalgamation property and surjective epimorphisms.

Theorem 4.5 ([6, Theorem 22]). Let V be an arithmetical variety such that VFSI is a 
universal class. Then V has surjective epimorphisms if and only if VFSI has surjective 
epimorphisms.

Combining Theorems 4.4 and 4.5 with Corollary 3.5 yields the following result.
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Corollary 4.6. Let V be an arithmetical variety with the congruence extension property 
such that VFSI is a universal class. Then V has the strong amalgamation property if and 
only if VFSI has the one-sided amalgamation property and surjective epimorphisms.

These results do not provide a transfer theorem for the SAP, however. To obtain such 
a theorem, at least in one direction, we make use of a well-known characterization of 
the SE property. Let K be a class of similar algebras and consider any A ∈ K. We say 
that A is a K-epic subalgebra of B ∈ K if A is a subalgebra of B and for every C ∈ K
and all homomorphisms ψ1, ψ2 : B → C, if ψ1 and ψ2 are equal on their restriction to 
A, then ψ1 = ψ2. It is easy to see that A is a K-epic subalgebra of B if and only if A
is a subalgebra of B and the inclusion homomorphism of A into B is an epimorphism 
in K. The following result is folklore (see, e.g., [32, Lemma 3.1]), but we include a proof 
for completeness.

Lemma 4.7. Let K be a class of similar algebras closed under subalgebras. Then K has 
surjective epimorphisms if and only if no member of K has a proper K-epic subalgebra.

Proof. Let A, B ∈ K and suppose that ϕ : A → B is a non-surjective K-epimorphism. 
Then ϕ[A] is a proper subalgebra of B. Observe that if C ∈ K and ψ1, ψ2 : B → C are 
homomorphisms that coincide on their restriction to ϕ[A], then ψ1ϕ = ψ2ϕ and hence 
ψ1 = ψ2 since ϕ is an epimorphism. It follows that ϕ[A] is a proper K-epic subalgebra 
of B.

For the converse, let B ∈ K and suppose that A is a proper K-epic subalgebra of B. 
Then A ∈ K since K is closed under subalgebras. Hence the inclusion map of A into B
is a non-surjective K-epimorphism between members of K. �

The following theorem strengthens a result from [16].

Theorem 4.8. Let V be an arithmetical variety with the congruence extension property 
such that VFSI is a universal class. If every doubly injective span in VFSI has a strong 
amalgam in V, then V has the strong amalgamation property.

Proof. Suppose that every doubly injective span in VFSI has a strong amalgam in V. 
Then V has the AP, by Corollary 3.5. Hence, by Theorems 4.4 and 4.5, it is enough to 
show that VFSI has SE, or, equivalently, by Lemma 4.7, that no member of VFSI has a 
proper VFSI-epic subalgebra. Let B ∈ VFSI , let A be a proper subalgebra of B, and let 
ι : A → B be the inclusion map. By assumption, the span 〈A, B, B, ι, ι〉 has a strong 
amalgam 〈D, ψ1, ψ2〉 in V. Let χ : D →

∏
i∈I Di be a subdirect representation of D, so 

that in particular Di ∈ VFSI for each i ∈ I. Since D is a strong amalgam, there exists an 
i ∈ I such that χψ1(i) 	= χψ2(i). On the other hand, since D is an amalgam, it follows 
that χψ1ι = χψ2ι. This implies that ι is not a K-epimorphism, proving the theorem. �
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5. Decidability

To fix terminology, let us call a variety finitely generated if it is generated as a variety 
by some given finite set of finite algebras of finite signature, and residually small if there 
exists a bound on the size of its subdirectly irreducible members. It is known that a 
residually small congruence-distributive variety that has the AP also has the CEP [25, 
Corollary 2.11].

Consider any finitely generated congruence-distributive variety V such that VFSI is 
closed under subalgebras. By Jónsson’s Lemma [24], there exists and can be constructed 
a finite set V∗

FSI
⊆ VFSI of finite algebras such that each A ∈ VFSI is isomorphic to some 

A∗ ∈ V∗
FSI

. Hence, by Corollary 2.4, it can be decided if V has the CEP by checking if 
each member of V∗

FSI
has the CEP. Since V is clearly residually small, if V does not have 

the CEP, it cannot have the AP. Otherwise, V has the CEP and, by Corollary 3.5, it 
can be decided if V has the AP by checking — by considering the finitely many finite 
algebras in V∗

FSI
— if VFSI has the 1AP. Finally, if V is also arithmetical, to check if V

has SE, it suffices to check — again, considering the algebras in V∗
FSI

— if VFSI has SE [6, 
Theorem 22], and V then has the SAP if and only if it has SE and the AP [22]. Hence we 
have established the following result.

Theorem 5.1. Let V be a finitely generated congruence-distributive variety such that VFSI

is closed under subalgebras. There exist effective algorithms to decide if V has the con-
gruence extension property, amalgamation property, or transferable injections property. 
If V is also arithmetical, then there exist effective algorithms to decide if V has surjective 
epimorphisms or the strong amalgamation property.

6. A case study: varieties of BL-algebras

BL-algebras, introduced by Hájek in [20] as an algebraic semantics for his basic fuzzy 
logic of continuous t-norms, have been studied intensively over the past twenty five years, 
largely in the framework of substructural logics and residuated lattices (see, e.g., [1,2,14,
15,23,30,31]). In this section, we use the tools developed in previous sections to contribute 
to the development of a (still incomplete) description of the varieties of BL-algebras that 
have the AP.

A BL-algebra is an algebra A = 〈A, ∧, ∨, ·, →, 0, 1〉 satisfying

(i) 〈A, ∧, ∨, 0, 1〉 is a bounded lattice with order a ≤ b :⇐⇒ a ∧ b = a;
(ii) 〈A, ·, 1〉 is a commutative monoid;
(iii) → is the residual of ·, i.e., a · b ≤ c ⇐⇒ b ≤ a → c for all a, b, c ∈ A;
(iv) a ∧ b = a · (a → b) and (a → b) ∨ (b → a) = 1 for all a, b ∈ A.

The class of BL-algebras forms a congruence-distributive variety BL with the CEP, and 
BLFSI is the positive universal class consisting of all totally ordered BL-algebras (i.e., such 
that 〈A, ≤〉 in the preceding definition is a chain). BL-algebras hence form a subvariety 
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of the variety of semilinear integral bounded residuated lattices (also known as MTL-
algebras) [13,17].

Notable subvarieties of BL include (i) the variety MV of MV-algebras consisting of 
BL-algebras satisfying a ∨ b = (a → b) → b for all a, b ∈ A; (ii) the variety G of 
Gödel algebras consisting of BL-algebras satisfying a ∧ b = a · b for all a, b ∈ A; (iii) the 
variety P of product algebras consisting of BL-algebras satisfying a ∧ (a → 0) = 0 and 
(a → 0) ∨ ((a → (a · b)) → b) = 1 for all a, b ∈ A. The varieties MV, G, and P are 
generated by algebras Ł, G, and P of the form 〈[0, 1], min, max, �, →�, 0, 1〉, where x � y
is max(0, x + y − 1), min(x, y), and xy, respectively. Every member of BLFSI (i.e., every 
totally ordered BL-algebra) can be constructed as a certain ordinal sum of members of 
MVFSI and PFSI [1, Theorem 3.7].

Let us briefly recall some further relevant facts about MV, G, and P. First, given 
any totally ordered Abelian group L = 〈L, +, −, 0, ≤〉 and u ∈ L with u ≥ 0, defining 
a · b := max(a + b − u, 0) and a → b := min(u − a + b, u) yields a totally ordered 
MV-algebra Γ(L, u) := 〈[0, u], min, max, ·, →, 0, u〉. Each proper non-trivial subvariety 
of MV is generated by a non-empty finite set of algebras of the form Sn := Γ(Z, n)
or Sω

n := Γ(Z ×lex Z, 〈n, 0〉), where Z is the ordered group of integers, Z ×lex Z is the 
lexicographic product of two copies of Z, and n ∈ N>0 [28, Theorem 4.11]. Notably, 
S1 generates the variety BA of Boolean algebras, and Sω

1 , known as the Chang algebra, 
generates a variety denoted by C. Each proper non-trivial subvariety Gn of G is generated 
by the algebra Gn := 〈{0, 1n , . . . , 

n−1
n , 1}, min, max, min, →, 0, 1〉, where n ∈ N>0 and 

a → b = 1 if a ≤ b, otherwise a → b = b. Finally, the only proper non-trivial subvariety 
of P is BA (which coincides with G2).

The non-trivial subvarieties of MV, G, and P that have the AP are precisely the 
varieties generated by Sn (n ∈ N>0), Sω

n (n ∈ N>0), MV, G, G3, and P [11, Theorem 13]. 
Note also that BL has the AP [31, Theorem 3.7], and [2, Theorem 6] gives a complete 
description of the varieties of BL-algebras having the AP that are generated by a totally 
ordered BL-algebra built as an ordinal sum of finitely many members of MVFSI and PFSI . 
Here, we consider subvarieties of BL1 := MV ∨ G ∨ P, each of which is generated by 
a class of “one-component” totally ordered BL-algebras, i.e., members of MVFSI , GFSI , 
and PFSI .

Lemma 6.1. Let V be a subvariety of BL1 satisfying V � MV and Sn ∈ V for some 
n ∈ N>1. Then V does not have the amalgamation property.

Proof. Consider a doubly injective span 〈A, B, C, ϕB, ϕC〉 in VFSI , where A is the two-
element Boolean algebra, B is Sn ∈ V for some n ∈ N>1, and C /∈ MV. Suppose that 
there exist a D ∈ VFSI and an embedding ψC of C into D. Then also D /∈ MV, so 
D ∈ GFSI ∪ PFSI . Since B is a finite totally ordered MV-algebra, it is simple. Hence any 
homomorphism ψB : B → D is either trivial (i.e., maps all elements of B to one element 
in D), which is not possible, since D is non-trivial, or injective, which is not possible, 
since B does not embed into any totally ordered Gödel algebra or product algebra. So 
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VFSI does not have the 1AP and it follows, by Theorem 3.4, that V does not have the
AP. �
Theorem 6.2. In addition to the varieties of MV-algebras generated by one totally or-
dered MV-algebra, there are precisely ten non-trivial subvarieties of BL1 that have the 
amalgamation property: G, G3, P, G ∨ P, G ∨ C, G3 ∨ P, G3 ∨ C, P ∨ C, G3 ∨ P ∨ C, and 
G ∨ P ∨ C.

Proof. Let V be any non-trivial subvariety of BL1. Then VFSI consists of members of 
GFSI , MVFSI , and PFSI . The cases where VFSI is included in one of these classes are clear 
from the previous remarks. Moreover, it follows from [2, Theorem 3.3] that if V contains 
Gn for some n > 3 but not G, then V does not have the AP. Suppose now that V � MV
and V ∩ MV is non-trivial. Then V ∩ MV is either MV or generated by a non-empty 
finite set of algebras of the form Sn or Sω

n (n ∈ N>0). If V ∩MV /∈ {G2, C}, then, since 
Sn is a subalgebra of Sω

n for each n ∈ N, it follows that Sn ∈ V for some n ∈ N>1, and 
hence, by Lemma 6.1, that V does not have the AP.

It remains therefore to show that each of G∨P, G∨C, G3∨P, G3∨C, P∨C, G3∨P∨C, 
and G ∨P ∨C has the AP. Clearly, the two-element Boolean algebra G2 is the only non-
trivial algebra common to the finitely subdirectly irreducible members of the varieties in 
these joins. Hence, by Proposition 3.7, it suffices to observe that G2 is a retract of any 
non-trivial member of GFSI , PFSI , and CFSI . This follows directly from a general result 
of [7, Theorem 4.5] describing BL-algebras with a Boolean retract, but we may also 
define a suitable retraction explicitly. Given any non-trivial A ∈ GFSI ∪PFSI ∪CFSI , define 
ϕ : A → {0, 1} by mapping a ∈ A to 0 if and only if an = 0 for some n ∈ N, where 
a0 := 1 and ak+1 := ak · a (k ∈ N). It is straightforward to verify that ϕ is a retraction 
from A onto G2. �
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